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Abstract. Estimating uncertainty of camera parameters computed in
Structure from Motion (SfM) is an important tool for evaluating the
quality of the reconstruction and guiding the reconstruction process. Yet,
the quality of the estimated parameters of large reconstructions has been
rarely evaluated due to the computational challenges. We present a new
algorithm which employs the sparsity of the uncertainty propagation and
speeds the computation up about ten times w.r.t. previous approaches.
Our computation is accurate and does not use any approximations. We
can compute uncertainties of thousands of cameras in tens of seconds
on a standard PC. We also demonstrate that our approach can be ef-
fectively used for reconstructions of any size by applying it to smaller
sub-reconstructions.

Keywords: uncertainty, covariance propagation, Structure from Mo-
tion, 3D reconstruction

1 Introduction

Three-dimensional reconstruction has a wide range of applications (e.g. virtual
reality, robot navigation or self-driving cars), and therefore is an output of many
algorithms such as Structure from Motion (SfM), Simultaneous location and
mapping (SLAM) or Multi-view Stereo (MVS). Recent work in SfM and SLAM
has demonstrated that the geometry of three-dimensional scene can be obtained
from a large number of images [1],[14],[16]. Efficient non-linear refinement [2]
of camera and point parameters has been developed to produce optimal recon-
structions.

The uncertainty of detected points in images can be efficiently propagated in
case of SLAM [16],[28] into the uncertainty o three-dimensional scene parameters
thanks to fixing the first camera pose and scale. In SfM framework, however, we
are often allowing for gauge freedom [18], and therefore practical computation of
the uncertainty [9] is mostly missing in the state of the art pipelines [23],[30],[32].

In SfM, reconstructions are in general obtained up to an unknown similarity
transformation, i.e., a rotation, translation, and scale. The backward uncertainty
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propagation [13] (the propagation from detected feature points to parameters the
of the reconstruction) requires the “inversion” of a Fischer information matrix,
which is rank deficient [9],[13] in this case. Naturally, we want to compute the
uncertainty of the inner geometry [9] and ignore the infinite uncertainty of the
free choice of the similarity transformation. This can be done by the Moore-
Penrose (M-P) inversion of the Fisher information matrix [9],[13],[18]. However,
the M-P inversion is a computationally challenging process. It has cubic time
and quadratic memory complexity in the number of columns of the information
matrix, i.e., the number of parameters.

Fast and numerically stable uncertainty propagation has numerous applica-
tions [26]. We could use it for selecting the next best view [10] from a large
collection of images [1],[14], for detecting wrongly added cameras to existing
partial reconstructions, for improving fitting to the control points [21], and for
filtering the mostly unconstrained cameras in the reconstruction to speed up the
bundle adjustment [2] by reducing the size of the reconstruction. It would also
help to improve the accuracy of the iterative closest point (ICP) algorithm [5],
by using the precision of the camera poses, and to provide the uncertainty of the
points in 3D [27].

2 Contribution

We present the first algorithm for uncertainty propagation from input feature
points to camera parameters that works without any approximation of the nat-
ural form of the covariance matrix on thousands of cameras. It is about ten
times faster than the state of the art algorithms [19],[26]. Our approach builds
on top of Gauss-Markov estimation with constraints by Rao [29]. The novelty is
in a new method for nullspace computation in SfM. We introdice a fast sparse
method, which is independent on a chosen parametrization of rotations. Further,
we combine the fixation of gauge freedom by nullspace, from Förstner and Wro-
bel [9] and methods applied in SLAM, i.e., the block matrix inversion [6] and
Woodbury matrix identity [12].

Our main contribution is a clear formulation of the nullspace construction,
which is based on the similarity transformation between parameters of the re-
construction. Using the nullspace and the normal equation from [9], we correctly
apply the block matrix inversion, which has been done only approximately be-
fore [26]. This brings an improvement in accuracy as well as in speed. We also
demonstrate that our approach can be effectively used for reconstructions of any
size by applying it to smaller sub-reconstructions. We show empirically that our
approach is valid and practical.

Our algorithm is faster, more accurate and more stable than any previous
method [19],[26],[27]. The output of our work is publicly available as source code
which can be used as an external library in nonlinear optimization pipelines,
like Ceres Solver [2] and reconstruction pipelines like [23],[30],[32]. The code,
datasets, and detailed experiments will be available online https://michalpolic.
github.io/usfm.github.io.
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3 Related work

The uncertainty propagation is a well known process [9],[13],[18],[26]. Our goal
is to propagate the uncertainties of input measurements, i.e. feature points in
images, into the parameters of the reconstruction, e.g. poses of cameras and
positions of points in 3D, by using the projection function [13]. For the purpose
of uncertainty propagation, a non-linear projection function is in practice often
replaced by its first order approximation using its Jacobian matrix [8],[13]. For
the propagation using higher order approximations of the projection function,
as described in Förstner and Wrobel [9], higher order estimates of uncertainties
of feature points are required. Unfortunately, these are difficult to estimate [9,
25] reliably.

In the case of SfM, the uncertainty propagation is called the backward prop-

agation of non-linear function in over-parameterized case [13] because of the
projection function, which does not fully constrain the reconstruction parame-
ters [22], i.e., the reconstruction can be shifted, rotated and scaled without any
change of image projections.

We are primarily interested in estimating inner geometry , e.g. angles and ra-
tios of distance, and its inner precision [9]. Inner precision is invariant to changes
of gauge, i.e. to similarity transformations of the cameras and the scene [18]. A
natural choice of the fixation of gauge, which leads to the inner uncertainty of
inner geometry, is to fix seven degrees of freedom caused by the invariance of the
projection function to the similarity transformation of space [9],[13],[18]. One
way to do this is to use the Moore-Penrose (M-P) inversion [24] of the Fisher
information matrix [9].

Recently, several works on speeding up the M-P inversion of the information
matrix for SfM frameworks have appeared. Lhuillier and Perriollat [19] used the
block matrix inversion of the Fisher information matrix. They performed M-P
inversion of the Schur complement matrix [34] of the block related to point pa-
rameters and then projected the results to the space orthogonal to the similarity
transformation constraints. This approach allowed working with much larger
scenes because the square Schur complement matrix has the dimension equal
to the number of camera parameters, which is at least six times the number
of cameras, compared to the mere dimension of the square Fisher information
matrix, which is just about three times the number of points.

However, it is not clear if the decomposition of Fisher information matrix
holds for M-P inversion without fulfilling the rank additivity condition [33] and
it was shown in [26] that approach [19] is not always accurate enough. Polic et
al. [26] evaluated the state of the art solutions against more accurate results
computed in high precision arithmetics, i.e. using 100 digits instead of 15 signif-
icant digits of double precision. They compared the influence of several fixations
of the gauge on the output uncertainties and found that fixing three points that
are far from each other together with a clever approximation of the inversion
leads to a good approximation of the uncertainties.
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The most related work is [29], which contains uncertainty formulation for
Gauss-Markov model with constraints. We combine this result with our new
approach for nullspace computation to fixing gauge freedom.

Finally, let us mention work on fast uncertainty propagation in SLAM. The
difference between SfM and SLAM is that in SLAM we know, and fix, the first
camera pose and the scale of the scene which makes the information matrix full
rank. Thus one can use a fast Cholesky decomposition to invert a Schur comple-
ment matrix as well as other techniques for fast covariance computation [16, 17].
Polok, Ila et al. [15],[28] claim addressing uncertainty computation in SfM but
actually assume full rank Fisher information matrix and hence do not deal with
gauge freedom. In contrary, we solved here the full SfM problem which requires
dealings with gauge freedom.

4 Problem formulation

In this section, we describe basic notions in uncertainty propagation in SfM and
provide the problem formulation.

The set of parameters of three-dimensional scene θ = {P,X} is composed
from n cameras P = {P1, P2, ..., Pn} and m points X = {X1, X2, ..., Xm} in
3D. The i-th camera is a vector P ∈ R

8, which consist of internal parameters
(i.e. focal length ci ∈ R and radial distortion ki ∈ R) and external parameters
(i.e. rotation ri ∈ SO(3) and camera center Ci ∈ R

3). Estimated parameters are
labelled with the hat .̂

We consider that the parameters θ̂ were estimated by a reconstruction pipeline
using a vector of t observations u ∈ R

2t. Each observation is a 2D point ui,j ∈ R
2

in the image i detected up to some uncertainty that is described by its covari-
ance matrix Σui,j

= Σǫi,j . It characterizes the Gaussian distribution assumed
for the detection error ǫi,j and can be computed from the structure tensor [7] of

the local neighbourhood of ui,j in the image i. The vector ûi,j = p(X̂j , P̂i) is a

projection of point X̂j into the image plane described by camera parameters P̂i.
All pairs of indices (i, j) are in the index set S that determines which point is
seen by which camera

ûi,j = ui,j − ǫi,j (1)

ûi,j = p(X̂j , P̂i) ∀(i, j) ∈ S (2)

Next, we define function f(θ̂) and vector ǫ as a composition of all projection
functions p(X̂j , P̂i) and related detection errors ǫi,j

u = û+ ǫ = f(θ̂) + ǫ (3)

This function is used in the non-linear least squares optimization (Bundle Ad-
justment [2])

θ̂ = argmin
θ

∥∥∥f(θ̂)− u
∥∥∥
2

(4)
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which minimises the sum of squared differences between the measured feature
points and the projections of the reconstructed 3D points. We assume the Σu

as a block diagonal matrix composed of Σui,j
blocks. The optimal estimate θ̂,

minimising the Mahalanobis norm, is

θ̂ = argmin
θ

r⊤(θ̂)Σ−1
u r(θ̂) (5)

To find the formula for uncertainty propagation, the non-linear projection func-
tions f can be linearized by the first order term of its Taylor expansion

f(θ) ≈ f(θ̂) + J
θ̂
(θ̂ − θ) (6)

f(θ) ≈ û+ J
θ̂
∆θ (7)

which leads to the estimated correction of the parameters

θ̂ = θ + argmin
∆θ

(J
θ̂
∆θ + û− u)⊤Σ−1

u (J
θ̂
∆θ + û− u) (8)

Partial derivatives of the objective function must vanishing in the optimum

1

2

∂(r⊤(θ)Σ−1
u r(θ))

∂θ⊤
= J⊤

θ̂
Σ−1

u (J
θ̂
∆̂θ + û− u) = J⊤

θ̂
Σ−1

u r(θ̂) = 0 (9)

which defines the normal equation system

M∆̂θ = m (10)

M = J⊤

θ̂
Σ−1

u J
θ̂
, m = J⊤

θ̂
Σ−1

u (u− û) (11)

The normal equation system has seven degrees of freedom and therefore requires
to fix seven parameters, called the gauge [18], namely a scale, a translation and
a rotation. Any choice of fixing these parameters leads to a valid solution.

The natural choice of covariance, which is unique, has the zero uncertainty
in the scale, the translation, and rotation of all cameras and scene points. It can
be obtained by the M-P inversion of Fisher information matrix M or by Gauss-
Markov Model with constraints [9]. If we assume a constraints h(θ̂) = 0, which
fix the scene scale, translation and rotation, we can write their derivatives, i.e.
the nullspace H, as

HT∆θ = 0 H =
∂h(θ̂)

∂θ̂
(12)

Using Lagrange multipliers λ, we are minimising the function

g(∆θ, λ) =
1

2
(J

θ̂
∆θ + û− u)⊤Σ−1

u (J
θ̂
∆θ + û− u) + λ⊤(H⊤∆θ) (13)

that has partial derivative with respect λ equal to zero in the optimum (as in
Eqn. 9)

∂g(∆θ, λ)

∂λ
= HT∆θ = 0 (14)
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This constraints lead to the extended normal equations

[
M H
H⊤ 0

] [
θ̂
λ

]
=

[
J⊤

θ̂
Σ−1

u (û− u)

0

]
(15)

and allow us to compute the inversion instead of M-P inversion

[
Σ

θ̂
K

K⊤ T

]
=

[
M H
H⊤ 0

]−1

(16)

5 Solution method

We next describe how to compute the nullspace H and decompose the original
Eqn. 16 by a block matrix inversion. The proposed method assumes that the
Jacobian of the projection function is provided numerically and provides the
nullspace independently of the representation of the camera rotation.

5.1 The nullspace of the Jacobian

The scene can be transformed by a similarity transformation3

sθ = sθ(θ, q) (17)

depending on seven parameters q = [T, s, µ] for translation, rotation, and scale
without any change of the projection function f(θ)−f(sθ(θ, q)) = 0. If we assume
a difference similarity transformation, we obtain the total derivative

Jθ∆θ − (Jθ∆θ + JθJq∆q) = JθJq∆q = 0 (18)

Since it needs to hold for any ∆q, the matrix

H =
∂sθ

∂q
= Jq (19)

is the nullspace of Jθ. Next, consider an order of parameters such that 3D point
parameters follow the camera parameters

θ̂ = {P,X} = {P1, . . . Pn, X1, . . . Xm} (20)

The cameras have parameters ordered as Pi = {ri, Ci, ci, ki} and the projection
function equals

p(X̂j , P̂i) = Φi(ciR(r̂i)(X̂j − Ĉi)) ∀(i, j) ∈ S (21)

where Φi projects vectors from R
3 to R

2 by (i) first dividing by the third coor-
dinate, and (ii) then applying image distortion with parameters P̂i. Note that

3 The variable sθ is a function of θ and q
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function Φi can be chosen quite freely, e.g. adding a tangential distortion or en-
countering a rolling shutter projection model [3]. Using Eqn. 17, we are getting
for ∀(i, j) ∈ S

p(X̂j , P̂i) = p(sX̂j(q),
sP̂ i(q)) (22)

p(X̂j , P̂i) = Φi(ci
sR(̂ri, s)(

sX̂j(q)−
sĈi(q))) (23)

p(X̂j , P̂i) = Φi(ci (R(̂ri)R(s)−1) ((µR(s)X̂j + T )− (µR(s)Ĉi + T ))) (24)

Note that for any parameters q, the projection remains unchanged. It can be
checked by expanding the equation above. Eqn. 24 is linear in T and µ. The
differences of X̂j and Ĉi are as follows

∆X̂j(X̂j , q) = X̂j −
sX̂j(q) = X̂j − (µR(s)X̂j + T ) (25)

∆Ĉi(Ĉi, q) = Ĉi −
sĈi(q) = Ĉi − (µR(s)Ĉi + T ) (26)

The Jacobian J
θ̂
and the nullspace H can be written as

J
θ̂
=

∂f(θ̂)

∂θ̂
=




∂p1

∂P̂1

. . .
∂p1

∂P̂n

∂p1

∂X̂1

. . .
∂p1

∂X̂m
...

...
...

...
∂pt

∂P̂1

. . .
∂pt

∂P̂n

∂pt

∂X̂1

. . .
∂pt

∂X̂m



, H =




HT

P̂1

Hs

P̂1

Hµ

P̂1

...
...

...
HT

P̂n

Hs

P̂n

Hµ

P̂n

HT

X̂1

Hs

X̂1

Hµ

X̂1

...
...

...
HT

X̂m

Hs

X̂m

Hµ

X̂m




(27)

where pt is the tth observation, i.e. the pair (i, j) ∈ S. The columns of H are

related to transformation parameters q. The rows are related to parameters θ̂.
The derivatives of differences of scene parameters ∆P̂i = [∆r̂i, ∆Ĉi, ∆ĉi, ∆k̂i]
and ∆X̂j with respect to the transformation parameters q = [T, s, µ] are exactly
the blocks of the nullspace

H =




∂∆r1
∂T

∂∆r1
∂s

∂∆r1
∂µ

∂∆C1

∂T

∂∆C1

∂R(s)

∂∆C1

∂µ
∂∆c1
∂T

∂∆c1
∂R(s)

∂∆c1
∂µ

∂∆k1
∂T

∂∆k1
∂R(s)

∂∆k1
∂µ

...
...

...
∂∆X1

∂T

∂∆X1

∂R(s)

∂∆X1

∂µ
...

...
...

∂∆Xm

∂T

∂∆Xm

∂R(s)

∂∆Xm

∂µ




=




03×3 Hr1 03×1

I3×3 [C1]x C1

01×3 01×3 0
01×3 01×3 0
...

...
...

I3×3 [X1]x X1

...
...

...
I3×3 [Xm]x Xm




(28)
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(a) The Jacobian J
θ̂

(b) The nullspace H

Fig. 1: The structure of the matrices J
θ̂
H for Cube dataset, for clarity, using 6

parameters for one camera P̂i(no focal length and lens distortion shown). The
matrices Jr̂ and Hr̂ are composed from the red submatrices of J and H. The
multiplication of green submatrices equals −B, see Eqn. 31.

where [v]x is the skew symmetric matrix such that [v]x y = v×y for all v, y ∈ R
3.

Eqn. 24 is not linear in rotation s. To deal with any rotation representation,
we can compute the values of Hr̂i for all i using Eqn. 18. The columns, which
contain blocksHr̂i , are orthogonal to the rest of the nullspace and to the Jacobian
J
θ̂
. The system of equations J

θ̂
H = 0 can be rewritten as

Jr̂Hr̂ = B (29)

where Jr̂ ∈ R
3n×3n is composed as a block-diagonal matrix from the red sub-

matrices (see Fig. 1) of J
θ̂
. The matrix Hr̂ ∈ R

3n×3 is composed from red
submatrices Hr̂i ∈ R

3n×3 as

Hr̂ =
[
H⊤

r̂1
. . . H⊤

r̂n

]⊤
(30)

The matrix B ∈ R
3n×3 is composed of the green submatrices (see Fig. 1) of J

θ̂

multiplied by the minus green submatrices of H. The solution to this system is

Hr̂ = J−1
r̂ B (31)

where B is computed by a sparse multiplication, see Fig. 1. The inversion of Jr̂
is the inversion of a sparse matrix with n blocks R3×3 on the diagonal.

5.2 Uncertainty propagation to camera parameters

The propagation of uncertainty is based on Eqn. 16. The inversion of extended
Fisher information matrix is first conditioned for better numerical accuracy as
follows
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Fig. 2: The structure of the matrix Qp for Cube dataset and P̂i ∈ R
6.

[
Σ

θ̂
K

K⊤ T

]
=

[
Sa 0
0 Sb

]([
Sa 0
0 Sb

] [
M H
H⊤ 0

] [
Sa 0
0 Sb

])−1 [
Sa 0
0 Sb

]
(32)

[
Σ

θ̂
K

K⊤ T

]
=

[
Sa 0
0 Sb

] [
Ms Hs

H⊤
s 0

]−1 [
Sa 0
0 Sb

]
(33)

[
Σ

θ̂
K

K⊤ T

]
= SQ−1S (34)

by diagonal matrices Sa,Sb which condition the columns of matrices J , H. Sec-
ondly, we permute the columns of Q to have point parameters followed by the
camera parameters

[
Σ

θ̂
K

K⊤ T

]
= SP̃ (P̃QP̃ )−1P̃S = SP̃Q−1

p P̃S (35)

where P̃ is an appropriate permutation matrix. The matrix Qp = P̃QP̃ is a
full rank matrix which can be decomposed and inverted using a block matrix
inversion

Q−1
p =

[
Ap Bp

B⊤
p Dp

]−1

=

[
A−1

p +A−1
p BZ−1

p B⊤
p A−1

p −A−1
p BZ−1

p

−Z−1
p B⊤

p A−1
p Z−1

p

]
(36)

where Zp is the symmetric Schur complement matrix of point parameters blockAp

Z−1
p = (Dp −B⊤

p A−1
p Bp)

−1 (37)

Matrix Ap ∈ R
3m×3m is a sparse symmetric block diagonal matrix with R

3×3

blocks on the diagonal, see Fig. 2. The covariances for camera parameters are
computed using the inversion of Zp with the size R

(8n+7)×(8n+7) for our model
of cameras (i.e., Pi ∈ R

8)

ΣP̂ = SPZsSP (38)

where Zs ∈ R
8n×8n is the left top submatrix of Z−1

p and SP is the corresponding
sub-block of scale matrix Sa.
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6 Uncertainty for sub-reconstructions

The algorithm based on Gauss-Markov estimate with constraints, which is de-
scribed in Section 5, works in principle properly for thousands of cameras. How-
ever, large-scale reconstructions with thousands cameras would require a large
space, e.g. 131GB for Rome dataset [20], to store the matrix Zp for our camera

model P̂i ∈ R
8, and its inversion might be inaccurate due to rounding errors.

Fortunately, it is possible to evaluate the uncertainty of a camera P̂i from
only a partial sub-reconstruction comprising cameras and points in the vicinity
of Ĉi. Using sub-reconstructions, we can approximate the uncertainty computed
from a complete reconstruction. The error of our approximation decreases with
increasing size of a sub-reconstruction. If we add a camera to a reconstruction,
we add at least four observations which influence the Fisher information matrix
Mi as

Mi+1 = Mi +M∆ (39)

where the matrix M∆ is the Fisher information matrix of the added observa-
tions. We can propagate this update using equations in Section 5 to the Schur
complement matrix

Zi+1 = Zi + Z∆ (40)

which has full rank. Using Woodbury matrix identity

(Zi + J⊤

∆Σ∆J∆)−1 = Z−1
i − Z−1

i J⊤

∆(I + J∆ZiJ
⊤

∆)−1J∆Z−1
i (41)

we can see that the positive definite covariance matrices are subtracted after
adding some observations, i.e. the uncertainty decreases.

We show empirically that the error decreases with increasing the size of
the reconstruction (see Fig. 3). We have found that for 100–150 neighbouring
cameras, the error is usually small enough to be used in practice. Each evalua-
tion of the sub-reconstruction produces an upper bound on the uncertainty for
cameras involved in the sub-reconstruction. The accuracy of the upper bound
depends on a particular decomposition of the complete reconstruction into sub-
reconstructions. To get reliable results, it is useful to decompose the reconstruc-
tion several times and choose the covariance matrix with the smallest trace.

The theoretical proof of the quality of this approximation and selection of
the optimal decomposition is an open question for future research.

7 Experimental evaluation

We use synthetic as well as real datasets (Table 1) to test and compare the
algorithms (Table 2) with respect the accuracy (Fig. 3) and speed (Fig. 4). The
evaluations on sub-reconstructions are shown in Figs. 5, 6a, 6b. All experiments
were performed on a single computer with one 2.6GHz Intel Core i7-6700HQ
with 32GB RAM running a 64-bit Windows 10 operating system.
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Table 1: Summary of the datasets: NP is the number of cameras, NX is the
number of points in 3D and Nu is the number of observations. Datasets 1 and 3
are synthetic, 2, 9 from COLMAP [30], and 4-8 from Bundler [31]

# Dataset NP NX Nu

1 Cube 6 15 60
2 Toy 10 60 200
3 Flat 30 100 1033
4 Daliborka 64 200 5205

5 Marianska 118 80 873 248 511
6 Dolnoslaskie 360 529 829 226 0026
7 Tower of London 530 65 768 508 579
8 Notre Dame 715 127 431 748 003
9 Seychelles 1400 407 193 2 098 201

Table 2: The summary of used algorithms

# Algorithm

1. M-P inversion of M using Maple (Kanatani [18]) (Ground Truth)
2. M-P inversion of M using Ceres (Kanatani [18])
3. M-P inversion of M using Matlab (Kanatani [18])
4. M-P inversion of Schur complement matrix with correction term (Lhuillier [19])
5. TE inversion of Schur complement matrix with three points fixed (Polic [27])
6. Nullspace bounding uncertainty propagation (NBUP)

Compared algorithms are listed in Table 2. The standard way of computing
the covariance matrix ΣP̂ is by using the M-P inversion of the information ma-
trix using the Singular Value Decomposition (SVD) with the last seven singular
values set to zeros and inverting the rest of them as in [26]. There are many
implementations of this procedure that differ in numerical stability and speed.
We compared three of them. Alg. 1 uses high precision number representation
in Maple (runs 22 hours on Daliborka dataset), Alg. 2 denotes the implementa-
tion in Ceres [2], which uses Eigen library [11] internally (runs 25.9 minutes on
Daliborka dataset) and Alg. 3 is our Matlab implementation, which internally
calls LAPACK library [4] (runs 0.45 seconds on Daliborka dataset). Further,
we compared Lhuilier [19] and Polic [26] approaches, which approximate the
uncertainty propagation, with our algorithm denoted as Nullspace bounding un-

certainty propagation (NBUP).

The accuracy of all algorithms is compared against the Ground Truth (GT)
in Fig. 3. The evaluation is performed on the first four datasets which have
reasonably small number of 3D points. The computation of GT for the fourth
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dataset took about 22 hours and larger datasets were uncomputable because of
time and memory requirements. We decomposed information matrix using SVD,
set exactly the last seven singular values to zero and inverted the rest of them.
We also used 100 significant digits instead of 15 digits used by a double number
representation. The GT computation follows approach from [26].

The covariance matrices for our camera model (comprising rotation, cam-
era center, focal length and radial distortion) contain a large range of values.
Some parameters, e.g. rotations represented by the Euler vector, are in units
while other parameters, as the focal length, are in thousands of units. Moreover,
the rotation is in all tested examples better constrained than the focal length.
This fact leads to approximately 6×10−5 mean absolute value in rotation part of
the covariance matrix and approximately 3×104 mean value for the focal length
variance. Standard deviations for datasets 1-4 and are about 8×10−3 for rota-
tions and 2×103 for focal lengths. To obtain comparable standard deviations
for different parameters, we can divide the mean values of rotations by π and
focal length by 2×103. We used the same approach for the comparison of the
measured errors

errP̂i
=

1

64

8∑

l=1

8∑

m=1

(√
|Σ̃P̂i(l,m) − Σ̂P̂i(l,m)| ⊘O(l,m)

)
(42)

The error errP̂i
shows the differences between GT covariance matrices Σ̃P̂i

and

the computed ones Σ̂P̂i
. The matrix

O =

√
E( ˆ|Pi|)E( ˆ|Pi|)⊤ (43)

has dimension O ∈ R
8×8 and normalises the error to percentages of the absolute

magnitude of the original units. Symbol ⊘ stands for element-wise division of
matrices (i.e. C̄ = Ā⊘ B̄ equals C̄(i,j) = Ā(i,j)/B̄(i,j) for ∀(i, j)).

Fig. 3 shows the comparison of the mean of the errors for all cameras in the
datasets. We see that our new method, NBUP, delivers the most accurate results
on all datasets.

Speed of the algorithms is shown in Fig. 4. Note that the M-P inversion (i.e.
Alg. 1-3) cannot be evaluated on medium and larger datasets 5-9 because of
memory requirements for storing dense matrix M . We see that our new method
NBUP is faster than all other methods. Considerable speedup is obtained on
datasets 7-9 where our NBUP method is about 8 times faster.

Uncertainty approximation on sub-reconstructions was tested on datasets
5-9. We decomposed reconstructions several times using a different number of
cameras k̄ = {5, 10, 20, 40, 80, 160, 320} inside smaller sub-reconstructions, and
measured relative and absolute errors of approximated covariances for cameras
parameters. Fig. 6 shows the decrease of error for larger sub-reconstructions.
There were 25 sub-reconstructions for each k̄i with the set of neighbouring cam-
eras randomly selected using the view graph. Note that Fig. 6a shows the mean
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1 2 3 4

10-2

10-1

100

101 2) CERES (Kanatani [11])
3) MATLAB (Kanatani [11])
4) M-P INVERSION OF Z (Lhuillier [17])
5) TE INVERSION (Polic [16])
6) NBUP

Fig. 3: The mean error errP̂i
of all cameras P̂i and Alg. 2-6 on datasets 1-4.

Note that the Alg. 3, leading to the normal form of the covariance matrix,
is numerically much more sensitive. It sometimes produces completely wrong
results even for small reconstructions.

of relative errors given by Eqn. 42. Fig. 6b shows that the absolute covariance
error decreases significantly with increasing the number of cameras in a sub-
reconstruction.

Fig. 5 shows the error of the simplest approximation of covariances used in
practice. For every camera, one hundred of its neighbours using view-graph were
used to get a sub-reconstruction for evaluating the uncertainties. It produces up-
per bound estimates for the covariances for each camera from which we selected
the smallest one, i.e. the covariance matrix with the smallest trace, and evaluate
the mean of the relative error errP̂i

.

8 Conclusions

Current methods for evaluating of the uncertainty [19],[26] in SfM rely 1) either
on imposing the gauge constraints by using a few parameters as observations,
which does not lead to the natural form of the covariance matrix, or 2) on the
Moore-Penrose inversion [2], which cannot be used in case of medium and large-
scale datasets because of cubic time and quadratic memory complexity.

We proposed a new method for the nullspace computation in SfM and com-
bined it with Gauss Markov estimate with constraints [29] to obtain a full-rank
matrix [9] allowing robust inversion. This allowed us to use efficient methods
from SLAM such as block matrix inversion or Woodbury matrix identity. Our
approach is the first one which allows a computation of natural form of the covari-
ance matrix on scenes with more than thousand of cameras, e.g. 1400 cameras,
with affordable computation time, e.g. 60 seconds, on a standard PC. Further, we
show that using sub-reconstruction of roughly 100-300 cameras provides reliable
estimates of the uncertainties for arbitrarily large scenes.
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Fig. 4: The speed comparison. Full
comparison against Alg. 2, 3 was not
possible because of the memory com-
plexity. Alg. 3 failed, see Fig. 3.

Fig. 5: The relative error for approx-
imating camera covariances by one
hundred of their neighbours from the
view-graph.
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