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Abstract. We propose a minimal solution for pose estimation using
both points and lines for a multi-perspective camera. In this paper, we
treat the multi-perspective camera as a collection of rigidly attached
perspective cameras. These type of imaging devices are useful for several
computer vision applications that require a large coverage such as surveil-
lance, self-driving cars, and motion-capture studios. While prior methods
have considered the cases using solely points or lines, the hybrid case in-
volving both points and lines has not been solved for multi-perspective
cameras. We present the solutions for two cases. In the first case, we are
given 2D to 3D correspondences for two points and one line. In the later
case, we are given 2D to 3D correspondences for one point and two lines.
We show that the solution for the case of two points and one line can be
formulated as a fourth degree equation. This is interesting because we
can get a closed-form solution and thereby achieve high computational
efficiency. The later case involving two lines and one point can be mapped
to an eighth degree equation. We show simulations and real experiments
to demonstrate the advantages and benefits over existing methods.

Keywords: multi-perspective camera, pose estimation, points, lines.

1 Introduction

Pose estimation is a fundamental problem that is used in a wide variety of appli-
cations such as image-based localization (complementary to global positioning
units that are prone to suffer from multi-path effects), augmented/virtual reality,
surround-view and birds-eye view synthesis from a car-mounted multi-camera
system, and telemanipulation of robotic arms. The basic idea of pose estimation
is to recover the camera position and orientation with respect to some known 3D
object in the world. We typically associate a world coordinate frame to the 3D
object and pose estimation denotes the computation of the rigid transformation
between world frame and the camera coordinate frame. The problem setting for
pose estimation is generally the same. We are given the correspondences between
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Table 1: List of minimal pose problems, for perspective, multi-perspective, and
general camera models, using both points and/or lines.

Minimal Problem #Points/Lines #Solutions Closed-Form Papers

Persepective with points 3/0 4 Yes [3–7]

Perspective with lines 0/3 8 No [8, 9]

Perspective with points and lines 2/1 4 Yes [1]

Perspective with points and lines 1/2 8 No [1]

Multi-Perspective with points 3/0 8 No [10]

Multi-Perspective with lines 0/3 8 No [11]

Multi-Perspective with points and lines 2/1 4 Yes Ours

Multi-Perspective with points and lines 1/2 8 No Ours

General camera with points 3/0 8 No [12–14]

2D features (points or lines) and 3D features for a calibrated camera, and the
goal is to compute the rigid transformation between the camera and the world.

It is relatively easier to develop non-minimal solutions, which utilize more
than the minimum number of correspondences, for pose estimation problems.
However, non-practitioners of multi-view geometry algorithms may ponder over
the following questions. Is it really necessary to develop a complex algorithm
to use the minimum number of features? What is the need for hybrid algo-
rithms [1, 2] that utilize both point and line features? In practice with noisy
data with outliers, non-minimal solvers produce inferior results compared to
minimal solvers. For example, in a challenging pose estimation scenario involv-
ing crowded roads and dynamic obstacles, we face the problem of having a large
number of incorrect feature correspondences. Having the flexibility of using point
or line correspondences improves the robustness of the algorithms. While there
has already been several solvers, three main factors can be used to distinguish
one solver from another: minimal/non-minimal, features, and camera system.
For example, we could think about a pose estimation algorithm for a central
camera system that is minimal and uses only point correspondences. Tab. 1 lists
several minimal solvers for different types of camera systems and features.

Minimal solvers for central cameras: The minimal camera pose solver using 3
point correspondences gives up to four solutions and can be computed in closed-
form [3–7]. On the other hand, using 3 line correspondences, we get 8 solutions [8,
9], requiring the use of slower iterative methods. In [1], two mixed scenarios were
considered: 1) 2 points and 1 line yielding 4 solutions in closed-form; and 2) 1
point and 2 lines yielding 8 solutions, requiring the use of iterative methods.
Non-minimal solvers using both points and lines have also been studied [15,16].

Minimal solvers for generalized cameras: The general camera model [17–20] is
represented by the individual association between unconstrained 3D projection
rays and pixels, i.e. when projection rays may not intersect at a single 3D point
in the world. This problem was addressed for the pose estimation using three 3D
points and their 2D correspondences [12–14]. On the other hand, no solutions
were yet proposed for the case of using 3D straight lines and their images, neither
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the case of using the combination of points and lines. There are non-minimal
solvers using both points and lines [21, 22].

Minimal solvers for multi-perspective cameras: We refer to multi-perspective
camera as a system that models multiple perspective cameras that are rigidly
attached with respect to each other. Examples include stereo cameras, multi-
camera system mounted on a car for surround-view capture, etc. While multi-
perspective camera systems are non-central and can be treated as generalized
cameras, they are not completely unconstrained. In both perspective and multi-
perspective systems, 3D lines project as 2D lines and lead to interpretation
”planes”. The minimal solvers for multi-perspective cameras have been addressed
independently for points [10] and lines [11]. In this paper, we propose a novel
solution for pose estimation for multi-perspective cameras using both points
and lines. We are not aware of any prior work that solves this problem. Both
3D point and line correspondences provide two degrees of freedom (as shown
in [3–7, 10, 12–14] for points and [8, 9, 11] for lines). Since we have 6 DOF, to
compute the camera pose we need at least three lines and/or points3.

The pose estimation has also been studied under other settings [26–39]. The
main contributions of this paper are summarized below:

– We present two minimal pose estimation solvers for a multi-perspective cam-
era system given 2D and 3D correspondences (Sec. 3 and Fig. 1):
1. Using 2 points and 1 line, we get 4 solutions in closed-form; and
2. Using 1 point and 2 lines, we get 8 solutions.

– The proposed solvers using both points and lines produce comparable or
superior results to the ones that employ solely points or lines (Sec. 4);

– While most prior methods require iterative solutions (See Tab. 1), 2 points
and 1 line correspondences yield an efficient closed-form solver (very useful
for real-world applications such as self-driving); and

– We demonstrate a standalone SLAM system using the proposed solvers for
large-scale reconstruction (Sec. 4).

2 Problem Statement

Our goal is to solve the minimal pose estimation for multi-perspective cameras
using both points and lines. First, we present the general pose problem using
points or lines (Sec. 2.1) and, then we define the minimal case studied in this
paper (Sec. 2.2).

2.1 Camera Pose using Points or Lines

To distinguish between features in the world and the camera coordinate system
we use W and C, respectively. The camera pose is given by the estimation of the

3 In other cases, such as catadioptric cameras 3D lines project as curves in images
which, in theory, it is possible to get the 3D line parameters from a single image [23–
25], providing therefore more degrees of freedom to solve the pose problem.
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(a) Two points and one line (b) One point and two lines.

Fig. 1: Illustration of the two minimal problems solved in this paper. We estimate
the transformation parameters TCW in two different settings: the case where we
have two 3D points, one 3D line, and their respective images (a); and the case
where we have two 3D lines, one 3D point and their respective images (b).

rotation matrix RCW ∈ SO(3) and the translation vector tCW ∈ R
3 that define

the rigid transformation between the camera and world coordinate systems:

TCW ∈ R
4×4 =

[
RCW tCW
01,3 1

]

. (1)

A multi-perspective camera is seen as a collection of individual perspective
cameras rigidly mounted with respect to each other. We use Ci to denote the
features in the ith perspective camera. The transformations between the per-
spective cameras and the global camera coordinate system are known, i.e. TCiC

is known, for all i. Next, we define the pose for the multi-perspective system.
1) Camera Pose using 3D Points: For a set of 3D points pW

j and their
respective images, since the camera parameters are known, the pose for a multi-
perspective camera is given by TCW , for a {pW

j 7→ dCi

j } for j = 1, . . . , N , where

dCi

j ∈ R
3 is the inverse projection direction, given by the image of pW

j seen in
the camera Ci [40, 41]. Formally, the pose is given by the TCW , such that

TCW

[
δj RCiC dCi

j + cCi
1

]

=

[
pW
j

1

]

for all j = 1, . . . , N, (2)

where δj is an unknown depth of pCi

j , w.r.t. the camera center cCi ∈ R
3.

2) Camera Pose using 3D Lines: To represent 3D straight lines in the
world we use Plücker coordinates [42], i.e. lWj ∼̇(̄lWj , l̃Wj ) where l̄Wj , l̃Wj ∈ R

3

are the line’s direction and moment, respectively. Since the camera parameters
are known, their respective images can be represented by an interpretation plane
Π

Ci

j ∈ R
4 = (π̄Ci

j , π̌Ci

j ) [40,41], where π̄
Ci

j is the normal vector to the plane and

π̌Ci

j is its distance to the origin of the respective coordinate system, which in this
case is equal to zero (the interpretation plane passes through the center of the
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camera Ci). Under the correct pose the 3D line lies on the interpretation plane
formed by the corresponding 2D line and the camera center. Thus the required
pose using lines is given by TCW for a {lWj 7→ Π

Ci

j }, such that

[
ˆ̃
lWj l̄Wj

l̄Wj
T

0

]

︸ ︷︷ ︸

L
W

j
∈R4×4

T−T
CW

T−T
CiC

Π
Ci

j = 0, for all j = 1, . . . , N, (3)

where: LW
j is the Plücker matrix of the line lWj [42]; the hat represents skew-

symmetric matrix that linearizes the external product, such that a × b = âb;
and N is the number of correspondences between 3D lines in the world and their
respective interpretation planes.

2.2 Minimal Pose using Points and Lines

Similar to the cases of using only points or lines, the minimal pose is computed
by having three of these features in the world, and their respective images. This
means that, for the minimal pose addressed in this paper, and according to
Sec. 1, there are two cases:

– The estimation of TCW , knowing: lW1 7→ Π
C1

1 ; pW
2 7→ dC2

2 ; pW
3 7→ dC3

3 ; and
TCiC for i = 1, 2, 3. A graphical representation of this problem is shown in
Fig. 1(a); and

– The estimation of TCW , knowing: lW1 7→ Π
C1

1 ; pW
2 7→ dC2

2 ; and lW3 7→ Π
C3

3 ;
and TCiC for i = 1, 2, 3. This problem is depicted in Fig. 1(b).

We show the solutions to these minimal problems in the next section.

3 Solution to the Minimal Pose Problem using Points

and Lines

As a first step, we transform the world and camera coordinate systems using
predefined transformations to the data (Sec. 3.1). Note that we can first compute
the pose in this new coordinate systems, and then recover the real pose in the
original coordinate frames by using the inverse of the predefined transformations.
The use of such predefined transformations can greatly simplify the underlying
polynomial equations and enable us to develop low-degree polynomial solutions.

3.1 Select the World and Camera Coordinate Systems

Let us consider initial transformations such that the data in the world coordinate
system verify the following specifications:

– Centered on the lW1 ;
– With the y–axis aligned with the line’s direction; and
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(a) World coordinate system (b) Camera coordinate system

Fig. 2: Depiction of the selected world and camera coordinate systems. (a) shows
the considered world coordinate system, while (b) presents the selected camera
coordinate system. We note that while the world coordinate system is uniquely
defined, the camera coordinate system can be defined up to a z–axis rotation.

– Such that pW
2 =

[
0 0 ∗

]T
, where ∗ takes any value in R .

A graphical representation of these specifications is shown in Fig. 2(a). Regarding
the camera coordinate system, we aim at having the following specifications:

– Centered in the C1; and
– With the z–axis aligned with the interpretation plane normal.

A graphical representation of the camera’s coordinate system is shown in Fig. 2(b).
The predefined transformation can be computed easily and the details are shown
in the supplementary material. In the following subsections we present our so-
lutions to the minimal case.

3.2 Solution using two 3D points and a 3D straight line

Here, we present a closed-form solution using 2 points and 1 line. The minimal
pose is computed using the coplanarity constraint on the 3D line and its associ-
ated interpretation plane (3), and using collinearity constraint associated with
the point correspondences (2).

From the selected coordinate systems (Sec. 3.1), the rotation between the
camera and world coordinate systems is given by

RCW =





cθ 0 −sθ

0 1 0
sθ 0 cθ









cα sα 0
−sα cα 0
0 0 1



 , (4)

with unknowns cθ & sθ4 and cα & sα. One can notice that, as a result of
the predefined transformations, we have reduced one degree of freedom on the
rotation matrix. In addition, one has

RCWtCW =





∗
∗
0



 ,where ∗ can take any value in R. (5)

4 To simplify, we denote cos(θ) as cθ and sin(θ) as sθ, respectively.
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Now, let us consider the effect of collinearity associated with the first point
correspondence. From (2), we have

TCW

(
δ2d

C
2 + cC2

)
= pW

2 , (6)

where dC
2 = RC2Cd

C2

2 . Then, this can be solved as a function of the unknowns
t1, t2, t3, resulting in

t1 = κ3
1[cθ, sθ, cα, sα, δ2]; (7)

t2 = κ2
2[cα, sα, δ2]; and (8)

t3 = κ3
3[cθ, sθ, cα, sα, δ2], (9)

where κ
j
i [.] denotes the ith polynomial equation, with degree j. The analytic

representation of all coefficients is sent in the supplementary material.
Next, we take into account the effects of the second point:

TCW

(
δ3d

C
3 + cC3

)
= pW

3 . (10)

Replacing the unknowns t1, t2, and t3 in (10) by the results of (7)-(9), we get
three constraints on the unknowns θ, α, δ2, and δ3, such that

κ3
4[cθ, sθ, cα, sα, δ2, δ3] = 0; (11)

κ2
5[cα, sα, δ2, δ3] = 0; and (12)

κ3
6[cθ, sθ, cα, sα, δ2, δ3] = 0. (13)

In addition, considering the third row of the constraint defined in (5) and re-
placing t1, t2, and t3 in this equation by the results of (7)-(9), we obtain the
following constraint

κ3
7[cθ, sθ, δ2] = 0. (14)

Now, solving (11)-(13), and (14) as a function of cθ, sθ, cα, and sα, we get

cθ =
κ1
8[δ2]

κ2
9[δ2, δ3]

, sθ =
κ1
10[δ2, δ3]

κ2
11[δ2, δ3]

, cα =
κ2
12[δ2, δ3]

κ2
13[δ2, δ3]

, and sα =
κ2
14[δ2, δ3]

κ2
15[δ2, δ3]

. (15)

which we replace in the trigonometric relations cθ2+sθ2−1 = 0 and cα2+sα2−
1 = 0, getting two constraints of the form

κ2
16[δ2, δ3]

κ2
17[δ2, δ3]

= 0 and
κ2
18[δ2, δ3]

κ2
19[δ2, δ3]

= 0. (16)

However, solving the above equations as a function of the unknowns δ2 and δ3
is the same as solving

κ2
16[δ2, δ3] = κ2

18[δ2, δ3] = 0, (17)

that corresponds to the estimation of the intersection points between two quadratic
curves which, according to Bézout’s theorem [43], has four solutions. There
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are many generic solvers in the literature to compute these solutions (such
as [44–48]). However, since we are dealing with very simple polynomial equa-
tions, we derive our own fourth degree polynomial. From (17), solving one poly-
nomial as a function of δ2 and replacing these results in the other (the square
root is removed using simple algebraic manipulations), we get

κ4
19[δ2] = 0 and (18)

δ3 =
κ1
20[δ2]±

√

κ2
21[δ2]

κ1
22[δ2]

. (19)

Details on these derivations are provided in the suplementary material. Finally,
to compute the pose, one has to solve (18), which can be computed in a closed-
form (using Ferrari’s formula), getting up to four real solutions for δ2. Then,
by back-substituting δ2 in (19) we get the respective solutions for δ3 (notice
that from the two possible solutions for δ3 one will be trivially ignored, since
(17) can have only up to four solutions). The pair {δ2, δ3} is afterwards used in
(15) to compute the respective {cθ, sθ, cα, sα}, and then in (7)-(9) to estimate
{t1, t2, t3}.

3.3 Solution using two 3D straight lines and a 3D point

This subsection presents the solution to the multi-perspective pose problem us-
ing 2 lines and 1 point. As before, we consider the predefined transformations
to the input data defined in Sec. 3.1, which already includes the coplanarity
constraint associated with the first 3D line. Under these assumptions, we start
by considering the collinearity constraint associated with the 3D point and its
respective image (2) and, then, use the coplanarity constraint of the second 3D
line and its respective interpretation plane (3).

We start by using the same steps of Sec. 3.2, i.e. we get the translation
parameters as a function of cθ, sθ, cα, sα, and δ2, which are given by (7)-(9).
Then, we replace the translation parameters in the third row of (5) by the results
of (7)-(9), which gives (14). Afterwards, we solve (14) and the trigonometric
constraint cθ2 + sθ2 − 1 = 0, as a function of cθ and sθ, resulting in

cθ = κ1
23[δ2] and sθ = ±

√

κ2
24[δ2]. (20)

Now, we consider the constraints associated with the second line which, since
TC3C is known, is given by

LW
3 T−T

CW
Π

C
3 = 0, (21)

where Π
C
3 = T−T

C3C
Π

C3

3 . Replacing the translation parameters in the above
equations by the results of (7)-(9), and cθ by the outcome of (20) (notice that,
for now we keep the unknown sθ), we get four polynomial equations with degree
two, as a function of variables δ2, sα, cα, and sθ. Solving two of them as a
function of cα and sα, we get

cα =
κ2
25[sθ, δ2]

κ1
26[sθ, δ2]

and sα =
κ2
27[sθ, δ2]

κ1
28[sθ, δ2]

. (22)
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Now, replacing these results into the trigonometric relation cα2 + sα2 − 1 = 0,
we get a constraint of the form

κ4
29[sθ, δ2]

κ2
30[sθ, δ2]

= 0 ⇒ κ4
29[sθ, δ2] = 0. (23)

Notice that, from (20), the expression that defines sθ, as a function of δ2, has a
square root of a polynomial equation. Then, starting from (23), we simplify the
problem by: 1) taking the terms with sθ to the right side of the equation:

κ4
29[sθ, δ2] = 0 ⇒ sθ4 + κ2

31[δ2]sθ
2 + κ4

32[δ2] = −
(
κ1
33[δ2]sθ

2 + κ3
34[δ2]

)
sθ; (24)

2) squaring both sides & moving all the terms to the left side of the equation:

sθ8 + κ2
35[δ2]sθ

6 + κ6
36[δ2]sθ

4 + κ6
37[δ2]sθ

2 + κ8
38[δ2] = 0; (25)

and, finally, 3) replacing sθ using (20) (notice that the square root and the ±
signal is removed), we get

κ8
39[δ2] = 0, (26)

which as up to eight real solutions. To get the pose: 1) we compute δ2 from
the real roots of (26); 2) for each δ2, we get {cθ, sθ} from (20); 3) we compute
{cα, sα} from (22); and 4) by back-substituting all these unknowns, we get
{t1, t2, t3} from (7)-(9), obtaining the estimation of the camera pose.

4 Experimental Results

In these experiments, we consider the methods proposed in Sec. 3 and existing
multi-perspective algorithms to solve the pose using three points [10] or three
lines [11]. All algorithms were implemented in MATLAB and are available in the
author’s website.

We start by using synthetic data (Sec. 4.1): 1) we evaluate the number of
real solutions and analyze their computational complexity; and 2) we test each
method with noise. Next, we show results using real data: 1) we evaluate the min-
imal solutions in a RANSAC framework (Sec. 4.2); and 2) we use each method
in a 3D path reconstruction using a real multi-perspective camera (Sec. 4.3).

4.1 Results with Synthetic Data

To get the data, we randomly define the ground truth camera pose, TGT . Three
perspective cameras were generated (randomly distributed in the environment)
in which their position w.r.t the camera coordinate system is assumed to be
known, TCiC . Then, for each camera Ci, we define a feature in the world, and
their projection into the image:

pW
i 7→ dCi

i : Points in the world pW
i are projected into the image uIi

i , by using
a predefined calibration matrix. We had noise in the image pixels, and get
the corresponding 3D inverse projection direction dCi

i .
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(a) Numerical Results. (b) Number of Occurrences.

Algorithm 2 Points & 1 Line 1 Point & 2 Lines 3 Points [10] 3 Lines [11]

Total 151.3s 516.6s 512.2s 1481.7s

Median 135µs 439µs 480µs 1161µs

(c) The total and median of the computation time for solving the camera poses.

Fig. 3: Results obtained with numerical errors for the pose estimation, using the
methods proposed in this paper (2 Points, 1 Line and 1 Point, 2 Lines)
and existing solutions for points (3 Points) and lines (3 Lines).

lWi 7→ Π
Ci

i : 3D points defining the edges of the 3D line lWi are projected into the

image, {uIi

1,i, u
Ii

2,i}. To each image point of the edge, we add noise (as we did
in the previous point) and compute the respective inverse projection direc-

tions {dCi

1,i,d
Ci

2,i}. The interpretation plane is given by Π
Ci

i =
[

dCi

1,i × dCi

2,i 0
]

.

After getting the data, we apply the known transformations TCiC to obtain the
corresponding features in the global camera coordinate system, such that

pW
i 7→ cCi + δid

C
i in which cCi is the perspective camera center and dC

i = RCiCd
Ci

i .

lWi 7→ Π
C
i in which Π

C
i = T−T

CiC
Π

Ci

i .

For the evaluation, we start by running an experiment in which we consider
106 random trials, without adding noise in the image pixels. We use both meth-
ods presented in this paper, as well as the algorithms presented in [10, 11]. For
each trial/method, in which RCW and tCW are the estimated rotation and trans-
lation parameters, we: 1) compute the relative rotation that caused the deviation
of the estimated rotation w.r.t. the ground-truth ∆R = RCWRT

GT , which can
be represented by an axis-angle rotation, and the error is set as the respective
angle in degrees; and 2) set ‖tCW − tGT ‖ as the translation error5. Fig. 3(a)
shows that the methods are very similar in terms of numerical evaluation.

Cheirality Constraint: All of the methods evaluated in this section produce
multiple solutions for the pose. Our methods of Sec. 3.2 and Sec. 3.3 give up
to four and eight solutions respectively. We discard imaginary solutions and the
ones that are not physically realizable. The so-called cheirality constraint [41]
restricts points behind the camera (this is only possible to check in the cases
in which we use point correspondences). We obtain the result for the 106 trials
with and without the cheirality constraint. Fig. 3(b) shows that the number of

5 For the cases in which the algorithms return multiple solutions, it was considered
the cases with the smallest error using these metrics.
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Fig. 4: Comparative results for the methods using different type of features, as
a function of the noise in the image pixels. 2 Points, 1 Line and 1 Point, 2

Lines show the results for the methods presented in this paper, while 3 Points

and lines 3 Lines are techniques proposed in [10,11].

valid solutions (with the cheirality constraint) is lower for the algorithms that
use more points.

Computation Time: To conclude these tests, we present the evaluation of
the computation time, required for each algorithm to compute all the 106 trials.
In theory, the method presented in Sec. 3.2 is the fastest, since it is computed in
closed-form. On the other hand, both our method presented in Sec. 3.3 and the
case of three points [10] require the computation of the roots of an eighth degree
polynomial equation, which requires iterative techniques. Moreover, the case of
three lines [11] not only requires the computation of an eighth degree polynomial
equation, but also the computation of the null-space of a 3× 9 matrix, that also
slows down the execution time. Results shown in Tab. 3(c) validate the above
assumptions. Note that these timing analysis are done using Matlab, and porting
the code to C++ would produce further speedup.

Next, we evaluate the robustness of the methods in terms of image noise.
For that purpose, we consider the same data-set generated, but we add noise in
the image varying from 0 to 5 pixels. For each level of noise, we get 103 random
trials, compute the pose for all the four algorithms (notice the data required
for each of the algorithms is different), and extract the average and standard
deviation for all the 103 trials for each level of noise. The results shown in Fig. 4
indicate that the algorithms that use more points are more robust to the noise.

4.2 Evaluating Minimal Solutions in a RANSAC Framework

For these experiments, using real data, we evaluate the results of the minimal
solutions in a RANSAC framework [49, 50]. Since we are using points and lines
correspondences, one needs to define two metrics for the re-projection errors:
1) For points, we use the geometric distance between the known pixels and the
re-projection of 3D points using the estimated camera pose; and 2) For lines,
we use the result presented in [51] which, for a ground truth line lGT and a
re-projected line l (both in the image), is given by

dL(lGT , l)
2 =

(
dP (u1, l)

2 + dP (u2, l)
2
)
exp(2∠(lGT , l)), (27)

where dP (.) denotes the geometric distance between a point and line in the
image, and u1 & u2 are the end points of lGT .
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(a) Examples of images and 2D Data used in
this experimental results (blue lines and red
points).

(b) 3D Data set used in this experiments
(blue lines and red points), and the esti-
mated camera positions (green).

(c) Minimal solution in a RANSAC
framework: varying the required
number of inliers to stop the cycle.

(d) Minimal solution in a RANSAC
framework: varying the thresholds to
stop the cycle.

Fig. 5: Evaluation of the proposed techniques and existing methods. As the eval-
uation criteria, we consider the required number of inliers and threshold to stop
the RANSAC cycle. The errors in terms of rotation and translation parameters
are afterwards computed, and compared between all the methods. (a) and (b)
show three views and the 2D-3D data (points and lines) used in these experi-
ments. (c) and (d) show the proposed evaluation.

Then, we use a data-set from the ETH3D Benchmark [52]. The data-set gives
us the calibration and poses from a set of cameras, and the 3D points and their
correspondences in the images. To extract the 3D lines and their correspondences
in the images, we use the camera calibration & pose parameters from the data-set
and the Line3D++ algorithm [51].

Examples of features in the image and its respective coordinates in the world
are shown in Fig. 5(a) and 5(b), respectively. We run two experiments with these
data, using both our methods and [10,11], under a RANSAC framework. We start
by defining a threshold for points and lines6. To fairly select these thresholds, we
run [10,11] (that use solely points or lines respectively), and calibrate the values
to ensure similar results in terms of errors as a function of the required number
of inliers. We use these line and point thresholds in our techniques. Then, we
vary the required number of inliers (a percentage of the all points and lines in
the image), and for each we run the methods 104 times. In Fig. 5(c) we show the

6 Notice these thresholds must be different because of the differences between the
metrics presented above.
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(a) System. (b) Sample images. (c) Recovered path.

Fig. 6: Results of our methods in the path estimation, using a RANSAC frame-
work. At the left, we show the used imaging device (three cameras with angles
of 45 degrees between them). In the middle, we show two columns representing
two sequences acquired at the same instance by our camera system. At the right,
we show a reconstructed path obtained using all methods evaluated.

results for the errors (using the metrics presented in Sec. 4.1 for the translation
and rotation errors), as a function of the percentage of inliers.

To conclude these experiments, we do some tests varying the threshold, for
a fixed number of required inliers (in this case we consider 40 percent of the
data), in a RANSAC framework. To vary the threshold, we start from the values
indicated in the previous paragraph, and vary as a function of the percentage
of the corresponding values. The results are shown in Fig. 5(d), for thresholds
ranging from 50 to 150 percent of the original threshold.

Positives: As it can be seen from the results of Figs. 5(c) and 5(d), for the
threshold values previously defined, both methods using three points and three
lines have similar results, and, when comparing to the results of our solutions
(using 2 points & 1 line and 1 point & 2 lines) one can see that the errors on
the rotation and translation parameters are in general significantly lower.

4.3 Path Reconstruction using a Multi-Perspective System

Using the presented methods, we demonstrate a 3D reconstruction pipeline for
a multi-perspective camera. For that purpose, we use a real imaging device (see
Fig. 6(a)), and acquired several images from an outdoor environment. We extract
the correspondences between world and image features as follows:

– We get camera poses and correspondences between 3D points and image
pixels using the VisualSFM framework [53,54]; and

– To get the line correspondences, we use the Line3D++ algorithm, [51]. This
method requires as input the camera positions, in which we use the poses
given by the VisualSFM application.

Then, we calibrate each camera individually, using the Matlab calibration
toolbox. The transformations parameters TCiC are given by the system’s CAD
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model. Then, we run both methods proposed in this paper and existing solu-
tions, using the RANSAC framework with a 30% of required inliers and thresh-
olds used in the previous subsection. The data-set, including images, 3D-2D
correspondences (for both lines and points) and camera system calibration are
available in the author’s website, as well as a video with the reconstructed paths
for this experiment. A total of 606 images were taken from a path of around
200 meters (examples of these pictures are shown in Fig. 6(b)). An average of
130 lines and 50 points per image were used, within a total of 5814 3D lines and
2230 3D points in the world.

Fig. 6(c) shows the results of the path reconstruction using various solvers,
and they produce similar results.

5 Discussion

We present 2 minimal solvers for a multi-perspective camera: (a) using 2 points
and 1 line yielding 4 solutions, and (b) using 2 lines and 1 point yielding 8
solutions. While the latter case requires iterative methods, the former can be
solved efficiently in closed form. To the best of our knowledge, there is no prior
work on using hybrid features for a multi-camera system. Note that existing
solutions (i.e. using only points or lines) require the use of iterative techniques.

We show comparison with other minimal solvers, and we perform similar
or superior to the ones that solely use points or lines. While the difference in
performance among different minimal solvers can only be marginal, it is more
important to note that these hybrid solvers can be beneficial and robust in noisy,
dynamic, and challenging on-road scenarios where it is difficult to even get a few
good correspondences. We also demonstrate a real experiment to recover the
path of an outdoor sequence using a 3-camera system.

Our method can be seen as a generalization of existing pose solvers for central
cameras that uses points and lines correspondences. If we set TC1C = TC2C =
TC3C , our method solves the problem of minimal problem for perspective cameras
as the current state-of-the-art method.
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