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Abstract. Reconstructing 3D facial geometry from a single RGB image has re-

cently instigated wide research interest. However, it is still an ill-posed problem

and most methods rely on prior models hence undermining the accuracy of the

recovered 3D faces. In this paper, we exploit the Epipolar Plane Images (EPI)

obtained from light field cameras and learn CNN models that recover horizontal

and vertical 3D facial curves from the respective horizontal and vertical EPIs.

Our 3D face reconstruction network (FaceLFnet) comprises a densely connected

architecture to learn accurate 3D facial curves from low resolution EPIs. To train

the proposed FaceLFnets from scratch, we synthesize photo-realistic light field

images from 3D facial scans. The curve by curve 3D face estimation approach

allows the networks to learn from only 14K images of 80 identities, which still

comprises over 11 Million EPIs/curves. The estimated facial curves are merged

into a single pointcloud to which a surface is fitted to get the final 3D face. Our

method is model-free, requires only a few training samples to learn FaceLFnet

and can reconstruct 3D faces with high accuracy from single light field images

under varying poses, expressions and lighting conditions. Comparison on the BU-

3DFE and BU-4DFE datasets show that our method reduces reconstruction errors

by over 20% compared to recent state of the art.

1 Introduction

Three dimensional face analysis has the potential to address the challenges that con-

found its two dimensional counterpart such as variations in illumination, pose and

scale [4]. This modality has achieved state-of-the-art performances on applications such

as face recognition [14, 36, 39, 65], syndrome diagnosis [17, 16, 47, 55], gender classi-

fication [15] and face animation [9, 49]. Reconstructing 3D facial geometry from RGB

images is, therefore, receiving a significant interest from the research community. How-

ever, using a single RGB image to recover the 3D face is an ill-posed problem [31] since

the depth information is lost during the projection process. In fact, many different 3D

shapes can result in similar 2D projections. The scale and bas-relief ambiguities [6] are

common examples.



2 M Feng, SZ Gilani, Y Wang and A Mian

Most existing methods have resorted to the use of prior models such as the Basal

Face Model (BFM) [43] and the Annotated Face Model(AFM) [12] to generate syn-

thetic data with ground truth to train CNN [11, 40] models and to recover the model

parameters at test time. However, model-based approaches are inherently biased and

constrained to the space of the training data of the prior models.

Fig. 1. Proposed pipeline for 3D face reconstruction from a single light field image. Using syn-

thetic light field face images, we train two FaceLFnets for regressing 3D facial curves over their

respective horizontal and vertical EPIs. The estimated depth maps are combined, using camera

parameters, into a single pointcloud to which a surface is fitted to get the final 3D face.

A 4D light field image captures the RGB color intensities at each pixel as well as the

direction of incoming light rays. High resolution plenoptic cameras [2, 3] are now com-

mercially available. Plenoptic cameras use an array of micro-lenses to capture many

sub-aperture images arranged in an equally spaced rectangular grid. Unlike most 3D

scanners that use active light projection and are hence restricted to indoor use, plenop-

tic cameras are passive and can instantly acquire light field images outdoors as well, in

a single photographic exposure. The sub-aperture light field images have been exploited

to improve the performance of many applications such as saliency detection [32], hyper-

spectral light field imaging [57], material classification [53], image segmentation [62]

and image restoration [50, 56] and in particular, depth estimation [26, 48, 34, 52, 46].

This paper focuses on reconstructing 3D faces from light field images under a wide

range of pose, expression and illumination variations. Note that unlike stereo, the sub-

aperture light field images are captured by the same camera with a single click.

Various methods have been proposed to solve the ill-posed problem of reconstruct-

ing 3D facial geometry from a single RGB image [31, 40, 11, 51, 44, 29]. These methods

all use one or more common techniques. For instance, Shape from Shading (SfS) uses

the shading variation to reconstruct 3D faces but the caveat is that the method is sen-

sitive to lighting and RGB image texture and even under near ideal conditions, suffers

from the bas-relief ambiguity [6]. 3D Morphable Models (3DMM) [11, 40] project the

3D faces in a low-dimensional subspace. However, the models are confined to the linear

space of their training data and do not generalize well to all face shapes [13]. Landmark
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based methods use facial keypoints to guide the reconstruction process but rely heavily

on accurate localization of the landmarks.

We propose a model-free approach (see Fig. 1) to reconstruct 3D faces directly from

light field images using Convolutional Neural Networks (CNN). Our technique does not

rely on model fitting or landmark detection. Training a CNN requires massive amount

of photo-realistic labeled data. However, there is no publicly available 4D light field

face dataset with corresponding ground truth 3D face models. We address this prob-

lem and propose a method of generating the training data. We use the BU-3DFE [58]

and BU-4DFE datasets [60] to generate light field images from their ground truth 3D

models. Figure 2 shows some examples. We randomly vary the light intensity and pose

to make our dataset more realistic. Our dataset comprises approximately 19K photo-

realistic light field images with ground truth depth maps 3. Furthermore, we show that

our method requires fewer training samples (facial identities) as it capitalizes on recon-

structing 3D facial curves rather than the complete face at once. We believe that our

synthesized dataset of 4D light field images with corresponding 3D facial scans can be

applied to many other facial analysis problems such as pose estimation, recognition and

alignment.

Equipped with a rich light field image dataset, we propose a densely connected CNN

architecture (FaceLFnet) to learn 3D facial curves from Epipolar Plane Images (EPIs).

We train two networks separately using horizontal and vertical EPIs to increase the ac-

curacy of depth estimation. The densenet architecture is preferred as it can accurately

learn the subtle slopes in low resolution EPIs4. FaceLFnets are trained using our syn-

thetic light field face images for which the ground truth depth data is available. Once

the face curve estimates are obtained independently from the horizontal and vertical

FaceLFnets, we merge them into a single pointcloud based on the camera parameters

and then use a surface fitting method to recover the final 3D face. The core idea of our

work is a model-free approach, where the solution is not restricted to any statistical face

space. This is possible by exploiting the shape information present in the Epipolar Plane

Images.

Our contribution are: (1) A model-free approach for 3D face reconstruction from

a single light field image. Our method does not require face alignment or landmark

detection and is robust to facial expressions, pose and illumination variations. Being

model-free, our method also estimates the peripheral regions of the face such as hair and

neck. (2) A training technique that does not require massive number of facial identities.

Exploiting the EPIs, we demonstrate that the proposed FaceLFnet can learn from only a

few identities (80) and still outperform the state-of-the-art methods by a margin of 26%.

(3) A data syntheses technique for generating a light field face image dataset which, to

the best of our knowledge, is the first of its kind. This dataset will contribute to solving

other face analysis problems as well.

3 We use depth map to represent disparity map as they are related by light field camera parame-

ters [22].
4 Higher slope of lines in EPI corresponds to lower depth values.
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2 Related Work

3D face reconstruction from a single image has attracted significant attention recently.

Shape-from-shading (SfS) has been a popular approach for this task [61, 37, 18]. For

example, WenYi et al. [61] proposed a symmetric SfS method to obtain illumination-

normalized image and developed a face recognition system. Roy et al. [37] proposed an

improved SfS method to enhance the depth map combining the RGB image and rough

depth image to create more details. Yudeog et al. [18] estimated lighting variations with

both global and local light models. SfS approach was then applied with the estimated

lighting models for accurate shape reconstruction. Reconstruction using SfS requires

priors of reflectance properties and lighting conditions and suffers from the bas-relief

ambiguity [6].

A 3D Morphable Model (3DMM) was introduced by Blanz and Vetter [7] which

represents a 3D face as a linear combination of orthogonal basis vectors obtained by

PCA over 100 male and 100 female identities. James et al. [8] extended the concept

and proposed a statistical model combined with a texture model for fitting the 3DMM

on face images in the wild. 3DMM has also been used in [38, 5, 42, 30] for face recon-

struction. The main limitation of such methods is that the 3DMM cannot model every

possible face. Moreover, it is unable to extract facial details like wrinkles and folds

because such details are not encoded in the linear subspace.

Recently, various attempts were made to integrate 3DMMs with CNN for facial ge-

ometry reconstruction from a single image. Elad et al. [40] employed an iterative CNN

trained with synthetic data to estimate 3DMM vectors. The predicted geometry was

then refined by the real-time shape-from-shading method. Matan et al. [41] extended

the work [40] and introduced an end-to-end CNN framework that recovers the coarse

facial shape using a CoarseNet, followed by a FineNet to refine the facial details. The

two net parts are connected by a novel layer that renders the depth image from 3D

mesh. Pengfei Dou et al. [11] proposed an end-to-end 3D face reconstruction method

from a single RGB image. They trained a fusion-CNN with multi-task learning loss to

simplify 3D face reconstruction into neutral and expressive 3D facial parameters es-

timation. Jourabloo et al. [29] proposed a 3DMM fitting method for face alignment,

which uses a cascaded CNN to regress camera matrix and 3DMM parameters. Tuan

Tran et al. [51] used multi image 3DMM estimates as ground truth and then trained a

CNN to regress 3DMM shape and texture parameters from an input image.

Kemelmacher el at. [31] used the input image as a guide to build a single refer-

ence model to align with the face image and then refined the reference model using SfS

method. Tal et al. [19] used a 3D neutral face as reference model to approximate the

RGB image for face frontalization. Matan et al. [44] proposed a translation network that

learns two maps (a depth image and a correspondence map), used for non-rigid regis-

tration with a template face, from a single RGB image. Fine-tuning is then performed

for reconstructing facial details. In contrast to SfS and model fitting based face recon-

struction methods, we learn 3D face curves from EPIs of the light field image. Our

method does not require face alignment, dense correspondence or model fitting steps

and is robust to facial pose, expressions and illumination.

To the best of our knowledge none of the existing methods is model-free and uses

a prior face model at some stage of the reconstruction process. On the other hand our
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method is completely model-free. Similarly, we are unaware of any existing technique

that uses light field images for 3D face reconstruction. However, literature points to

some research in shape reconstruction from light field images using deep learning.

Heber et al. [20] presented a method for reconstructing the shape from light field im-

ages that applies a CNN for pixel wise depth estimation from EPI patches. Although this

method produces accurate scene depth, it uses a carefully designed dataset containing

drastic slope changes in the EPIs. This method is unsuitable for non-rigid facial geome-

try reconstruction as faces are generally smooth and their EPIs contain only subtle slope

variations. Heber et al. [21] proposed a U-shaped network architecture that automati-

cally learns from EPIs to reconstruct their corresponding disparity images. However,

training the network requires disparity maps of all the light field sub-views as labels,

which is unrealistic for real datasets. Our approach differs in three ways. Firstly, we

use one full EPI as input and its corresponding depth values as labels to overcome the

problem of inaccurate depth estimation in the presence of subtle slope variations in the

EPIs. Secondly, we train networks using horizontal EPIs and vertical EPIs separately to

obtain a more accurate combined 3D pointcloud. Finally, our method does not require

disparity maps of all the light field sub-views.

3 Facial Light Field Image Dataset Generation

The key to the success of CNN-based 3D face reconstruction from a single RGB im-

age lies in the availability of large training datasets. However, there is no large scale

dataset available that provides RGB face images and their corresponding high quality

3D models. Similarly, training a light field face reconstruction network requires a large-

scale light field face dataset with corresponding ground truth 3D facial scans. Over the

past few years, the computer vision community has made considerable efforts to collect

light field images [22, 53, 33, 35, 1] for different applications. The only public light field

face dataset [45] captured by Lytro IllumTM camera consists of 100 identities with 20
samples per person. However, depth maps of this dataset are generated using the Lytro

Desktop SoftwareTM and have low resolution as well as low depth accuracy. Therefore,

this dataset is not suitable for training a network.

In the absence of large-scale 4D light field face datasets, we propose to generate a

dataset of light field face images with ground truth 3D models. For this purpose, we

use the public BU-3DFE [58] and BU-4DFE [60] databases to generate light field face

images. The former is used for training and testing whereas the latter is used only for

testing only. The BU-3DFE dataset consists of 2,500 3D scans from 100 identities (56%
female, 44% male), with an age range from 18 to 70 years and multiple ethnicities. Each

subject is scanned in one neutral and 6 non-natural expressions each with four intensity

levels. The BU-4DFE dataset contains 3D video sequences of 101 identities (58 female

and 43 male) in six different facial expressions. We select the most representative frame

of each expression sequence. As a result, our dataset contains 606 3D scans. These

models contain shape details such as wrinkles of not only the fiducial area, but also the

hair, ears and neck area which pose challenges for conventional 3D face reconstruction

methods. All 3D models have RGB texture.
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Fig. 2. Central view examples of our rendered light field images. The ground truth 3D scans

are aligned with the central view. To make the dataset rich in variations, the generated light

field images use random backgrounds and differ extensively in ethnicity, gender, age, pose and

illumination.

To generate plausible synthetic light field face images, it is crucial to control the

light field camera parameters, background and illumination properly during rendering.

We use the open source Blender5 software and the light field camera tool proposed by

Katrin Honauer et al. [22] for this purpose. We place a virtual light field camera in

Blender with 15 × 15 micro-lenses and set its field of view to capture the 3D facial

scans. Both BU-3DFE and BU-4DFE databases provide 3D facial models in the near

frontal pose. We load the 3D models along with their textures in Blender and apply

two rigid rotations (±15◦) in pitch and four in yaw (±15◦ and ±30◦). To synthesize

photo realistic light field images, we apply randomly selected indoor and outdoor im-

ages as backgrounds. We place two lamps at different locations in the scene and ran-

domly change their intensities to achieve lighting variations. The angular resolution of

the synthetic light field image is 15 × 15 and the spatial resolution is 400 × 400. The

ground truth depth maps are aligned with the central view of light field image. Examples

of our synthetic light field images are shown in Figure 2.

We implement a Python script6 in Blender on a 3.4 GHz machine with 8GB RAM

to automatically generate the light field facial images. The process of synthesizing light

field images can be parallelized since each sub-aperture image is rendered indepen-

dently. In total, we use 80 identities from BU-3DFE dataset to synthesize 14,000 light

field images with ground truth disparity maps. The remaining 20 subjects from BU-

3DFE and all 101 subjects from the BU-4DFE dataset are used as test data to generate

1,451 light field facial images for evaluation.

4 Proposed Method

An overview of the proposed method for reconstructing facial geometry from light field

image is shown in Figure 1 and the details follow.

5 http://www.blender.org
6 The script for light field facial image synthesis will be made public.
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Fig. 3. EPIs corresponding to the 3D face curves. (a) Horizontal and vertical EPIs are obtained

between the central view and sub-aperture images that are in the same row and column. (b) and

(c) Visualization of the relationship between depth curves and slopes of lines in horizontal and

vertical EPIs respectively.

Fig. 4. Examples of EPIs and their corresponding 3D face curves.(a) Horizontal EPIs. (b) Vertical

EPIs.

4.1 Training Data

A 4D light field image can be parameterized as L(u, v, x, y), where (x, y) and (u, v)
represent the spatial and angular coordinates respectively [54]. When we fix v and y,

then L(u, v∗, x, y∗) defines a 2D horizontal EPI. Similarly the 2D vertical EPI can be

represented as L(u∗, v, x∗, y) when we keep u and x constant. As shown in Figure 3,

2D EPIs demonstrate the linear characteristic of the light field image. The orientations

of lines within the EPIs can infer the disparity of the corresponding 3D space points [54,

28, 59, 20, 21]. Equation (1) shows the relationship between the slope of the line and the

disparity value where f is the light field camera parameter and k is the slope of the line.

Z = −f × k, (1)

As shown in Figure 3(b) and (c), EPIs correspond to the 3D facial curves from the

ground truth. Different line slopes in the EPI indicate different curve shapes. We use

14,000 synthetic light field images corresponding to the 80 identities of BU-3DFE for

training. All together we extract 11.2 Million horizontal and vertical EPIs as training

samples. Figure 4 shows some example EPIs and their corresponding curves. Using EPI

images as training data removes the need for a huge number of identities. Since each

3D face curve can be learned independently from its corresponding EPI, we are able
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Fig. 5. Our proposed FaceLFnet for learning 3D face curves from EPIs. It contains 4 dense blocks,

followed by two fully connected layers. The layers between two neighboring blocks are defined

as transition layers and change feature map sizes via convolution and pooling [23].

to generate massive training data from a small number of 3D face scans. Note that we

do not need any further data augmentation such as image inversion or multiple crops as

our networks learn from the full EPIs.

4.2 FaceLFnet Architecture

Each EPI in our case corresponds to a 3D face curve as shown in Figure 3 and 4. The

goal is to predict the full 3D curve from the EPIs using deep learning. CNNs can learn

slope information of the pixels from individual EPIs, however, pixel wise prediction is

very challenging. Heber et al. [20] divided each EPI into patches for 3D scene estima-

tion. The authors estimated the depth value from each EPI patch independently as it con-

tained the information pertaining to a single line at the center of the patch. In our case,

pixel wise estimation is not practical as our network must learn the inter-relationship

between the lines in one full EPI to estimate the complete 3D curve. Furthermore, in

case of light field images for faces, some EPI patches especially in the quasi planar

facial areas are devoid of lines and hence do not contain enough depth information

leading to inaccurate depth estimation. Therefore, we propose using a complete EPI for

depth prediction in order to exploit the correlations of adjacent pixels and mitigate the

problem of inaccurate depth estimation due to pixel wise prediction.

The dimensions of each input EPI are 15×400×3 (horizontal/vertical sub-aperture

images × horizontal/vertical image pixels × RGB channels). Such a low resolution in

the first dimension and size disparity in the first two dimensions pose challenges as

the information of the input EPIs will reduce rapidly in one dimension than the other

when passed through a deep network. To extenuate this problem and inspired by the

success of Gao et al. [23], we propose a light field face network for estimating facial

geometry from EPIs. The architecture of our network is illustrated in Figure 5. It is

based on DenseNet that consists of multiple dense blocks and transition layers. We

use four dense blocks and change the softmax classifier to a regressor. Before passing

the EPIs through the first dense block, a 16 channels convolution layer with 3 × 3
kernel size is used. For each dense block, we use three convolutional layers and set the

growth rate to 12. We also use convolution followed by average pooling as transition

layers between two adjacent dense blocks. The sizes of feature-map in the four dense

blocks are 15× 400, 8× 200, 4× 100 and 2× 50 respectively. The details of network

configurations are given in Table 1.

Both horizontal and vertical FaceLFnets are trained from scratch using the Caffe

deep learning framework [27]. The initial learning rate is set to 0.0003 which is di-
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vided by 10 at 30000 and 50000 iterations. Our networks require only one epoch for

convergence. The caffe model for the trained networks will be made public.

4.3 3D Face Reconstruction

The output of our horizontal and vertical FaceLFnets are 3D facial curves that together

make up a 3D face. We combine all the horizontal and vertical curves (in our case 400
each) of a face to form a horizontal and a vertical depth map separately. The next step

is to reconstruct a 3D face from the two depth maps. A naive way to reconstruct the

face is to take the average of both depth maps. However, such a methodology results in

reconstruction error as each curve was learned independently. To mitigate this problem

we propose a technique to project the depth maps on a 2D surface. First of all, we

convert both the depth maps to 3D pointclouds, using the camera parameters. Next we

give a slight jitter to the horizontal pointcloud by translating it 1mm to the left on x-axis

only. We fit a single surface of the form z(x, y) to both 3D pointclouds simultaneously

using the gridfit algorithm [10]. Our method ensures that a smooth surface is fitted to

the horizontal and vertical pointclouds taking into account the correlation between the

curves resulting in a smooth reconstructed 3D face.

5 Experimental Results

To the best of our knowledge, there is no suitable real light field face dataset with

accompanying 3D ground truth available in the literature. Hence, we present the evalu-

ation of our method for 3D face reconstruction on light field images synthesized from

the 3D scans of the remaining 20 subjects of BU-3DFE [58] and all 101 subjects from

the BU-4DFE [60] dataset. We compare our subjective results with the recent state-of-

the-art algorithm [44] for qualitative evaluation. We also present quantitative compar-

ison with VRN-Guided [25] and other state-of-the-art methods [44, 41, 64, 31, 63, 24]

Layers Output Size FaceLFnet

Convolution 15× 400 3× 3 conv, stride 1

Dense Block 1 15× 400 [3× 3 conv, stride 1]×3

Transition Layer 1
15× 400 3× 3 conv, stride 1

8× 200 2× 2 average pool, stride 2

Dense Block 2 8× 200 [3× 3 conv, stride 1]×3

Transition Layer 2
8× 200 3× 3 conv, stride 1

4× 100 2× 2 average pool, stride 2

Dense Block 3 4× 100 [3× 3 conv, stride 1]×3

Transition Layer 3
4× 100 3× 3 conv, stride 1

2× 50 2× 2 average pool, stride 2

Dense Block 4 2× 50 [3× 3 conv, stride 1]×3

Regression Layer 400

4096 fully-connected

400 fully-connected

EuclideanLoss

Table 1. Our proposed FaceLFnet architecture. Note that each convolutional layer in the dense

block corresponds to the sequence BN-ReLU. The growth rate of the four blocks is k = 12.
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Fig. 6. Pose invariance. Columns one to four in each row respectively depict the input central

view of the light field image, the ground truth 3D face, the reconstructed 3D face by our proposed

method and the last two overlaid on each other.

on both datasets. Note that the VRN-Guided method incorporates facial landmarks in

their proposed VRN architecture whereas we follow a marker-less strategy.

5.1 Qualitative Evaluation

For qualitative evaluation, we show our reconstruction results on light field images syn-

thesized from BU-3DFE [58] and BU-4DFE [60] databases. We also show the ground

truth and predicted 3D face shapes overlaid on each other using the Scanalyze software.

Figure 6 shows the reconstructed 3D faces under different poses to demonstrate that our

method is robust to pose variations. Unlike model based algorithms for 3D face recon-

struction [11, 44] from a single RGB image, our method can recover the 3D model of

the full head including the peripheral regions such as hair and neck and sometimes even

part of the clothing. Figure 6 shows our results under pose invariance while Figures 7

shows our results under exaggerated expressions and illumination changes respectively.

Note that our method is robust to variations in pose, expressions and illumination.

We use the code provided by Sela et al. [44] for qualitative comparison of the re-

constructed faces. Figure 8 shows 3D faces reconstructed from light field images using

our method and 3D faces reconstructed from single central view RGB images using

the recent state-of-the-art method proposed by Sela et al. [44]. Since [44] estimate only

the facial region, we also crop our reconstructed faces for better visual comparison.

As demonstrated, our method produces more visually accurate reconstructions in the

global geometry compared to [44]. As compared to methods based on fine-tuning, our

method can not capture fine details since we use the output of our network directly

without complex post-processing steps. Our proposed method performs better than [44]

because, firstly, [44] relies on a face detector and crops the input RGB image based on

the detected coordinates while our method does not need any face detection or crop-

ping. Secondly, [44] synthesized their training data from 3DMM parameters and thus
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Fig. 7. (a) Expression invariance. As shown, our method can handle exaggerated expressions. (b)

Invariance to illumination and skin color. Our method is robust to illumination variations and also

works well in the case of dark skin (second row). Columns one to four in each row (in (a) and

(b)) respectively depict the input central view of the light field image, the ground truth 3D face,

the reconstructed 3D face by our proposed method and the last two overlaid on each other.

their training images do not have the neck and hair regions etc. When the input images

are far from the model space, the global face shape will be unsatisfactory at some key

facial regions like mouth, nose and eyes as can be seen in Figure 8. Finally, Sela et

al. [44] use non-rigid registration to fit the 3DMM to the coarse output of the proposed

network. The model fitting process deforms the facial shape when the model and the

coarse shape estimated by the network are quite different.

5.2 Quantitative Evaluation

For quantitative comparison, we evaluate the 3D reconstruction on 3,500 light field

images of 20 subjects from BU-3DFE [58] and 1,400 light field images of 101 sub-

jects from the BU-4DFE dataset. To measure the affect of pose on the reconstruction

accuracy, we use the 3,500 light field images from BU-3DFE dataset. There are 500

light field images for each pose. We use the Root Mean Square Error (RMSE) between

the 3D point clouds of the estimated and ground truth reconstructions as a quantitative

measure. Results of RMSE for different poses are depicted in Figure 9. Our method is

robust to pose variations as the RMSE error increases by only 0.31mm when the pose

is varied by 30 degrees.

To measure the affect of facial expressions on reconstruction accuracy, we syn-

thesize frontal images in different expressions (Angry, Disgust, Fear, Happy, Sad and

Surprise) from the BU-4DFE dataset and measure the reconstruction errors. Figure 10
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Fig. 8. Qualitative results. The columns contain (in order) central view image, the ground truth

3D face, 3D face reconstructed by our method and 3D face reconstructed by Sela et al. [44].

Fig. 9. Reconstruction errors for different facial poses on the BU-3DFE dataset [58]. Note that

the RMSE increases from 2.62 to 2.93 (by 0.31 mm only) under extreme pose variations.

shows that the RMSE of 3D face reconstruction from our method is small even in the

presence of exaggerated expressions.

We compare the absolute depth error of our proposed method with the state-of-the-

art in Table 2, which shows that our proposed 3D reconstruction outperforms all existing

methods. We report depth errors evaluated by mean, standard deviation, median and the

average ninety percent largest error. Note that for a fair comparison with Sela et al. [44]

we report the results obtained on the same dataset directly from their paper instead of

calculating the reconstruction errors from our implementation of their work.

We also compare the results of our method with VRN-Guided [25], 3DDFE [63]

and EOS [24] methods using the BU-4DFE dataset [60]. We use the Normalized Mean

Error (NME) metric proposed by Aarson [25] to report the results for comparison with

existing methods. NME is defined as the average per vertex Euclidean distance between

the estimated and the ground truth reconstruction normalized by the outer 3D interocu-
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Fig. 10. Reconstruction errors for different facial expressions on the BU-4DFE dataset [60]. The

RMSE increases from 2.49 to 2.98 (by only 0.49 mm) under extreme expression variations. Sad

has the highest error whereas surprise has the lowest because of more edges around the lips which

favors EPI based reconstruction.

Error in mm

Mean SD Median 90% largest

Kemelmacher et al.[31] 3.89 4.14 2.94 7.34

Zhu et al.[64] 3.85 3.23 2.93 7.91

Richardson et al.[41] 3.61 2.99 2.72 6.82

Matan et al. [44] 3.51 2.69 2.65 6.59

Ours 2.78 2.04 1.73 5.30

Table 2. Comparative results on the BU-3DFE dataset [58]. The absolute RMSE between ground

truth and predicted shapes evaluated by mean, standard deviation, median and the average ninety

percent largest error of the different methods are presented.

lar distance:

NME =
1

n

n∑

k=1

‖xk − yk‖2
d

, (2)

where n is the total number of vertices per facial mesh and d is the interocular dis-

tance. xk and yk represent the coordinates of vertices from the estimated and ground

truth meshes respectively. The NME is calculated on the face region only. As shown in

Table 3, our method outperforms the state-of-the-art.

3DDFA[63] EOS[24] VRN-Guided[25] Ours

NME 5.14 5.33 4.71 3.72

Table 3. Reconstruction errors on the BU-4DFE dataset [60] in terms of NME defined in Eq. (2).

ICP has been used to align the reconstructed face to the ground truth similar to [25].

We also compare our results with [20, 21] using our own implementation of their

model as they did not make their codes/ trained models public. We trained the model [20]

on synthetic data and then tested it on 10 light field face images of the test data. Fig-

ure 5.2 shows three best facial reconstructions by the model of [20]. These reconstruc-

tions are extremely noisy with high RMSE. The average reconstruction error of [20] for
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these 10 images is 27.23± 24.7 mm while ours is 2.79± 2.6 mm. The main reason for

the poor performance of [20] (and [21]) is that the models were designed for 3D recon-

struction of scenes where the textures and EPI slopes are drastic. Hence, these methods

[49, 50] do not perfrom well at reconstructing 3D faces.

Fig. 11. Qualitative and quantitative comparison of 3D face reconstruction with Heber at al. [20]

6 Conclusion

We presented a model-free approach for recovering the 3D facial geometry from a sin-

gle light field image. We proposed FaceLFnet, a densely connected network architec-

ture that regresses the 3D facial curves over the Epipolar Plane Images. Using a curve

by curve reconstruction approach, our method needs only a few training samples and

yet generalizes well to unseen faces. We proposed a photo-realistic light field image

synthesis method to generate a large-scale EPI dataset from a relatively small number

of real facial identities. Our results show that 3D face reconstruction from light field

images is more accurate and allows the use of a model-free approach which is robust

to changes in pose, facial expressions, ethnicities and illumination. We conclude that

light field cameras are a more appropriate choice as a passive sensor for 3D face recon-

struction since they enjoy similar advantages to conventional RGB cameras in that they

are point and shoot, portable and have low cost. These cameras are especially a better

choice for medical applications where higher accuracy and model-free approaches are

desirable. We will make our trained networks and dataset public which will become the

first photo-realistic light field face dataset with ground truth 3D facial scans.

Acknowledgments

This research was partly supported by National Natural Science Foundation of China

(NO.61401046, 61733004) and Australian Research Council (ARC) Discovery grant

DP160101458. We are grateful to NVIDIA Corporation for donating the Titan Xp GPU

used for this research.



3D Face Reconstruction from Light Field Images: A Model-free Approach 15

References

1. (http://lightfieldstanfordedu/)

2. (https://wwwlytrocom/)

3. (https://wwwraytrixcom/)

4. Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2D and 3D face recognition: A survey.

Pattern Recognition Letters 28(14), 1885–1906 (2007)

5. Aldrian, O., Smith, W.A.: Inverse rendering of faces with a 3d morphable model. IEEE trans-

actions on pattern analysis and machine intelligence 35(5), 1080–1093 (2013)

6. Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The bas-relief ambiguity. International Jour-

nal of Computer Vision 35(1), 33–44 (Nov 1999)

7. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proceedings of

the 26th annual conference on Computer graphics and interactive techniques. pp. 187–194.

ACM Press/Addison-Wesley Publishing Co. (1999)

8. Booth, J., Antonakos, E., Ploumpis, S., Trigeorgis, G., Panagakis, Y., Zafeiriou, S.: 3d face

morphable models ”in-the-wild”. In: The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (July 2017)

9. Cao, C., Weng, Y., Lin, S., Zhou, K.: 3d shape regression for real-time facial animation.

ACM Transactions on Graphics (TOG) 32(4), 41 (2013)

10. D́Erico, J.: Surface fitting using gridfit. In: MATLAB Central File Exchange (2008)

11. Dou, P., Shah, S.K., Kakadiaris, I.A.: End-to-end 3d face reconstruction with deep neural

networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(July 2017)

12. Fang, T., Zhao, X., Ocegueda, O., Shah, S.K., Kakadiaris, I.A.: 3d/4d facial expression anal-

ysis: An advanced annotated face model approach. Image and vision Computing 30(10),

738–749 (2012)

13. Gilani, S.Z., Mian, A., Eastwood, P.: Deep, dense and accurate 3D face correspondence for

generating population specific deformable models. Pattern Recognition 69, 238–250 (2017)

14. Gilani, S.Z., Mian, A., Shafait, F., Reid, I.: Dense 3D face correspondence. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (TPAMI) 40(7), 1584–1598 (2018)

15. Gilani, S.Z., Rooney, K., Shafait, F., Walters, M., Mian, A.: Geometric facial gender scoring:

Objectivity of perception. PloS one 9(6) (2014)

16. Hammond, P., Forster-Gibson, C., Chudley, A., et al.: Face–brain asymmetry in autism spec-

trum disorders. Molecular Psychiatry 13(6), 614–623 (2008)

17. Hammond, P.: The use of 3d face shape modelling in dysmorphology. In: Archives of disease

in childhood. p. 92(12) (2007)

18. Han, Y., Lee, J.Y., So Kweon, I.: High quality shape from a single rgb-d image under un-

calibrated natural illumination. In: Proceedings of the IEEE International Conference on

Computer Vision. pp. 1617–1624 (2013)

19. Hassner, T., Harel, S., Paz, E., Enbar, R.: Effective face frontalization in unconstrained im-

ages. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

pp. 4295–4304 (2015)

20. Heber, S., Pock, T.: Convolutional networks for shape from light field. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. pp. 3746–3754 (2016)

21. Heber, S., Yu, W., Pock, T.: U-shaped networks for shape from light field. In: BMVC (2016)

22. Honauer, K., Johannsen, O., Kondermann, D., Goldluecke, B.: A dataset and evaluation

methodology for depth estimation on 4d light fields. In: Asian Conference on Computer

Vision. pp. 19–34. Springer (2016)

23. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional

networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(July 2017)



16 M Feng, SZ Gilani, Y Wang and A Mian

24. Huber, P., Hu, G., Tena, R., Mortazavian, P., Koppen, P., Christmas, W.J., Ratsch, M., Kittler,

J.: A multiresolution 3d morphable face model and fitting framework. In: Proceedings of the

11th International Joint Conference on Computer Vision, Imaging and Computer Graphics

Theory and Applications (2016)

25. Jackson, A.S., Bulat, A., Argyriou, V., Tzimiropoulos, G.: Large pose 3d face reconstruc-

tion from a single image via direct volumetric cnn regression. In: The IEEE International

Conference on Computer Vision (ICCV) (Oct 2017)

26. Jeon, H.G., Park, J., Choe, G., Park, J., Bok, Y., Tai, Y.W., So Kweon, I.: Accurate depth

map estimation from a lenslet light field camera. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. pp. 1547–1555 (2015)

27. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,

Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of

the 22nd ACM international conference on Multimedia. pp. 675–678. ACM (2014)

28. Johannsen, O., Sulc, A., Goldluecke, B.: What sparse light field coding reveals about scene

structure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition. pp. 3262–3270 (2016)

29. Jourabloo, A., Liu, X.: Pose-invariant face alignment via cnn-based dense 3d model fitting.

International Journal of Computer Vision pp. 1–17 (2017)

30. Kazemi, V., Keskin, C., Taylor, J., Kohli, P., Izadi, S.: Real-time face reconstruction from a

single depth image. In: 3D Vision (3DV), 2014 2nd international conference on. vol. 1, pp.

369–376. IEEE (2014)

31. Kemelmacher-Shlizerman, I., Basri, R.: 3d face reconstruction from a single image using a

single reference face shape. IEEE transactions on pattern analysis and machine intelligence

33(2), 394–405 (2011)

32. Li, N., Sun, B., Yu, J.: A weighted sparse coding framework for saliency detection. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5216–

5223 (2015)

33. Li, N., Ye, J., Ji, Y., Ling, H., Yu, J.: Saliency detection on light field. In: The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR) (June 2014)

34. Lin, H., Chen, C., Bing Kang, S., Yu, J.: Depth recovery from light field using focal stack

symmetry. In: Proceedings of the IEEE International Conference on Computer Vision. pp.

3451–3459 (2015)

35. Marwah, K., Wetzstein, G., Bando, Y., Raskar, R.: Compressive light field photography using

overcomplete dictionaries and optimized projections. ACM Transactions on Graphics (TOG)

32(4), 46 (2013)

36. Mian, A., Bennamoun, M., Owens, R.: An efficient multimodal 2d-3d hybrid approach to

automatic face recognition. IEEE transactions on pattern analysis and machine intelligence

29(11) (2007)

37. Or-El, R., Rosman, G., Wetzler, A., Kimmel, R., Bruckstein, A.M.: Rgbd-fusion: Real-time

high precision depth recovery. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. pp. 5407–5416 (2015)

38. Patel, A., Smith, W.A.: 3d morphable face models revisited. In: Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on. pp. 1327–1334. IEEE (2009)

39. Queirolo, C., Silva, L., Bellon, O., Segundo, M.: 3D face recognition using simulated an-

nealing and the surface interpenetration measure. IEEE TPAMI 32(2), 206–219 (2010)

40. Richardson, E., Sela, M., Kimmel, R.: 3d face reconstruction by learning from synthetic data.

In: 3D Vision (3DV), 2016 Fourth International Conference on. pp. 460–469. IEEE (2016)

41. Richardson, E., Sela, M., Or-El, R., Kimmel, R.: Learning detailed face reconstruction from

a single image. In: The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (July 2017)



3D Face Reconstruction from Light Field Images: A Model-free Approach 17

42. Roth, J., Tong, Y., Liu, X.: Adaptive 3d face reconstruction from unconstrained photo collec-

tions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

pp. 4197–4206 (2016)
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