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Abstract. The internal calibration of a pinhole camera is given by five
parameters that are combined into an upper-triangular 3× 3 calibration
matrix. If the skew parameter is zero and the aspect ratio is equal to one,
then the camera is said to have Euclidean image plane. In this paper,
we propose a non-iterative self-calibration algorithm for a camera with
Euclidean image plane in case the remaining three internal parameters
— the focal length and the principal point coordinates — are fixed but
unknown. The algorithm requires a set of N ≥ 7 point correspondences
in two views and also the measured relative rotation angle between the
views. We show that the problem generically has six solutions (including
complex ones).
The algorithm has been implemented and tested both on synthetic data
and on publicly available real dataset. The experiments demonstrate that
the method is correct, numerically stable and robust.
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1 Introduction

The problem of camera calibration is an essential part of numerous computer vi-
sion applications including 3d reconstruction, visual odometry, medical imaging,
etc. At present, a number of calibration algorithms and techniques have been
developed. Some of them require to observe a planar pattern viewed at several
different positions [5, 9, 25]. Other methods use 3d calibration objects consisting
of two or three pairwise orthogonal planes, which geometry is known with good
accuracy [24]. Also, there are calibration algorithms assuming that a scene in-
volves the pairs of mutually orthogonal directions [3, 14]. In contrast with the
just mentioned methods, self-calibration does not require any special calibration
objects or scene restrictions [6, 16, 18, 23], so only image feature correspondences
in several uncalibrated views are required. This provides the self-calibration ap-
proach with a great flexibility and makes it indispensable in some real-time
applications.

⋆ The work was supported by Act 211 Government of the Russian Federation, contract
No. 02.A03.21.0011.
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In two views, camera calibration is given by ten parameters — five inter-
nal and five external, whereas the fundamental matrix describing the epipolar
geometry in two views has only seven degrees of freedom [6]. This means that
self-calibration in two views is only possible under at least three further assump-
tions on the calibration parameters. For example, we can assume that the skew
parameter is zero and so is the translation vector, i.e. the motion is a pure rota-
tion. Then, the three orientation angles and the remaining four internals can be
self-calibrated from at least seven point matches [7]. Another possibility is that
all the internal parameters except common focal length are known. Then, there
exist a minimal self-calibration solution operating with six matched points [20,
2, 11, 13].

The five internal calibration parameters have different interpretation. The
skew parameter and the aspect ratio describe the pixel’s shape. In most situa-
tions, e.g. under zooming, these internals do not change. Moreover, for modern
cameras the pixel’s shape is very close to a square and hence the skew and aspect
ratio can be assumed as given and equal to 0 and 1 respectively. Following [10],
we say that a camera in this case has Euclidean image plane. On the other hand,
the focal length and the principal point coordinates describe the relative place-
ment of the camera center and the image plane. The focal length is the distance
between the camera center and the image plane, whereas the principal point
is an orthographic projection of the center onto the plane. All these internals
should be considered as unknown, since even for modern cameras the principal
point can be relatively far from the geometric image center. Besides, it is well
known that the focal length and the principal point always vary together by
zooming [22].

The aim of this paper is to propose an efficient solution to the self-calibration
problem of a camera with Euclidean image plane. As it was mentioned above,
in two views at most seven calibration parameters can be self-calibrated. Since
a camera with Euclidean image plane has eight parameters, we conclude that
one additional assumption should be made. In this paper we reduce the number
of external parameters assuming that the relative rotation angle between the
views is known. The problem thus becomes minimally constrained from seven
point correspondences in two views. In practice, the relative rotation angle can
be reliably found from e.g. the readings of an inertial measurement unit (IMU)
sensor. The possibility of using such additional data in structure-from-motion
has been demonstrated in [12].

In general, the joint usage of a camera and an IMU requires external calibra-
tion between the devices, i.e. we have to know the transformation matrix between
their coordinate frames. However, if only relative rotation angle is used, then the
external calibration is unnecessary, provided that both devices are fixed on some
rigid platform. Thus, the rotation angle of the IMU can be directly used as the
rotation angle of the camera [12]. This fact makes the presented self-calibration
method more convenient and flexible for practical use.
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To summarize, we propose a new non-iterative solution to the self-calibration
problem in case of at least seven matched points in two views, provided the
following assumptions:

– the camera intrinsic parameters are the same for both views;
– the camera has Euclidean image plane;
– the relative rotation angle between the views is known.

Our self-calibration method is based on the ten quartic equations. Nine of
them are well-known and follow from the famous cubic constraint on the essential
matrix. The novel last one (see Eq. (13)) arises from the condition that the
relative angle is known.

Finally, throughout the paper it is assumed that the cameras and scene points
are in sufficiently general position. There are critical camera motions for which
self-calibration is impossible, unless some further assumptions on the internal
parameters or the motion are made [21]. Also there exist degenerate configura-
tions of scene points. However, in this paper we restrict ourselves to the generic
case of camera motions and points configurations.

The rest of the paper is organized as follows. In Section 2, we recall some
definitions and results from multiview geometry and deduce our self-calibration
constraints. In Section 3, we describe in detail the algorithm. In Section 4 and
Section 5, the algorithm is validated in a series of experiments on synthetic and
real data. In Section 6, we discuss the results and make conclusions.

2 Preliminaries

2.1 Notation

We preferably use α, β, . . . for scalars, a, b, . . . for column 3-vectors or polyno-
mials, and A,B, . . . both for matrices and column 4-vectors. For a matrix A the
entries are (A)ij , the transpose is AT, the determinant is detA, and the trace
is trA. For two 3-vectors a and b the cross product is a × b. For a vector a the
notation [a]× stands for the skew-symmetric matrix such that [a]×b = a× b for
any vector b. We use I for the identity matrix.

2.2 Fundamental and essential matrices

Let there be given two cameras P =
[

I 0
]

and P ′ =
[

A a
]

, where A is a 3 ×
3 matrix and a is a 3-vector. Let Q be a 4-vector representing homogeneous
coordinates of a point in 3-space, q and q′ be its images, that is

q ∼ PQ, q′ ∼ P ′Q, (1)

where ∼ means an equality up to non-zero scale. The coplanarity constraint for
a pair (q, q′) says

q′TFq = 0, (2)
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where matrix F = [a]×A is called the fundamental matrix.
It follows from the definition of matrix F that detF = 0. This condition is

also sufficient. Thus we have

Theorem 1 ([8]). A non-zero 3 × 3 matrix F is a fundamental matrix if and

only if

detF = 0. (3)

The essential matrix E is the fundamental matrix for calibrated cameras

P̂ =
[

I 0
]

and P̂ ′ =
[

R t
]

, where R ∈ SO(3) is called the rotation matrix and t
is called the translation vector. Hence, E = [t]×R. Matrices F and E are related
by

E ∼ K ′TFK, (4)

where K and K ′ are the upper-triangular calibration matrices of the first and
second camera respectively.

The fundamental matrix has seven degrees of freedom, whereas the essential
matrix has only five degrees of freedom. It is translated into extra constraints
on the essential matrix. The following theorem gives one possible form of such
constraints.

Theorem 2 ([15]). A 3× 3 matrix E of rank two is an essential matrix if and

only if
1

2
tr(EET)E − EETE = 03×3. (5)

2.3 Self-Calibration Constraints

Let θ be the angle of rotation between two calibrated camera frames. In case θ
is known, the trace of rotation matrix τ = 2 cos θ + 1 is known too. This leads
to an additional quadratic constraint on the essential matrix.

Proposition 1. Let E = [t]×R be a real non-zero essential matrix and trR = τ .
Then E satisfies the equation

1

2
(τ2 − 1) tr(EET) + (τ + 1) tr(E2)− τ tr2 E = 0. (6)

Proof. Let U ∈ SO(3) be such that Ut =
[

0 0 1
]T

. Then,

Ê = UEUT = U [t]×U
TURUT = [Ut]×R̂ =





0 1 0
−1 0 0
0 0 0



 R̂, (7)

where R̂ = URUT. It is clear that if E satisfies Eq. (6), then so does Ê and vice
versa. Let us represent R̂ in terms of a unit quaternion s+ ui+ vj+ wk, i.e.

R̂ =





1− 2v2 − 2w2 2uv − 2ws 2uw + 2vs
2uv + 2ws 1− 2u2 − 2w2 2vw − 2us
2uw − 2vs 2vw + 2us 1− 2u2 − 2v2



 , (8)
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where s2 + u2 + v2 + w2 = 1. Then,

Ê =





2uv + 2ws 1− 2u2 − 2w2 2vw − 2us
−1 + 2v2 + 2w2 −2uv + 2ws −2uw − 2vs

0 0 0



 . (9)

Substituting this into (6), after some computation, we get

l.h.s. of (6) = (τ + 1− 4s2)(τ + 1− 4w2). (10)

This completes the proof, since τ = trR = tr R̂ = 4s2 − 1.

It is well known [8, 15] that for a given essential matrix E there is a “twisted
pair” of rotations Ra and Rb so that E ∼ [±t]×Ra ∼ [±t]×Rb. By Proposition 1,
τa = trRa and τb = trRb must be roots of Eq. (6). Since the equation is quadratic
in τ there are no other roots. Thus we have

Proposition 2. Let E be a real non-zero essential matrix satisfying Eq. (6) for
a certain τ ∈ [−1, 3]. Then, either τ = trRa or τ = trRb, where (Ra, Rb) is the

twisted pair of rotations for E.

Now suppose that we are given two cameras with unknown but identical
calibration matrices K and K ′ = K. Then we have

E ∼ KTFK, (11)

where F is the fundamental matrix. Substituting this into Eqs. (5)–(6), we get
the following ten equations:

1

2
tr(Fω∗FTω∗)F − Fω∗FTω∗F = 03×3, (12)

1

2
(τ2 − 1) tr(Fω∗FTω∗) + (τ + 1) tr(ω∗Fω∗F )− τ tr2(ω∗F ) = 0, (13)

where ω∗ = KKT. Constraints (12)–(13) involve the internal parameters of a
camera and hence can be used for its self-calibration. We notice that not all of
these constraints are necessarily linearly independent.

Proposition 3. If the fundamental matrix F is known, then Eq. (12) gives at

most three linearly independent constraints on the entries of ω∗.

Proof. Recall that matrix F is generically of rank two. Let the right and left null
vectors of F be e and e′ respectively. Denote by G the l.h.s. of Eq. (12). Then it
is clear that

Ge = GTe′ = 03×1. (14)

It follows that, given F , at least six of (G)ij are linearly dependent. Proposition 3
is proved.
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3 Description of the Algorithm

The initial data for our algorithm is N ≥ 7 point correspondences qi ↔ q′i,
i = 1, . . . , N , and also the trace τ of the rotation matrix R.

3.1 Data pre-normalization

To significantly improve the numerical stability of our algorithm, points qi and q′i
are first normalized as follows, adapted from [8]. We construct a 3× 3 matrix S
of the form

S =





γ 0 α
0 γ β
0 0 1



 (15)

so that the 2N new points, represented by the columns of matrix

S
[

q1 . . . qN q′1 . . . q′N
]

, (16)

satisfy the following conditions:

– their centroid is at the coordinate origin;
– their average distance from the origin is

√
2.

From now on we assume that qi and q′i are normalized.

3.2 Polynomial equations

The fundamental matrix F is estimated from N ≥ 7 point correspondences in
two views. The algorithm is well known, see [8] for details. In the minimal case
N = 7 there are either one or three real solutions. Otherwise, the solution is
generically unique.

Let both cameras be identically calibrated and have Euclidean image planes,
i.e.

K = K ′ =





f 0 a
0 f b
0 0 1



 , (17)

where f is the focal length and (a, b) is the principal point. It follows that

ω∗ = KKT =





a2 + p ab a
ab b2 + p b
a b 1



 , (18)

where we introduce a new variable p = f2.
Substituting F and ω∗ into constraints (12) and (13), we get ten quartic

equations in variables a, b and p. Let G be the l.h.s. of (12). By Proposition 3,
up to three of (G)ij are linearly independent. Let f1 = (G)11, f2 = (G)22,
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f3 = (G)33 and f4 = l.h.s. of (13). The objective is to find all feasible solutions
of the following system of polynomial equations

f1 = f2 = f3 = f4 = 0. (19)

Let us define the ideal J = ⟨f1, f2, f3, f4⟩ ⊂ C[a, b, p]. Unfortunately, ideal J
is not zero-dimensional. There is a one-parametric family of solutions of sys-
tem (19) corresponding to the unfeasible case p = 0. We state without proof the
decomposition √

J = J ′ ∩ ⟨p, tr(Fω∗)⟩, (20)

where
√
J is the radical of J and J ′ = J/⟨p⟩ is the quotient ideal, which is

already zero-dimensional. By (20), the affine variety of J is the union of a finite
set of points in C

3 and a conic in the plane p = 0.

3.3 Gröbner basis

In this subsection, the Gröbner basis of ideal J ′ will be constructed. We start
from rewriting equations (19) in form

B0y0 = 0, (21)

where B0 is a 4× 22 coefficient matrix, and

y0 =
[

a3b a2b2 ab3 a2b a4 b4 a3 ab2 b3 a2p abp b2p

a2 ab b2 ap bp p2 a b p 1
]T

(22)

is a monomial vector. Let us consider the following sequence of transformations:

(Bi, yi) → (B̃i, yi) → (Bi+1, yi+1), i = 0, . . . , 4. (23)

Here each B̃i is the reduced row echelon form of Bi. The monomials in yi are
ordered so that the left of matrix B̃i is an identity matrix for each i.

We exploit below some properties of the intermediate polynomials in se-
quence (23), e.g. they can be factorized or have degree lower than one expects
from the corresponding monomial vector. All of these properties have been ver-
ified in Maple by using randomly generated instances of the problem over the
field of rationals.

Let us denote by (A)i the ith row of matrix A. Now we describe in detail
each transformation (B̃i, yi) → (Bi+1, yi+1) of sequence (23).

– The last row of B̃0 corresponds to a 3rd degree polynomial. Matrix B1 of size
7 × 32 is obtained from B̃0 by appending 3 new rows and 10 new columns.
The rows are: a(B̃0)4, b(B̃0)4 and p(B̃0)4. Monomial vector

y1 =
[

a3b a2b2 ab3 a2b a3p a2bp ab2p a4

b4 a3 ab2 b3 a2p b2p2 ap2 abp b2p b3p a2

abp2 a2p2 ab b2 bp2 p3 ap bp p2 a b p 1
]T

, (24)

where we underlined the new monomials (columns) of matrix B1.
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– The polynomials corresponding to the last three rows of B̃1 are divisible
by p. Matrix B2 of size 13×32 is obtained as follows. We append 6 new rows
to B̃1, which are (B̃1)i/p, a(B̃1)i/p and b(B̃1)i/p for i = 6, 7. Monomial
vector y2 = y1.

– Matrix B3 of size 19 × 32 is obtained from B̃2 by appending 6 new rows:
a(B̃2)i, b(B̃2)i and p(B̃2)i for i = 12, 13. Monomial vector y3 = y1.

– The last row of B̃3 corresponds to a 2nd degree polynomial. Thus we pro-
ceed with the polynomials of degree up to 3. We eliminate from B̃3 rows
and columns corresponding to all 4th degree polynomials and monomials
respectively. Matrix B4 of size 11 × 20 is obtained from B̃3 as follows. We
hold the rows of B̃3 with numbers 4, 10, 11, 12, 13, 16, 17, 19, and append
3 new rows: a(B̃3)19, b(B̃3)19 and p(B̃3)19. Monomial vector

y4 =
[

a2b a3 ab2 b3 a2p ap2 abp b2p

a2 ab b2 bp2 p3 ap bp p2 a b p 1
]T

. (25)

– Finally, matrix B5 of size 14× 20 is obtained from B̃4 by appending 3 new
rows: a(B̃4)11, b(B̃4)11 and p(B̃4)11. Monomial vector y5 = y4.

The last six rows of matrix B̃5 constitute the (reduced) Gröbner basis of
ideal J ′ w.r.t. the graded reverse lexicographic order with a > b > p.

3.4 Internal and external parameters

Given the Gröbner basis of J ′, the 6×6 action matrix Mp for multiplication by p
in the quotient ring C[a, b, p]/J ′ can be easily constructed as follows. We denote
by C the 6× 6 right lower submatrix of B̃5. Then the first three rows of Mp are
the last three rows of (−C). The rest of Mp consists of almost all zeros except

(Mp)41 = (Mp)52 = (Mp)65 = 1. (26)

The six solutions are then found from the eigenvectors of matrix Mp, see [4]
for details. Complex solutions and the ones with p < 0 are excluded.

Having found the calibration matrix K, we compute the essential matrix E
from formula (11) and then the externals R and t using the standard procedure,
see e.g. [17]. Note that, due to Proposition 2 and the cheirality constraint [8, 17],
the trace of the estimated matrix R must equal τ .

Finally, the denormalized entities (see subsection 3.1 and the definition of
matrix S) are found as follows:

– fundamental matrix is STFS;

– calibration matrix is S−1K;

– essential matrix is unchanged, as KTS−TSTFSS−1K = KTFK ∼ E;

– externals R and t are also unchanged.
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4 Experiments on Synthetic Data

In this section we test the algorithm on synthetic image data. The default data
setup is given in the following table:

Distance to the scene 1
Scene depth 0.5

Baseline length 0.1
Image dimensions 1280× 720

4.1 Numerical Accuracy

First we verify the numerical accuracy of our method. The numerical error is
defined as the minimal relative error in the calibration matrix, that is

min
i

(∥Ki −Kgt∥
∥Kgt∥

)

. (27)

Here ∥ · ∥ stands for the Frobenius norm, i counts all real solutions, and

Kgt =





1000 0 640
0 1000 360
0 0 1



 (28)

is the ground truth calibration matrix. The numerical error distribution is re-
ported in Fig. 1.

Fig. 1. log
10

of numerical error for noise free data. The median error is 2.5× 10−9
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Fig. 2. The number of real (left) and feasible (right) solutions for the internal calibra-
tion. Noise free data

4.2 Number of solutions

In general, the algorithm outputs six solutions for the calibration matrix, count-
ing both real and complex ones. The number of real solutions is usually two or
four. The number of real solutions with positive p (we call such solutions feasible)
is equal to one in most cases. The corresponding distributions are demonstrated
in Fig. 2.

4.3 Behaviour under noise

To evaluate the robustness of our solver, we add two types of noise to the initial
data. First, the image noise which is modelled as zero-mean, Gaussian distributed
with a standard deviation varying from 0 to 1 pixel in a 1280× 720 image. Sec-
ond, the angle noise resulting from inaccurately found relative rotation angle θ.
In practice, θ is computed by integrating the angular velocity measurements ob-
tained from a 3d gyroscope. Therefore, a realistic model for the angle noise is
quite complicated and depends on a number of factors such as the value of θ,
the measurement rates, the inertial sensor noise model, etc. In a very simplified
manner, the angle noise can be modelled as θs [12], where s has the Gaussian
distribution with zero mean and standard deviation σ. In our experiments σ
ranges from 0 to 0.09.

Fig. 3 demonstrates the behaviour of the algorithm under increasing the
image and angle noise. Here and below each point on the diagram is a median
of 104 trials.

4.4 Comparison with the existing solvers

We compare our algorithm for the minimal number of points (N = 7) with the
6-point solver from [20] and the 5-point solver from [19].

Fig. 4 depicts the relative focal length error |f −1000|/1000 at varying levels
of image noise. Here and below α = 0.1 means a 10%-miscalibration in the
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Fig. 3. The relative error in the calibration matrix at varying level of noise (left) and
at varying number of points (right). The number of image points on the left figure is
N = 20. The standard deviation for the image noise on the right figure is 1 pixel

parameters a and b, i.e. the data was generated using the ground truth calibration
matrix Kgt, whereas the solutions were found assuming that

K =





1000 0 (1 + α)640
0 1000 (1 + α)360
0 0 1



 . (29)
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Fig. 4. The relative focal length error against noise standard deviation in pixels

In Fig. 5, the rotational and translational errors of the algorithms are re-
ported. As it can be seen, for realistic levels of image noise, the 5-point algorithm
expectedly outperforms as our solution as the 6-point solver. However, it is worth
emphasizing that our solution is more suitable for the internal self-calibration of
a camera rather than for its pose estimation. Once the self-calibration is done,
it is more efficient to switch to the 5- or even 4-point solvers from [12, 17].
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Fig. 5. The rotational (left) and translational (right) errors in degrees against noise
standard deviation in pixels

We also compared the speed of the algorithms. The average running times
over 105 trials are 2.0 ms (our 7pt), 1.6 ms (6pt) and 0.4 ms (5pt) on a sys-
tem with 2.3 GHz processor. The most expensive step of our algorithm is the
computation of the five reduced row echelon forms in sequence (23).

5 Experiments on Real Data

In this section we validate the algorithm by using the publicly available Eu-
RoC dataset [1]. This dataset contains sequences of the data recorded from an
IMU and two cameras on board a micro-aerial vehicle and also a ground truth.
Specifically, we used the “Machine Hall 01” dataset (easy conditions) and only
the images taken by camera “0”. The image size is 752× 480 (WVGA) and the
ground truth calibration matrix is

Kgt =





458.654 0 367.215
0 457.296 248.375
0 0 1



 . (30)

The sequence of 68 image pairs was derived from the dataset and the algo-
rithm was applied to every image pair, see example in Fig. 6. Here it is necessary
to make a few remarks.

– Since the algorithm assumes the pinhole camera model, every image was first
undistorted using the ground truth parameters.

– As it was mentioned in Subsection 4.2, the feasible solution is almost always
unique. However in rare cases multiple solutions are possible. To reduce the
probability of getting such solutions we additionally assumed that the prin-
cipal point is sufficiently close to the geometric image center. More precisely,
the solutions with

(a, b) ̸∈ {|x− 376| < 50, |y − 240| < 50} (31)
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Fig. 6. The pair of undistorted images with the time stamps “1403636646263555584”
and “1403636646613555456” from the EuRoC dataset and the matched points

were marked as unfeasible and hence discarded. This condition almost guar-
antees that the algorithm outputs at most one solution.

– Given the readings of a triple-axis gyroscope the relative rotation angle can
be computed as follows. The gyroscope reading at time ξi is an angular
rate 3-vector wi. Let ∆ξi = ξi − ξi−1, where i = 1, . . . , n. Then the relative
rotation matrix Rn between the 0th and nth frames is approximately found
from the recursion

Ri = exp([wi]×∆ξi)Ri−1, (32)

where R0 = I and the matrix exponential is computed by the Rodrigues
formula

exp([v]×) = I +
sin ∥v∥
∥v∥ [v]× +

1− cos ∥v∥
∥v∥2 [v]2

×
. (33)

The relative rotation angle is then derived from trRn.
– The image pairs with the relative rotation angle less than 5 degrees were

discarded, since the motion in this case is close to a pure translation and
self-calibration becomes unstable.

The estimated internal parameters for each image pair are shown in Fig. 7.
The calibration matrix averaged over the entire sequence is given by

K =





457.574 0 366.040
0 457.574 243.616
0 0 1



 . (34)

Hence the relative error in the calibration matrix is about 0.6 %.

6 Conclusions

We have presented a new practical solution to the problem of self-calibration of
a camera with Euclidean image plane. The solution operates with at least seven
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Fig. 7. The estimated focal length and principal point coordinates for the 68 image
pairs. The dashed horizontal lines represent the average values

point correspondences in two views and also with the known value of the relative
rotation angle.

Our method is based on a novel quadratic constraint on the essential matrix,
see Eq. (6). We expect that there could be other applications of that constraint.
In particular, it can be used to obtain an alternative solution of the problem
from paper [12]. The investigation of that possibility is left for further work.

We have validated the solution in a series of experiments on synthetic and real
data. Under the assumption of generic camera motion and points configuration,
it is shown that the algorithm is numerically stable and demonstrates a good
performance in the presence of noise. It is also shown that the algorithm is
fast enough and in most cases it produces a unique feasible solution for camera
calibration.
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