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Abstract. In this paper, we present MultiPoseNet, a novel bottom-up
multi-person pose estimation architecture that combines a multi-task
model with a novel assignment method. MultiPoseNet can jointly han-
dle person detection, person segmentation and pose estimation problems.
The novel assignment method is implemented by the Pose Residual Net-
work (PRN) which receives keypoint and person detections, and produces
accurate poses by assigning keypoints to person instances. On the COCO
keypoints dataset, our pose estimation method outperforms all previous
bottom-up methods both in accuracy (+4-point mAP over previous best
result) and speed; it also performs on par with the best top-down meth-
ods while being at least 4x faster. Our method is the fastest real time
system with ∼23 frames/sec.
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1 Introduction

This work is aimed at estimating the two-dimensional (2D) poses of multiple
people in a given image. Any solution to this problem has to tackle a few sub-
problems: (i) detecting body joints (or keypoints, as they are called in the widely
used COCO [36] dataset) such as wrists, ankles, etc., (ii) grouping these joints
into person instances, or detecting people and (iii) assigning joints to person
instances. Depending on which sub-problem is tackled first, there have been
two major approaches in multi-person 2D estimation: bottom-up and top-down.
Bottom-up methods [5,6,25,26,37,39,42] first detect body joints without having
any knowledge as to the number of people or their locations. Next, detected joints
are grouped to form individual poses for person instances. On the other hand,
top-down methods [10,18,23,40] start by detecting people first and then for each
person detection, a single-person pose estimation method (e.g. [12,24,38,48]) is
executed. Single-person pose estimation, i.e. detecting body joints conditioned
on the information that there is a single person in the given input (the top-
down approach), is typically a more costly process than grouping the detected
joints (the bottom-up approach). Consequently, the top-down methods tend to
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be slower than the bottom-up methods, since they need to repeat the single-
person pose estimation for each person detection; however, they usually yield
better accuracy than bottom-up methods.
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Fig. 1.MultiPoseNet is a multi-task learning architecture capable of performing human
keypoint estimation, detection and semantic segmentation tasks altogether efficiently.

In this paper, we present a new bottom-up method (with respect to the
categorization given above) for multi-person 2D pose estimation. Our method is
based on a multi-task learning model, which can jointly handle the person detec-
tion, person segmentation and pose estimation problems. To emphasize its multi-
person and multi-task aspects of our model, we named it as “MultiPoseNet. Our
model (Fig. 1) consists of a shared backbone for feature extraction, detection
subnets for keypoint and person detection/segmentation, and a final network
which carries out the pose estimation, i.e. assigning detected keypoints to per-
son instances. Our major contribution lies in the pose estimation step where
the network implements a novel assignment method. This network receives key-
point and person detections, and produces a pose for each detected person by
assigning keypoints to person boxes using a learned function. In order to put
our contribution into context, here we briefly describe the relevant aspects of
the state-of-the-art (SOTA) bottom-up methods [6,37]. These methods attempt
to group detected keypoints by exploiting lower order relations either between
the group and keypoints, or among the keypoints themselves. Specifically, Cao
et al. [6] model pairwise relations (called part affinity fields) between two nearby
joints and the grouping is achieved by propagating these pairwise affinities. In
the other SOTA method, Newell et al. [37] predict a real number called a tag per
detected keypoint, in order to identify the group the detection belongs to. Hence,
this model makes use of the unary relations between a certain keypoint and the
group it belongs to. Our method generalizes these two approaches in the sense
that we achieve the grouping in a single shot by considering all joints together
at the same time. We name this part of our model which achieves the grouping
as the Pose Residual Network (PRN) (Fig. 2). PRN takes a region-of-interest
(RoI) pooled keypoint detections and then feeds them into a residual multilayer
perceptron (MLP). PRN considers all joints simultaneously and learns config-
urations of joints. We illustrate this capability of PRN by plotting a sample
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set of learned configurations. (Fig. 2 right). Our experiments (on the COCO

+

Fig. 2. Left: Pose Residual Network (PRN). The PRN is able to disambiguate which
keypoint should be assigned to the current person box. Right: Six sample poses ob-
tained via clustering the structures learned by PRN.

dataset, using no external data) show that our method outperforms all previ-
ous bottom-up methods: we achieve a 4-point mAP increase over the previous
best result. Our method performs on par with the best performing top-down
methods while being at least 4x faster than them. To the best of our knowledge,
there are only two top-down methods that we could not outperform. Given the
fact that bottom-up methods have always performed less accurately than the
top-down methods, our results are remarkable. In terms of running time, our
method appears to be the fastest of all multi-person 2D pose estimation meth-
ods. Depending on the number of people in the input image, our method runs
at between 27 frames/sec (FPS) (for one person detection) and 15 FPS (for
20 person detections). For a typical COCO image, which contains ∼3 people
on average, we achieve ∼23 FPS (Fig. 6). Our contributions in this work are
four fold. (1) We propose the Pose Residual Network (PRN), a simple yet very
effective method for the problem of assigning/grouping body joints. (2) We out-
perform all previous bottom-up methods and achieve comparable performance
with top-down methods. (3) Our method works faster than all previous methods,
in real-time at ∼23 frames/sec. (4) Our network architecture is extendible; we
show that using the same backbone, one can solve other related problems, too,
e.g. person segmentation.

2 Related Work

2.1 Single Person Pose Estimation

Single person pose estimation is to predict individual body parts given a cropped
person image (or, equivalently, given its exact location and scale within an im-
age). Early methods (prior to deep learning) used hand-crafted HOG features [14]
to detect body parts and probabilistic graphical models to represent the pose
structure (tree-based [2,28,41,51]; non-tree based [15,21]). Deep neural networks
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based models [3, 7, 13, 24, 33, 38, 45, 46, 48, 51] have quickly dominated the pose
estimation problem after the initial work by Toshev et al. [46] who used the
AlexNet architecture to directly regress spatial joint coordinates. Tompson et
al. [45] learned pose structure by combining deep features along with graphi-
cal models. Carreira et al. [7] proposed the Iterative Error Feedback method to
train Convolutional Neural Networks (CNNs) where the input is repeatedly fed
to the network along with current predictions in order to refine the predictions.
Wei et al. [48] were inspired by the pose machines [43] and used CNNs as fea-
ture extractors in pose machines. Hourglass blocks, (HG) developed by Newell et
al. [38], are basically convolution-deconvolution structures with residual connec-
tions. Newell et al. stacked HG blocks to obtain an iterative refinement process
and showed its effectiveness on single person pose estimation. Stacked Hourglass
(SHG) based methods made a remarkable performance increase over previous
results. Chu et al. [13] proposed adding visual attention units to focus on key-
point regions of interest. Pyramid residual modules by Yang et al. [51] improved
the SHG architecture to handle scale variations. Lifshitz et al. [33] used a prob-
abilistic keypoint voting scheme from image locations to obtain agreement maps
for each body part. Belagiannis et al. [3] introduced a simple recurrent neural
network based prediction refinement architecture. Huang et al. [24] developed a
coarse-to-fine model with Inception-v2 [44] network as the backbone. The au-
thors calculated the loss in each level of the network to learn coarser to finer
representations of parts.

2.2 Multi Person Pose Estimation

Bottom-up Multi person pose estimation solutions branched out as bottom-
up and top-down methods. Bottom-up approaches detect body joints and assign
them to people instances, therefore they are faster in test time and smaller in size
compared to top-down approaches. However, they miss the opportunity to zoom
into the details of each person instance. This creates an accuracy gap between
top-down and bottom-up approaches. In an earlier work by Ladicky et al. [32],
they proposed an algorithm to jointly predict human part segmentations and
part locations using HOG-based features and probabilistic approach. Gkioxari et
al. [20] proposed k-poselets to jointly detect people and keypoints. Most of the re-
cent approaches use Convolutional Neural Networks (CNNs) to detect body parts
and relationships between them in an end-to-end manner [6,25,37,41,42,47], then
use assignment algorithms [6, 25, 42, 47] to form individual skeletons. Pischulin
et al. [42] used deep features for joint prediction of part locations and relations
between them, then performed correlation clustering. Even though [42] doesn’t
use person detections, it is very slow due to proposed clustering algorithm and
processing time is in the order of hours. In a follow-up work by Insafutdinov
et al. [25], they benefit from deeper ResNet architectures as part detectors and
improved the parsing efficiency of a previous approach with an incremental op-
timization strategy. Different from Pischulin and Insafutdinov, Iqbal et al. [27]
proposed to solve the densely connected graphical model locally, thus improved
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time efficiency significantly. Cao et al. [6] built a model that contains two en-
tangled CPM [48] branches to predict keypoint heatmaps and pairwise relation-
ships (part affinity fields) between them. Keypoints are grouped together with
fast Hungarian bipartite matching algorithm according to conformity of part
affinity fields between them. This model runs in realtime. Newell et al. [37] ex-
tended their SHG idea by outputting associative vector embeddings which can
be thought as tags representing each keypoint’s group. They group keypoints
with similar tags into individual people.

Top-down Top-down methods first detect people (typically using a top per-
forming, off-the-shelf object detector) and then run a single person pose esti-
mation (SPPEN) method per person to get the final pose predictions. Since a
SPPEN model is run for each person instance, top-down methods are extremely
slow, however, each pose estimator can focus on an instance and perform fine
localization. Papandreou et al. [40] used ResNet with dilated convolutions [22]
which has been very successful in semantic segmentation [8] and computing key-
point heatmap and offset outputs. In contrast to Gaussian heatmaps, the authors
estimated a disk-shaped keypoint masks and 2-D offset vector fields to accurately
localize keypoints. Joint part segmentation and keypoint detection given human
detections approach were proposed by Xia et al. [49] The authors used sepa-
rate PoseFCN and PartFCN to obtain both part masks and locations and fused
them with fully-connected CRFs. This provides more consistent predictions by
eliminating irrelevant detections. Fang et al. [18] proposed to use spatial trans-
former networks to handle inaccurate bounding boxes and used stacked hourglass

blocks [38]. He et al. [23] combined instance segmentation and keypoint predic-
tion in their Mask-RCNN model. They append keypoint heads on top of RoI
aligned feature maps to get a one-hot mask for each keypoint. Chen et al. [10]
developed globalnet on top of Feature Pyramid Networks [34] for multiscale in-
ference and refined the predictions by using hyper-features [31].

3 The Method and Models

The architecture of our proposel model, MultiPoseNet, can be found in Fig. 1.
In the following, we describe each component in detail.

3.1 The Shared Backbone

The backbone of MultiPoseNet serves as a feature extractor for keypoint and
person detection subnets. It is actually a ResNet [22] with two Feature Pyra-
mid Networks (FPN) [34] (one for the keypoint subnet, the other for the person
detection subnet) connected to it, FPN creates pyramidal feature maps with
top-down connections from all levels of CNNs feature hierarchy to make use
of inherent multi-scale representations of a CNN feature extractor. By doing
so, FPN compromises high resolution, weak representations with low resolution,
strong representations. Powerful localization and classification properties of FPN
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proved to be very successful in detection, segmentation and keypoint tasks re-
cently [10, 23, 34, 35]. In our model, we extracted features from the last residual
blocks C2, C3, C4, C5 with strides of (4,8,16,32) pixels and compute correspond-
ing FPN features per subnet.

3.2 Keypoint Estimation Subnet

Keypoint estimation subnet (Fig. 3) takes hierarchical CNN features (outputted
by the corresponding FPN) and outputs keypoint and segmentation heatmaps.
Heatmaps represent keypoint locations as Gaussian peaks. Each heatmap layer
belongs to a specific keypoint class (nose, wrists, ankles etc.) and contains ar-
bitrary number of peaks that pertain to person instances. Person segmentation
mask at the last layer of heatmaps encodes the pixelwise spatial layout of people
in the image. A set of features specific to the keypoint detection task are com-
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Fig. 3. The architecture of the keypoint subnet. It takes hierarchical CNN features as
input and outputs keypoint and segmentation heatmaps.

puted similarly to [34] with top-down and lateral connections from the bottom-up
pathway. K2 −K5 features have the same spatial size corresponding to C2 −C5

blocks but the depth is reduced to 256. K features are identical to P features in
the original FPN paper, but we denote them with K to distinguish from person
detection subnet layers. The depth of P features is downsized to 128 with 2 sub-
sequent 3×3 convolutions to obtain D2, D3, D4, D5 layers. Since D features still
have different strides, we upsampled D3, D4, D5 accordingly to match 4-pixel
stride as D2 features and concatenated them into a single depth-512 feature
map. Concatenated features are smoothed by a 3 × 3 convolution with ReLU.
Final heatmap which has (K+1) layers obtained via 1×1 convolutions without
activation. The final output is multiplied with a binary mask of W which has
W(p) = 0 in the area of the persons without annotation. K is the number of
human keypoints annotated in a dataset and +1 is person segmentation mask. In
addition to the loss applied in the last layer, we append a loss at each level of K
features to benefit from intermediate supervision. Semantic person segmentation
masks are predicted in the same way with keypoints.
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3.3 Person Detection Subnet

In order to design a faster and simpler person detection model which is com-
patible with FPN backbone, we have adopted RetinaNet. Same strategies to
compute anchors, losses and pyramidal image features are followed. Classifica-
tion and regression heads are modified to handle only person annotations.

(a) (b)(b) (c) (d)

Fig. 4. Bounding box overlapping scenarios.

3.4 Pose Residual Network (PRN)

Assigning keypoint detections to person instances (bounding boxes, in our case)
is straightforward if there is only one person in the bounding box as in Fig. 4 a-b.
However, it becomes non-trivial if there are overlapping people in a single box
as in Fig. 4 c-d. In the case of an overlap, a bounding box can contain multiple
keypoints not related to the person in question, and this creates ambiguity in
constructing final pose predictions. We solve these ambiguities by learning pose
structures from data. The input to PRN is prepared as follows. For each person
box that the person detection subnet detected, the region from the keypoint
detection subnet’s output, corresponding to the box, is cropped and resized to
a fixed size, which ensures that PRN can handle person detections of arbitrary
sizes and shapes. Specifically, let X denote the input to the PRN, where X =
{x1,x2, . . . ,xk} in which xk ∈ R

W×H , k is the number of different keypoint
types. The final goal of PRN is to output Y where Y = {y1,y2, . . . ,yk}, in
which yk ∈ R

W×H is of the same size as xk, containing the correct position for
each keypoint indicated by a peak in that keypoints channel. PRN models the
mapping from X to Y as

yk = φk(X) + xk (1)

where the functions φ1(·), . . . , φK(·) apply a residual correction to the pose in
X, hence the name pose residual network. We implement Eq. 1 using a residual
multilayer perceptron (Fig. 2). Activation of the output layer uses softmax to
obtain a proper probability distribution and binary cross-entropy loss is used
during training. Before we came up with this residual model, we experimented
with two naive baselines and a non-residual model. In the first baseline method,
which we call Max, for each keypoint channel k, we find the location with the
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highest value and place a Gaussian in the corresponding location of the kth

channel in Y. In the second baseline method, we compute Y as

yk = xk ∗Pk (2)

where Pk is a prior map for the location of the kth joint, learned from ground-
truth data and ∗ is element-wise multiplication. We named this method as Unary
Conditional Relationship (UCR). Finally, in our non-residual model, we imple-
mented

yk = φk(X). (3)

Performances of all these models can be found in Table 3. In the context of
the models described above, both SOTA bottom up methods learn lower or-
der grouping models than the PRN. Cao et al. [6] model pairwise channels in
X while Newell et al. [37] model only unary channels in X. Hence, our model
can be considered as a generalization of these lower order grouping models. We
hypothesize that each node in PRN’s hidden layer encodes a certain body config-
uration. To show this, we visualized some of the representative outputs of PRN
in Fig. 2. These poses are obtained via reshaping PRN outputs and selecting
the maximum activated keypoints to form skeletons. All obtained configurations
are clustered using k-means with OKS (object keypoint similarity) [36] and clus-
ter means are visualized in Fig. 2. OKS (object keypoint similarity) is used as
k-means distance metric to cluster the meaningful poses.

3.5 Implementation Details

Training Due to different convergence times and loss imbalance, we have trained
keypoint and person detection tasks separately. To use the same backbone in
both task, we first trained the model with only keypoint subnet Fig. 3. There-
after, we froze the backbone parameters and trained the person detection sub-
net. Since the two tasks are semantically similar, person detection results were
not adversely affected by the frozen backbone. We used the Tensorflow [1] and
Keras [11] deep learning libraries. For person detection, we made use of open-
source Keras RetinaNet [19] implementation.

Keypoint Estimation Subnet: For keypoint training, we used 480x480 image
patches, that are centered around the crowd or the main person in the scene.
Random rotations between ±40 degrees, random scaling between 0.8 − 1.2 and
vertical flipping with a probability of 0.3 were used during training. We have
transferred the ImageNet [16] pretrained weights for each backbone before train-
ing. We optimize the model with Adam [30] starting with a learning rate of 1e-4
and decreased it by a factor of 0.1 in plateaux. We used the Gaussian peaks
located at the keypoint locations as the ground truth to calculate L2 loss, and
we masked (ignored) people that are not annotated. We appended the segmen-
tation masks to ground-truth as an extra layer and trained along with keypoint
heatmaps. The cost function that we minimize is

Lkp = W · ‖Ht −Hp‖
2
2 , (4)
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where Ht and Hp are the ground-truth and predicted heatmaps respectively,
and W is the mask used to ignore non-annotated person instances.

Person Detection Subnet: We followed a similar person detection training strat-
egy as Lin et al. [35]. Images containing persons are used, they are resized such
that shorter edge is 800 pixels. We froze backbone weights after keypoint training
and not updated them during person detection training. We optimized subnet
with Adam [30] starting with a learning rate of 1e-5 and is decreased by a factor
of 0.1 in plateaux. We used Focal loss with (γ = 2, α = 0.25) and smooth L1 loss
for classification and bbox regression, respectively. We obtained final proposals
using NMS with a threshold of 0.3.

Pose Residual Network: During training, we cropped input and output pairs and
resized heatmaps according to bounding-box proposals. All crops are resized to
a fixed size of 36 × 56 (height/width = 1.56). We trained the PRN network
separately and Adam optimizer [30] with a learning rate of 1e-4 is used during
training. Since the model is shallow, convergence takes 1.5 hours approximately.
We trained the model with person instances having at least 2 keypoints. We
utilized a sort of curriculum learning [4] by sorting annotations based on number
of keypoints and bounding box areas. In each epoch, model is started to learn
easy-to-predict instances, hard examples are given in later stages.

Inference The whole architecture (see in Fig. 1) behaves as a monolithic, end-
to-end model during test time. First, an image (W ×H×3) is processed through
backbone model to extract the features in multi-scales. Person and keypoint
detection subnets compute outputs simultaneously out of extracted features.
Keypoints are outputted as W ×H×(K+1) sized heatmaps. K is the number of
keypoint channels, and +1 is for the segmentation channel. Person detections are
in the form of N×5, where N is the number of people and 5 channel corresponds
to 4 bounding box coordinates along with confidence scores. Keypoint heatmaps
are cropped and resized to form RoIs according to person detections. Optimal
RoI size is determined as 36× 56×K in our experiments. PRN takes each RoI
as separate input, then outputs same size RoI with only one keypoint selected in
each layer of heatmap. All selected keypoints are grouped as a person instance.

4 Experiments

4.1 Datasets

We trained our keypoint and person detection models on COCO keypoints
dataset [36] (without using any external/extra data) in our experiments. We
used COCO for evaluating the keypoint and person detection, however, we used
PASCAL VOC 2012 [17] for evaluating person segmentation due to the lack
of semantic segmentation annotations in COCO. Backbone models (ResNet-50
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and ResNet-101) were pretrained on ImageNet and we finetuned with COCO-
keypoints. COCO train2017 split contains 64K images including 260K person
instances which 150K of them having keypoint annotations. Keypoints of per-
sons with small area are not annotated in COCO. We did ablation experiments
on COCO val2017 split which contains 2693 images with person instances. We
made comparison to previous methods on the test-dev2017 split which has 20K
test images. We evaluated test-dev2017 results on the online COCO evaluation
server. We use the official COCO evaluation metric average precision (AP) and
average recall (AR). OKS and IoU based scores were used for keypoint and per-
son detection tasks, respectively. We performed person segmentation evaluation
in PASCAL VOC 2012 test split with PASCAL IoU metric. PASCAL VOC 2012
person segmentation test split contains 1456 images. We obtained test results
using the online evaluation server.

4.2 Multi Person Pose Estimation

The overall AP results of our method along with top-performing bottom-up (BU)
and top-down (TD) methods are given in Table 1. MultiPoseNet outperforms
all bottom-up methods and most of the top-down methods. We outperform the
previously best bottom-up method [37] by a 4-point increase in mAP. In addi-
tion, the runtime speed (see the FPS column Table 1 and Fig. 6) of our system
is far better than previous methods with 23 FPS on average1. This proves the
effectiveness of PRN for assignment and our multitask detection approach while
providing reasonable speed-accuracy tradeoff. To get these results (Table 1) on
test-dev, we have utilized test time augmentation and ensembling (as also done
in all previous studies). Multi scale and multi crop testing was performed during
test time data augmentation. Two different backbones and a single person pose
refinement network similar to our keypoint detection model was used for en-
sembling. Results from different models are gathered and redundant detections
was removed via OKS based NMS [40]. With ablation experiments we have in-
spected the effect of different backbones, keypoint detection architectures, and
PRN designs. Tables 2 and 3 present the ablation analysis results on the COCO
validation set. We present the recall-precision curves of our method for different
scales all, large, medium in the supplementary material.

Different Backbones We used ResNet models [22] as shared backbone to ex-
tract features. Table 2 shows the impact of deeper features and dilated features.
R101 improves the result by 1.6 mAP over R50. Dilated convolutions [8] which
are very successful in dense detection tasks increase accuracy by 2 mAP over
the R50 architecture. However, dilated convolutional filters add more computa-
tional complexity, consequently hinder realtime performance. We showed that
concatenation of K features and intermediate supervision (Section 3.2) is crucial

1 We obtained the FPS results by averaging the inference time using images containing
3 people on a 1080Ti GPU. We got CFNs and Mask RCNNs FPS results from their
respective papers.
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Table 1. Results on COCO test-dev, excluding systems trained with external data.
Top-down methods are shown separately to make a clear comparison between bottom-
up methods.

FPS AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

BU Ours 23 69.6 86.3 76.6 65.0 76.3 73.5 88.1 79.5 68.6 80.3

BU Newell et al. [37] 6 65.5 86.8 72.3 60.6 72.6 70.2 89.5 76.0 64.6 78.1
BU CMU-Pose [6] 10 61.8 84.9 67.5 57.1 68.2 66.5 87.2 71.8 60.6 74.6

TD Megvii [10] - 73.0 91.7 80.9 69.5 78.1 79.0 95.1 85.9 74.8 84.6
TD CFN [24] 3 72.6 86.7 69.7 78.3 64.1 - - - - -
TD Mask R-CNN [23] 5 69.2 90.4 76.0 64.9 76.3 75.2 93.7 81.1 70.3 81.8
TD SJTU [18] 0.4 68.8 87.5 75.9 64.6 75.1 73.6 91.0 79.8 68.9 80.2
TD GRMI-2017 [40] - 66.9 86.4 73.6 64.0 72.0 71.6 89.2 77.6 66.1 79.1
TD G-RMI-2016 [40] - 60.5 82.2 66.2 57.6 66.6 66.2 86.6 71.4 61.9 72.2

for good perfomance. The results demonstrate that performance of our system
can be further enhanced with stronger feature extractors like recent ResNext [50]
architectures.

Table 2. Comparison of different keypoint
models. (no concat: no concatenation, no
int: no intermediate supervision, dil: di-
lated, concat: concatenation)
Models AP AP50 AP75 APM APL

R50 62.3 86.2 71.9 57.7 70.4
R101no int. 61.3 83.7 69.6 56.6 67.4
R101no concat 62.1 84.3 70.9 57.3 68.8
R101 63.9 87.1 73.2 58.1 72.2
R101dil 64.3 88.2 75 59.6 73.9

Different Keypoint Architectures
Keypoint estimation requires dense
prediction over spatial locations, so
its performance is dependent on input
and output resolution. In our exper-
iments, we used 480 × 480 images as
inputs and outputted 120×120×(K+
1) heatmaps per input. K is equal
to 17 for COCO dataset. The lower
resolutions harmed the mAP results
while higher resolutions yielded longer
training and inference complexity. We have listed the results of different keypoint
models in Table 2.

The intermediate loss which is appended to the outputs ofK blocks enhanced
the precision significantly. Intermediate supervision acts as a refinement process
among the hierarchies of features. As previously shown in [6, 38, 48], it is an
essential strategy in most of the dense detection tasks. We have applied a final
loss to the concatenated D features which is downsized from K features. This
additional stage ensured us to combine multi-level features and compress them
into a uniform space while extracting more semantic features. This strategy
brought +2 mAP gain in our experiments.

Pose Residual Network Design PRN is a simple yet effective assignment
strategy, and is designed for fast inference while giving reasonable accuracy. To
design an accurate model we have tried different configurations. Different PRN
models and corresponding results can be seen in Table 3. These results indicate
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the scores obtained from the assignment of ground truth person bounding boxes
and keypoints.
Table 3. Left: Performance of different PRN models on COCO validation set. N:
nodes, D: dropout and R: residual connection. Right: Ablation experiments of PRN
with COCO validation data.

PRN Models AP AP50 AP75 APM APL

1 Layer 512 N, D 84.1 94.2 85.3 82 86.2
2 Layers 512 N, D 81.9 91.1 82.6 79.8 84.3
2 Layer 512 N, D+R 83.5 95.7 86.2 82.3 86.4
1 Layer 1024 N, D 84.6 95.7 87.6 82.1 88.7
1 Layer 1024 N, D+R 89.4 97.1 91.2 87.9 91.8

PRN Ablations AP AP50 AP75 APM APL

Both GT 89.4 97.1 91.2 87.9 91.8
GT keypoints + Our bbox 75.3 82.1 78 70.1 84.5
Our keypoints + GT bbox 65.1 89.2 76.2 60.3 74.7
PRN 64.3 88.2 75 59.6 73.9
UCR 49.7 59.5 52.4 44.1 51.6
Max 45.3 55.1 48.8 40.6 46.9

We started with a primitive model which is a single hidden-layer MLP with
50 nodes, and added more nodes, regularization and different connection types
to balance speed and accuracy. We found that 1024 nodes MLP, dropout with
0.5 probability and residual connection between input and output boosts the
PRN performance up to 89.4 mAP on ground truth inputs.

Table 4. PRN assignment results with
non-grouped keypoints obtained from two
bottom-up methods.
Models AP AP50 AP75 APM APL

Cao et al. [6] 58.4 81.5 62.6 54.4 65.1
PRN + [6] 59.2 82.2 64.4 54.1 67.0
Newell et al. [37] 56.9 80.8 61.3 49.9 68.8
PRN + [37] 58.1 81.4 63.0 51.3 68.1

In ablation analysis of PRN (Table
3), we compared Max, UCR and PRN

implementations (see Section 3.4 for
descriptions) along with the perfor-
mance of PRN with ground truth de-
tections. We found that lower order
grouping methods could not handle
overlapping detections; both of them
performed poorly. As we hypothe-
sized, PRN could overcome ambiguities by learning meaningful pose structures
(Fig. 2 (right)) and improved the results by ∼20 mAP over naive assignment
techniques. We evaluated the impact of keypoint and person subnets to the final
results by alternating inputs of PRN with ground truth detections. With ground
truth keypoints and our person detections, we obtained 75.3 mAP, it shows that
there is a large room for improvement in the keypoint localization part. With
our keypoints and ground truth person detections, we obtained 65.1 mAP. This
can be interpreted as our person detection subnet is performing quite well. Both
ground truth detections got 89.4 mAP, which is a good indicator of PRN per-
formance. In addition to these experiments, we tested PRN on the keypoints
detected by previous SOTA bottom-up models [6, 37]. Consequently, PRN per-
formed better grouping (Table 4) than Part Affinity Fields [6] and Associative

Embedding [37] by improving both detection results by ∼1 mAP. To obtain re-
sults in Table 4, we have used COCO val split, our person bounding box results
and the keypoint results from the official source code of the papers. Note that
running PRN on keypoints that were not generated by MultiPoseNet is unfair
to PRN because it is trained with our detection architecture. Moreover original
methods use image features for assignment coupled with their detection scheme,
nonetheless, PRN is able to outperform the other grouping methods.
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4.3 Person Detection

We trained the person detection subnet only on COCO person instances by
freezing the backbone with keypoint detection parameters. The person category
results of our network with different backbones can be seen in Table 5. Our
model with both ResNet-50 and ResNet-101 backends outperformed the original
implementations. This is not a surprising result since our network is only dealing
with a single class whereas the original implementations handle 80 object classes.

Table 5. Left: Person detection results on COCO dataset. Right:Person semantic
segmentation results on PASCAL VOC 2012 test split.

Person Detectors AP AP50 AP75 APS APM APL

Ours - R101 52.5 81.5 55.3 35.2 59 71
Ours - R50 51.3 81.4 53.6 34.9 58 68.1
RetinaNet [35] 50.2 77.7 53.5 31.6 59 71.5

FPN [34] 47.5 78 50.7 28.6 55 67.4

Segmentation IoU

DeepLab v3 [9] 92.1

DeepLab v2 [8] 87.4
SegNet [29] 74.9

Ours 87.8

4.4 Person Semantic Segmentation

Person segmentation output is an additional layer appended to the keypoint
outputs. We obtained the ground truth labels by combining person masks into
single binary mask layer, and we jointly trained segmentation with keypoint
task. Therefore, it adds a very small complexity to the model. Yet, producing
segmentation masks didn’t affect the keypoint results. Evaluation was performed
on PASCAL VOC 2012 test set with PASCAL IoU metric. We obtained final
segmentation results via multi-scale testing and thresholding. We did not apply
any additional test-time augmentation or ensembling. Table 5 shows the test
results of our system in comparison with previous successful semantic segmenta-
tion algorithms. Our model outperformed most of the successful baseline models
such as SegNet [29] and Deeplab-v2 [8], and got comparable performance to the
state-of-the-art Deeplab v3 [9] model. This demonstrates the capacity of our
model to handle different tasks altogether with competitive performance. Some
qualitative segmentation results are given in Fig. 5.

4.5 Runtime Analysis

Our system consists of a backbone, keypoint & person detection subnets, and
the pose residual network. The parameter sizes of each block is given in the
supplementary material. Most of the parameters are required to extract features
in the backbone network, subnets and PRN are relatively lightweight networks.
By using a shallow feature extractor like ResNet-50, we can achieve realtime
performance. To measure the performance, we have built a model using ResNet-
50 with 384 × 576 sized inputs which contain 1 to 20 people. We measured
the time spent during the inference of 1000 images, and averaged the inference
times to get a consistent result (Fig. 6). Keypoint and person detections take 35
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Fig. 5. Some qualitative results for COCO test-dev dataset.

ms while PRN takes 2 ms per instance. Our model runs in betwen 15-27 FPS
depending on the number of people in the image (15 FPS @ 1 person, 27 FPS
@ 20 persons).

5 Conclusion
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Fig. 6. Runtime analysis of MultiPoseNet with
respect to number of people.

In this work, we introduced the
Pose Residual Network which can
accurately assign keypoints to
person detections outputted by
a multi task learning architec-
ture (MultiPoseNet). Our pose es-
timation method achieved state-
of-the-art performance among bottom-
up methods and comparable re-
sults with top-down methods.
Our method has the fastest infer-
ence time compared to previous
methods. We showed the assign-
ment performance of pose resid-
ual network ablation analysis. We
demonstrated the representational capacity of our multi-task learning model by
jointly producing keypoints, person bounding boxes and person segmentation
results.
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