
Memory Aware Synapses: Learning what (not) to forget

Rahaf Aljundi1, Francesca Babiloni1, Mohamed Elhoseiny2,

Marcus Rohrbach2, and Tinne Tuytelaars1

1 KU Leuven, ESAT-PSI, IMEC, Belgium
2 Facebook AI Research

Abstract. Humans can learn in a continuous manner. Old rarely utilized knowl-

edge can be overwritten by new incoming information while important, frequently

used knowledge is prevented from being erased. In artificial learning systems,

lifelong learning so far has focused mainly on accumulating knowledge over tasks

and overcoming catastrophic forgetting. In this paper, we argue that, given the

limited model capacity and the unlimited new information to be learned, knowl-

edge has to be preserved or erased selectively. Inspired by neuroplasticity, we

propose a novel approach for lifelong learning, coined Memory Aware Synapses

(MAS). It computes the importance of the parameters of a neural network in an

unsupervised and online manner. Given a new sample which is fed to the net-

work, MAS accumulates an importance measure for each parameter of the net-

work, based on how sensitive the predicted output function is to a change in

this parameter. When learning a new task, changes to important parameters can

then be penalized, effectively preventing important knowledge related to previous

tasks from being overwritten. Further, we show an interesting connection between

a local version of our method and Hebb’s rule, which is a model for the learning

process in the brain. We test our method on a sequence of object recognition

tasks and on the challenging problem of learning an embedding for predicting

<subject, predicate, object> triplets. We show state-of-the-art performance and,

for the first time, the ability to adapt the importance of the parameters based on

unlabeled data towards what the network needs (not) to forget, which may vary

depending on test conditions.

1 Introduction

The real and digital world around us evolves continuously. Each day millions of images

with new tags appear on social media. Every minute hundreds of hours of video are

uploaded on Youtube. This new content contains new topics and trends that may be

very different from what one has seen before - think e.g. of new emerging news topics,

fashion trends, social media hypes or technical evolutions. Consequently, to keep up to

speed, our learning systems should be able to evolve as well.

Yet the dominating paradigm to date, using supervised learning, ignores this issue.

It learns a given task using an existing set of training examples. Once the training is

finished, the trained model is frozen and deployed. From then on, new incoming data

is processed without any further adaptation or customization of the model. Soon, the

model becomes outdated. In that case, the training process has to be repeated, using

both the previous and new data, and with an extended set of category labels. In a world

2 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

...

Fig. 1: Our continuous learning setup. As common in the LLL literature, tasks are

learned in sequence, one after the other. If, in between learning tasks, the agent is active

and performs the learned tasks, we can use these unlabeled samples to update impor-

tance weights for the model parameters. Data that appears frequently, will have a bigger

contribution. This way, the agent learns what is important and should not be forgotten.

like ours, such a practice becomes intractable when moving to real scenarios such as

those mentioned earlier, where the data is streaming, might be disappearing after a given

period of time or even can’t be stored at all due to storage constraints or privacy issues.

In this setting, lifelong learning (LLL) [24, 35, 37] comes as a natural solution. LLL

studies continual learning across tasks and data, tackling one task at a time, without

storing data from previous tasks. The goal is to accumulate knowledge across tasks

(typically via model sharing), resulting in a single model that performs well on all the

learned tasks. The question then is how to overcome catastrophic forgetting [8, 9, 20] of

the old knowledge when starting a new learning process using the same model.

So far, LLL methods have mostly (albeit not exclusively) been applied to relatively

short sequences – often consisting of no more than two tasks (e.g. [16, 17, 28]), and

using relatively large networks with plenty of capacity (e.g. [1, 6, 33]). However, in a

true LLL setting with a never-ending list of tasks, the capacity of the model sooner

or later reaches its limits and compromises need to be made. Instead of aiming for

no forgetting at all, figuring out what can possibly be forgotten becomes at least as

important. In particular, exploiting context-specific test conditions may pay off in this

case. Consider for instance a surveillance camera. Depending on how or where it is

mounted, it always captures images under particular viewing conditions. Knowing how

to cope with other conditions is no longer relevant and can be forgotten, freeing capacity

for other tasks. This calls for a LLL method that can learn what (not) to forget using

unlabeled test data. We illustrate this setup in Figure 1.

Such adaptation and memory organization is what we also observe in biological

neurosystems. Our ability to preserve what we have learned before is largely dependent

on how frequent we make use of it. Skills that we practice often, appear to be unforget-

table, unlike those that we have not used for a long time. Remarkably, this flexibility

and adaptation occur in the absence of any form of supervision. According to Hebbian

theory [10], the process at the basis of this phenomenon is the strengthening of synapses

connecting neurons that fire synchronously, compared to those connecting neurons with

unrelated firing behavior.

In this work, we propose a new method for LLL, coined Memory Aware Synapses, or

MAS for short, inspired by the model of Hebbian learning in biological systems. Unlike

previous works, our LLL method can learn what parts of the model are important using

unlabelled data. This allows for adaptation to specific test conditions and continuous

updating of importance weights. This is achieved by estimating importance weights for

Memory Aware Synapses: Learning what (not) to forget 3

the network parameters without relying on the loss, but by looking at the sensitivity of

the output function instead. This way, our method not only avoids the need for labeled

data, but importantly it also avoids complications due to the loss being in a local mini-

mum, resulting in gradients being close to zero. This makes our method not only more

versatile, but also simpler, more memory-efficient, and, as it turns out, more effective

in learning what not to forget, compared to other model-based LLL approaches.

Contributions of this paper are threefold: First, we propose a new LLL method

Memory Aware Synapses (MAS). It estimates importance weights for all the network

parameters in an unsupervised and online manner, allowing adaptation to unlabeled

data, e.g. in the actual test environment. Second, we show how a local variant of MAS is

linked to the Hebbian learning scheme. Third, we achieve better performance than state-

of-the-art, both when using the standard LLL setup and when adapting to specific test

conditions, both for object recognition and for predicting <subject, predicate, object>

triplets, where an embedding is used instead of a softmax output.

In the following we discuss related work in section 2 and give some background in-

formation in section 3. Section 4 describes our method and its connection with Hebbian

learning. Experimental results are given in section 5 and section 6 concludes the paper.

2 Related Work
Method Type Constant Problem On Pre- Unlabeled Adap-

Memory agnostic trained data tive

LwF [17] data X X X n/a X

EBLL [28] data X X X n/a X

EWC [12] model X X X X X

IMM [16] model X X X X X

SI [39] model X X X X X

MAS (our) model X X X X X

Table 1: LLL desired characteristics and the com-

pliance of methods, that treat forgetting without stor-

ing the data, to these characteristics.

While lifelong learning has been

studied since a long time in differ-

ent domains (e.g. robotics [37] or ma-

chine learning [30]) and touches upon

the broader fields of meta-learning [7]

and learning-to-learn [2], we focus

in this section on more recent work

in the context of computer vision

mainly.

The main challenge in LLL is to adapt the learned model continually to new tasks,

be it from a similar or a different environment [25]. However, looking at existing LLL

solutions, we observe that none of them satisfies all the characteristics one would expect

or desire from a lifelong learning approach (see Table 1). First, its memory should be

constant w.r.t. the number of tasks, to avoid a gradual increase in memory consumption

over time. not be limited to a specific setting (e.g. only classification). We refer to this

as problem agnostic. Third, given a pretrained model, it should be able to build on top

of it and add new tasks. Fourth, being able to learn from unlabeled data would increase

the method applicability to cases where original training data no longer exists. Finally,

as argued above, within a fixed capacity network, being able to adapt what not to forget

to a specific user setting would leave more free capacity for future tasks. In light of

these properties, we discuss recently proposed methods. They can be divided into two

main approaches: data-based and model-based approaches. Here, we don’t consider

LLL methods that require storing samples, such as [18, 29].

Data-based approaches [1, 17, 28, 34] use data from the new task to approximate the

performance of the previous tasks. This works best if the data distribution mismatch

4 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

between tasks is limited. Data based approaches are mainly designed for a classification

scenario and overall, the need of these approaches to have a preprocessing step before

each new task, to record the targets for the previous tasks is an additional limitation.

Model-based approaches [6, 12, 16, 39], like our method, focus on the parameters of

the network instead of depending on the task data. Most similar to our work are [12,

39]. Like them, we estimate an importance weight for each model parameter and add a

regularizer when training a new task that penalizes any changes to important parame-

ters. The difference lies in the way the importance weights are computed. In the Elastic

Weight Consolidation work [12], this is done based on an approximation of the diago-

nal of the Fisher information matrix. In the Synaptic Intelligence work [39], importance

weights are computed during training in an online manner. To this end, they record how

much the loss would change due to a change in a specific parameter and accumulate

this information over the training trajectory. However, also this method has some draw-

backs: 1) Relying on the weight changes in a batch gradient descent might overestimate

the importance of the weights, as noted by the authors. 2) When starting from a pre-

trained network, as in most practical computer vision applications, some weights might

be used without big changes. As a result, their importance will be underestimated. 3)

The computation of the importance is done during training and fixed later. In contrast,

we believe the importance of the weights should be able to adapt to the test data where

the system is applied to. In contrast to the above two methods, we propose to look at

the sensitivity of the learned function, rather than the loss. This simplifies the setup

considerably since, unlike the loss, the learned function is not in a local minimum, so

complications with gradients being close to zero are avoided.

In this work, we propose a model-based method that computes the importance of the

network parameters not only in an online manner but also adaptive to the data that the

network is tested on in an unsupervised manner. While previous works [26, 31] adapt

the learning system at prediction time in a transductive setting, our goal here is to build

a continual system that can adapt the importance of the weights to what the system

needs to remember. Our method requires a constant amount of memory and enjoys the

main desired characteristics of lifelong learning we listed above while achieving state-

of-the-art performance.

3 Background

Standard LLL setup. Before introducing our method, we briefly remind the reader of

the standard LLL setup, as used, e.g., in [1, 16, 17, 28, 39]. It focuses on image clas-

sification and consists of a sequence of disjoint tasks, which are learned one after the

other. Tasks may correspond to different datasets, or different splits of a dataset, with-

out overlap in category labels. The assumption of this setup is that, when training a

task, only the data related to that task is accessible. Ideally, newer tasks can benefit

from the representations learned by older tasks (forward transfer). Yet in practice, the

biggest challenge is to avoid catastrophic forgetting of the old tasks’ knowledge (i.e.,

forgetting how to perform the old tasks well). This is a far more challenging setup than

joint learning, as typically used in the multitask learning literature, where all tasks are

trained simultaneously.

Memory Aware Synapses: Learning what (not) to forget 5

F
X

Y

F

X

Y

X

Y

Importance estimation using unlabelled data T2 TrainingT1 Training

F

(a) (b) (c)

Fig. 2: [39, 12] estimate the parameters importance based on the loss, comparing the network

output (light blue) with the ground truth labels (green) using training data (in yellow) (a). In

contrast, we estimate the parameters importance, after convergence, based on the sensitivity of

the learned function to their changes (b). This allows using additional unlabeled data points (in

orange). When learning a new task, changes to important parameters are penalized, the function

is preserved over the domain densely sampled in (b), while adjusting not important parameters to

ensure good performance on the new task (c).

Notations. We train a single, shared neural network over a sequence of tasks. The pa-

rameters {θij} of the model are the weights of the connections between pairs of neurons

ni and nj in two consecutive layers3. As in other model-based approaches, our goal is

then to compute an importance value Ωij for each parameter θij , indicating its impor-

tance with respect to the previous tasks. In a learning sequence, we receive a sequence

of tasks {Tn} to be learned, each with its training data (Xn, Ŷn), with Xn the input data

and Ŷn the corresponding ground truth output data (labels). Each task comes with a

task-specific loss Ln, that will be combined with an extra loss term to avoid forgetting.

When the training procedure converges to a local minimum, the model has learned an

approximation F of the true function F̄ . F maps a new input X to the outputs Y1, ..., Yn

for tasks T1...Tn learned so far.

4 Our Approach

In the following, we introduce our approach. Like other model-based approaches [12,

39], we estimate an importance weight for each parameter in the network. Yet in our

case, these importance weights approximate the sensitivity of the learned function to

a parameter change rather than a measure of the (inverse of) parameter uncertainty, as

in [12], or the sensitivity of the loss to a parameter change, as in [39] (see Figure 2).

As it does not depend on the ground truth labels, our approach allows computing the

importance using any available data (unlabeled) which in turn allows for an adaptation

to user-specific settings. In a learning sequence, we start with task T1, training the model

to minimize the task loss L1 on the training data (X1, Ŷ1) – or simply using a pretrained

model for that task.

4.1 Estimating parameter importance

After convergence, the model has learned an approximation F of the true function F̄ .

F maps the input X1 to the output Y1. This mapping F is the target we want to preserve

3 In convolutional layers, parameters are shared by multiple pairs of neurons. For the sake of

clarity, yet without loss of generality, we focus here on fully connected layers.

6 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

while learning additional tasks. To this end, we measure how sensitive the function F

output is to changes in the network parameters. For a given data point xk, the output of

the network is F (xk; θ). A small perturbation δ = {δij} in the parameters θ = {θij}
results in a change in the function output that can be approximated by:

F (xk; θ + δ)− F (xk; θ) ≈
∑

i,j

gij(xk)δij (1)

where gij(xk) = ∂(F (xk;θ))
∂θij

is the gradient of the learned function with respect to the

parameter θij evaluated at the data point xk and δij is the change in parameter θij . Our

goal is to preserve the prediction of the network (the learned function) at each observed

data point and prevent changes to parameters that are important for this prediction.

Based on equation 1 and assuming a small constant change δij , we can measure the

importance of a parameter by the magnitude of the gradient gij , i.e. how much does

a small perturbation to that parameter change the output of the learned function for

data point xk. We then accumulate the gradients over the given data points to obtain

importance weight Ωij for parameter θij :

Ωij =
1

N

N∑

k=1

|| gij(xk) || (2)

This equation can be updated in an online fashion whenever a new data point is fed

to the network. N is the total number of data points at a given phase. Parameters with

small importance weights do not affect the output much, and can, therefore, be changed

to minimize the loss for subsequent tasks, while parameters with large weights should

ideally be left unchanged.

When the output function F is multi-dimensional, as is the case for most neural

networks, equation 2 involves computing the gradients for each output, which requires

as many backward passes as the dimensionality of the output. As a more efficient alter-

native, we propose to use the gradients of the squared ℓ2 norm of the learned function

output4, i.e., gij(xk) =
∂[ℓ2

2
(F (xk;θ))]
∂θij

. The importance of the parameters is then mea-

sured by the sensitivity of the squared ℓ2 norm of the function output to their changes.

This way, we get one scalar value for each sample instead of a vector output. Hence,

we only need to compute one backward pass and can use the resulting gradients for

estimating the parameters importance. Using our method, for regions in the input space

that are sampled densely, the function will be preserved and catastrophic forgetting is

avoided. However, parameters not affecting those regions will be given low importance

weights, and can be used to optimize the function for other tasks, affecting the function

over other regions of the input space.

4.2 Learning a new task

When a new task Tn needs to be learned, we have in addition to the new task loss

Ln(θ), a regularizer that penalizes changes to parameters that are deemed important for

previous tasks:

4 We square the ℓ2 norm as it simplifies the math and the link with the Hebbian method, see

section 4.3.

Memory Aware Synapses: Learning what (not) to forget 7

L(θ) = Ln(θ) + λ
∑

i,j

Ωij(θij − θ∗ij)
2 (3)

with λ a hyperparameter for the regularizer and θ∗ij the “old” network parameters (as

determined by the optimization for the previous task in the sequence, Tn−1). As such

we allow the new task to change parameters that are not important for the previous task

(low Ωij). The important parameters (high Ωij) can also be reused, via model sharing,

but with a penalty when changing them.

Finally, the importance matrix Ω is to be updated after training a new task, by accu-

mulating over the previously computed Ω. Since we don’t use the loss function, Ω can

be computed on any available data considered most representative for test conditions,

be it on the last training epoch, during the validation phase or at test time. In the exper-

imental section 5, we show how this allows our method to adapt and specialize to any

set, be it from the training or from the test.

4.3 Connection to Hebbian learning

F
2

F
1

F
3

F

Fig. 3: Gradients flow for computing

the importance weight. Local consid-

ers the gradients of each layer indepen-

dently.

In this section, we propose a local version of our

method, by applying it to a single layer of the net-

work rather than to the network as a whole. Next,

we show an interesting connection between this

local version and Hebbian learning [10].

A local version of our method. Instead of con-

sidering the function F that is learned by the net-

work as a whole, we decompose it in a sequence

of functions Fl each corresponding to one layer of

the network, i.e., F (x) = FL(FL−1(...(F1(x)))),
with L the total number of layers. By locally preserving the output of each layer given

its input, we can preserve the global function F . This is further illustrated in Figure 3.

Note how “local” and “global” in this context relate to the number of layers over which

the gradients are computed.

We use yki to denote the activation of neuron ni for a given input xk. Analogous to

the procedure followed previously, we consider the squared ℓ2 norm of each layer after

the activation function. An infinitesimal change δl = {δij} in the parameters θl = {θij}
of layer l results in a change to the squared ℓ2 norm of the local function Fl for a given

input to that layer yk = {yki } = Fl−1(...(F1(xk))) given by:

ℓ22(Fl(y
k; θl + δl))− ℓ22(Fl(y

k; θl)) ≈
∑

i,j

gij(xk)δij (4)

where gij(xk) =
∂[ℓ2

2
(Fl(y

k;θl))]
∂θij

. In the case of a ReLU activation function, it can be

shown that (see supplemental material):

gij(xk) = 2 ∗ yki ∗ ykj (5)

8 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

Again we consider the accumulation of the gradients evaluated at different data points

{xk} as a measure for the importance of the parameter θij :

Ωij =
1

N

N∑

k=1

gij(xk) = 2 ∗
1

N

N∑

k=1

yki ∗ ykj (6)

Link with Hebbian theory. In neuroscience, Hebbian learning theory [10] provides

an explanation for the phenomenon of synaptic plasticity. It postulates that “cells that

fire together, wire together”: the synapses (connections) between neurons that fire syn-

chronously for a given input are strengthened over time to maintain and possibly im-

prove the corresponding outputs. Here we reconsider this theory from the perspective

of an artificial neural network after it has been trained successfully with backpropa-

gation. Following Hebb’s rule, parameters connecting neurons that often fire together

(high activations for both, i.e. highly correlated outputs) are more important for the

given task than those that fire asynchronously or with low activations. As such, the im-

portance weight Ωij for the parameter θij can be measured purely locally in terms of

the correlation between the neurons’ activations, i.e.

Ωij =
1

N

N∑

k=1

yki ∗ ykj (7)

The similarity with equation 6 is striking. We can conclude that applying Hebb’s rule

to measure the importance of the parameters in a neural network can be seen as a local

variant of our method that considers only one layer at a time instead of the global func-

tion learned by the network. Since only the relative importance weights really matter,

the scale factor 2 can be ignored.

4.4 Discussion

Our global and local methods both have the advantage of computing the importance

of the parameters on any given data point without the need to access the labels or the

condition of being computed while training the model. The global version needs to

compute the gradients of the output function while the local variant (Hebbian based) can

be computed locally by multiplying the input with the output of the connecting neurons.

Our proposed method (both the local and global version) resembles an implicit memory

included for each parameter of the network. We, therefore, refer to it as Memory Aware

Synapses. It keeps updating its value based on the activations of the network when

applied to new data points. It can adapt and specialize to a given subset of data points

rather than preserving every functionality in the network. Further, the method can be

added after the network is trained. It can be applied on top of any pretrained network

and compute the importance on any set of data without the need to have the labels. This

is an important criterion that differentiates our work from methods that rely on the loss

function to compute the importance of the parameters.

Memory Aware Synapses: Learning what (not) to forget 9

5 Experiments

We start by comparing our method to different existing LLL methods in the standard se-

quential learning setup of object recognition tasks. We further analyze the behavior and

some design choices of our method. Next, we move to the more challenging problem

of continual learning of <subject, predicate, object> triplets in an embedding space

(section 5.2).

5.1 Object Recognition

We follow the standard setup commonly used in computer vision to evaluate LLL meth-

ods [1, 17, 28]. It consists of a sequence of supervised classification tasks each from a

particular dataset. Note that this assumes having different classification layers for each

task (different “heads”) that remain unshared. Moreover, an oracle is used at test time

to decide on the task (i.e., which classification layer to use).

Compared Methods. - Finetuning (FineTune). After learning the first task and when

receiving a new task to learn, the parameters of the network are finetuned on the new

task data. This baseline is expected to suffer from forgetting the old tasks while being

advantageous for the new task.

- Learning without Forgetting [17] (LwF). Given a new task data, the method records

the probabilities obtained from the previous tasks heads and uses them as targets when

learning a new task in a surrogate loss function. To further control the forgetting, the

method relies on first training the new task head while freezing the shared parameters

as a warmup phase and then training all the parameters until convergence.

- Encoder Based Lifelong Learning [28] (EBLL) builds on LwF and learns a shallow

encoder on the features of each task. A penalty on the changes to the encoded features

accompanied with the distillation loss is applied to reduce the forgetting of the previous

tasks. Similar to LwF, a warmup phase is used before the actual training phase.

- Incremental Moment Matching [16] (IMM). A new task is learned with an L2 penalty

equally applied to the changes to the shared parameters. At the end of the sequence, the

obtained models are merged through a first or second moment matching. In our exper-

iments, mean IMM gives better results on the two tasks experiments while mode IMM

wins on the longer sequence. Thus, we report the best alternative in each experiment.

- Elastic Weight Consolidation [12] (EWC). It is the first work that suggests regularizing

the network parameters while learning a new task using as importance measure the di-

agonal of the Fisher information matrix. EWC uses individual penalty for each previous

task, however, to make it computationally feasible we apply a single penalty as pointed

out by [11]. Hence, we use a running sum of the Fishers in the 8 tasks sequence.

- Synaptic Intelligence [39] (SI). This method shows state-of-the-art performance and

comes closest to our approach. It estimates the importance weights in an online manner

while training for a new task. Similar to EWC and our method changes to parameters

important for previous tasks are penalized during training of later tasks.

- Memory Aware Synapses (MAS). Unless stated otherwise, we use the global version

of our method and with the importance weights estimated only on training data. We use

a regularization parameter λ of 1; note that no tuning of λ was performed as we assume

no access to previous task data.

10 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

Method Birds → Scenes Scenes → Birds Flower → Birds Flower → Scenes

FineTune 45.20 (-8.0) 57.8 49.7 (-9.3) 52.8 64.87 (-13.2) 53.8 70.17 (-7.9) 57.31

LwF [17] 51.65 (-2.0) 55.59 55.89 (-3.1) 49.46 73.97 (-4.1) 53.64 76.20 (-1.9) 58.05

EBLL [28] 52.79 (-0.8) 55.67 56.34 (-2.7) 49.41 75.45 (-2.6) 50.51 76.20 (-1.9) 58.35

IMM [16] 51.51 (-2.1) 52.62 54.76 (-4.2) 52.20 75.68 (-2.4) 48.32 76.28 (-1.8) 55.64

EWC [12] 52.19 (-1.4) 55.74 58.28 (-0.8) 49.65 76.46 (-1.6) 50.7 77.0 (-1.1) 57.53

SI [39] 52.64 (-1.0) 55.89 57.46 (-1.5) 49.70 75.19 (-2.9) 51.20 76.61 (-1.5) 57.53

MAS (ours) 53.24 (-0.4) 55.0 57.61 (-1.4) 49.62 77.33 (-0.7) 50.39 77.24 (-0.8) 57.38

Table 2: Classification accuracy (%), drop in first task (%) for various sequences of 2 tasks using

the object recognition setup.

Experimental setup. We use the AlexNet [15] architecture pretrained on Imagenet [32]

from [14]5. All the training of the different tasks have been done with stochastic gra-

dient descent for 100 epochs and a batch size of 200 using the same learning rate as

in [1]. Performance is measured in terms of classification accuracy.

Two tasks experiments. We first consider sequences of two tasks based on three datasets:

MIT Scenes [27] for indoor scene classification (5,360 samples), Caltech-UCSD Birds [38]

for fine-grained bird classification (5,994 samples), and Oxford Flowers [23] for fine-

grained flower classification (2,040 samples). We consider: Scene → Birds, Birds→
Scenes, Flower→Scenes and Flower→ Birds, as used previously in [1, 17, 28]. We

didn’t consider Imagenet as a task in the sequence as this would require retraining

the network from scratch to get the importance weights for SI. As shown in Table 2,

FineTune clearly suffers from catastrophic forgetting with a drop in performance

from 8% to 13%. All the considered methods manage to reduce the forgetting over

fine-tuning significantly while having performance close to fine-tuning on the new task.

On average, our method method achieves the lowest forgetting rates (around 1%) while

performance on the new task is almost similar (0− 3% lower).

Local vs. global MAS on training/test data. Next we analyze the performance of our

method when preserving the global function learned by the network after each task

(MAS) and its local Hebbian-inspired variant described in section 4.3 (l-MAS). We also

evaluate our methods, MAS and l-MAS, when using unlabeled test data and/or labeled

training data. Table 3 shows, independent from the set used for computing the impor-

tance of the weights, for both l-MAS and MAS the preservation of the previous task and

the performance on the current task are quite similar. This illustrates our method ability

to estimate the parameters importance of a given task given any set of points, without

the need for labeled data. Further, computing the gradients locally at each layer for

l-MAS allows for faster computations but less accurate estimations. As such, l-MAS

shows an average forgetting of 3% compared to 1% by MAS.

ℓ22 vs. vector output. We explained in section 4 that considering the gradients of the

learned function to estimate the parameters importance would require as many back-

ward passes as the length of the output vector. To avoid this complexity, we suggest

using the square of the ℓ2 norm of the function to get a scalar output. We run two

experiments, Flower→Scenes and Flower→ Birds once with computing the gradients

with respect to the vector output and once with respect to the ℓ22 norm. We observe no

5 We use the pretrained model available in Pytorch. Note that it differs slightly from other im-

plementations used e.g. in [17].

Memory Aware Synapses: Learning what (not) to forget 11

Method Ωij computed. on Birds → Scenes Scenes → Birds Flower → Bird Flower → Scenes

MAS Train 53.24 (-0.4) 55.0 57.61 (-1.4) 49.62 77.33 (-0.7) 50.39 77.24 (-0.8) 57.38

MAS Test 53.43 (-0.2) 55.07 57.31 (-1.7) 49.01 77.62 (-0.5) 50.29 77.45 (-0.6) 57.45

MAS Train + Test 53.29 (-0.3) 56.04 57.83 (-1.2) 49.56 77.52 (-0.6) 49.70 77.54 (-0.5) 57.39

l-MAS Train 51.36 (-2.3) 55.67 57.61 (-1.4) 49.86 73.96 (-4.1) 50.5 76.20 (-1.9) 56.68

l-MAS Test 51.62 (-2.0) 53.95 55.74 (-3.3) 50.43 74.48 (-3.6) 50.32 76.56 (-1.5) 57.83

l-MAS Train + Test 52.15 (-1.5) 54.40 56.79 (-2.2) 48.92 73.73 (-4.3) 50.5 76.41 (-1.7) 57.91

Table 3: Classification accuracies (%) for the object recognition setup - comparison between

using Train and Test data (unlabeled) to compute the parameter importance Ωij .

Flower Scenes Birds Cars AircraftActionsLetters SVHN avg
0

20

40

60

80

Ac
cu

ra
cy

 %

MAS (52.69)
SI (50.49)
EWC (50.0)
LwF (49.49)
EBLL (50.29)
IMM (46.83)
Finetune (32.67)

(a)

Flower Scenes Birds Cars AircraftActionsLetters SVHN avg

40

30

20

10

0

Ac
cu

ra
cy

 %

MAS (-0.49)
SI (-1.27)
EWC (-3.18)
LwF (-8.47)
EBLL (-7.83)
IMM (-12.13)
Finetune (-26.29)

(b)

Fig. 5: 5a performance on each task, in accuracy, at the end of 8 tasks object recognition se-

quence. 5b drop in each task relative to the performance achieved after training each task.

significant difference on forgetting over 3 random trials where we get a mean, over 6

numbers, of 0.51% ± 0.18 for the drop on the first task in the vector output case com-

pared to 0.50% ± 0.19 for the ℓ22 norm case. No significant difference is observed on

the second task either. As such, using ℓ22 is n times faster (where n is the length of the

output vector) without loss in performance.

Longer Sequence

Flower Scenes Birds Cars Aircraft Actions Letters SVHN
0

500

1000

1500

2000

2500

3000

3500

To
ta

l M
em

or
y

Re
qu

ire
m

en
t (

M
b)

Total Memory Requirement (Mb)

MAS
SI
EWC
LwF
EBLL
IMM
Finetune

Fig. 4: Overall memory requirement

for each method at each step of the se-

quence.

While the two tasks setup gives a detailed look at

the average expected forgetting when learning a

new task, it remains easy. Thus, we next consider

a sequence of 8 tasks.

To do so, we add five more datasets: Stanford

Cars [13] for fine-grained car classification;

FGVC-Aircraft [19] for fine-grained aircraft

classification; VOC Actions, the human ac-

tion classification subset of the VOC challenge

2012 [5]; Letters, the Chars74K dataset [3]

for character recognition in natural images; and

the Google Street View House Numbers SVHN

dataset [22] for digit recognition.

Those datasets were also used in [1]. We run the different methods on the following

sequence: Flower→Scenes→Birds→Cars→Aircraft→Actions→Letters→SVHN.

While Figure 5a shows the performance on each task at the end of the sequence, 5b

shows the observed forgetting on each task at the end of the sequence (relative to the

12 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

performance right after training that task). The differences between the compared meth-

ods become more outspoken. Finetuning suffers from a severe forgetting on the

previous tasks while being advantageous for the last task, as expected. LwF [17] suffers

from a buildup of errors when facing a long sequence while EBLL [28] reduces slightly

this effect. IMM [16] merges the models at the end of the sequence and the drop in per-

formance differs between tasks. More importantly, the method performance on the last

task is highly affected by the moment matching. SI [39] followed by EWC [12] has the

least forgetting among our methods competitors. MAS, our method, shows a minimal or

no forgetting on the different tasks in the sequence with an average forgetting of 0.49%.

It is worth noting that our method’s absolute performance on average including the last

task is 2% better than SI which indicates our method ability to accurately estimate

the importance weights and the new tasks to adjust accordingly. Apart from evaluat-

ing forgetting, we analyze the memory requirements of each of the compared methods.

Figure 4 illustrates the memory usage of each method at each learning step in the se-

quence. After Finetune that doesn’t treat forgetting, our method has the least amount

of memory consumption. Note that IMM grows linearly in storage, but at inference time

it only uses the obtained model. More details on memory requirements and absolute

performances, in numbers, achieved by each method can be found in the supplemental

material.

Sensitivity to the hyper parameter. Our method needs one extra hyper parameter, λ,

that weights the penalty on the parameters changes as shown in Eq 3.

0.0 0.5 1.0 1.5
89

90

91

92

93

94

95

96

97

av
er

ag
e

ac
cu

ra
cy

%

MAS
Finetune

0.0 0.5 1.0 1.5
0

2

4

6

8

10

av
er

ag
e

fo
rg

et
tin

g%

MAS
Finetune

Fig. 6: avg. performance, left, and

avg. forgetting, right, on permuted

mnist sequence..

λ is a trade-off between the allowed forgetting

and the new task loss. We set λ to the largest value

that allows an acceptable performance on the new

task. For MAS, we used λ = 1 in all object recog-

nition experiments while for SI[39] and EWC[12]

we had to vary λ. Figure 6 shows the effect of λ

on the avg. performance and the avg. forgetting in

a sequence of 5 permuted MNIST tasks with a 2

layer perceptron (512 units). We see the sensitiv-

ity around λ = 1 is very low with low forgetting,

although further improvements could be achieved.

Adaptation Test. As we have previously ex-

plained, MAS has the ability to adapt the impor-

tance weights to a specific subset that has been

encountered at test time in an unsupervised and online manner. To test this claim, we

have selected one class from the Flower dataset, Krishna Kamal flower. We learn

the 8 tasks sequence as above while assuming Krishna Kamal as the only encoun-

tered class. Hence, importance weights are computed on that subset only. At the end of

the sequence, we observe a minimal forgetting on that subset of 2% compared to 8%
forgetting on the Flower dataset as a whole. We also observe higher accuracies on

later tasks as only changes to important parameters for that class are penalized, leaving

more free capacity for remaining tasks (e.g. accuracy of 84% on the last task, instead

of 69% without adaptation). We repeat the experiment with two other classes and ob-

Memory Aware Synapses: Learning what (not) to forget 13

tain similar results. This clearly indicates our method ability to adapt to user specific

settings and to learn what (not) to forget.

5.2 Facts Learning

Next, we move to a more challenging setup where all the layers of the network are

shared, including the last layer. Instead of learning a classifier, we learn an embedding

space. For this setup, we pick the problem of Fact Learning from natural images [4].

For example, a fact could be “person eating pizza”. We design different experimental

settings to show the ability of our method to learn what (not) to forget.

Experimental setup. We use the 6DS mid scale dataset presented in [4]. It consists of

28, 624 images, divided equally in training and test samples belonging to 186 unique

facts. Facts are structured into 3 units: Subject (S), Object (O) and Predicate (P). We

use a CNN model based on the VGG-16 architecture [36] pretrained on ImageNet. The

last fully connected layer forks in three final layers enabling the model to have three

separated and structured outputs for Subject, Predicate and Object as in [4]. The loss

minimizes the pairwise distance between the visual and the language embedding. For

the language embedding, the Word2vec [21] representation of the fact units is used. To

study fact learning from a lifelong perspective, we divided the dataset into tasks belong-

ing to different groups of facts. SGD optimizer is used with a mini-batch of size 35 for

300 epochs and we use a λ = 5 for our method. For evaluation, we report the fact to

image retrieval scenario. We follow the evaluation protocol proposed in [4] and report

the mean average precision (MAP). For each task, we consider retrieving the images

belonging to facts from this task only. We also report the mean average precision on the

whole dataset which differs from the average of the performance achieved on each task.

More details can be found in the supplemental materials. We focus on the comparison

between the local l-MAS and global MAS variants of our method and SI [39], the best

performing method among the different competitors as shown in Figure 5a.

Method evaluated on

Method Split T1 T2 T3 T4 all

Finetune 1 0.19 0.19 0.28 0.71 0.18

SI[39] 1 0.36 0.32 0.38 0.68 0.25

MAS (ours) 1 0.42 0.37 0.41 0.65 0.29

Finetune 2 0.20 0.27 0.18 0.66 0.18

SI[39] 2 0.37 0.39 0.38 0.46 0.24

MAS (ours) 2 0.42 0.42 0.46 0.65 0.28

Finetune 3 0.21 0.25 0.24 0.46 0.14

SI [39] 3 0.30 0.31 0.36 0.61 0.24

MAS (ours) 3 0.30 0.36 0.38 0.66 0.27

Table 4: MAP for fact learning on the 4 tasks random

split, from the 6DS dataset, at the end of the sequence.

T1 T2 T3 T4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
or

ts
 su

bs
et

 M
AP

MAS
Finetune
SI
Joint Training

Fig. 7: MAP on the sport subset of

the 6DS dataset after each task in a

4 tasks sequence. MAS managed to

learn that the sport subset is impor-

tant to preserve and prevents signifi-

cantly the forgetting on this subset.

Four tasks experiments We consider a sequence of 4 tasks obtained from randomly

14 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

splitting the facts of the same dataset into 4 groups. Table 4 presents the achieved per-

formance on each set of the 4 tasks at the end of the learned sequence based on 3

different random splits. Similar to previous experiments, Finetune is only advanta-

geous on the last task while drastically suffering on the previous tasks. However, here,

our method differentiates itself clearly, showing 6% better MAP on the first two tasks

compared to SI. Overall, MAS achieves a MAP of 0.29 compared to 0.25 by SI and

only 0.18 by Finetune. When MAS importance weights are computed on both train-

ing and test data, a further improvement is achieved with 0.30 overall performance. This

highlights our method ability to benefit from extra unlabeled data to further enhance the

importance estimation.

Adaptation Test. Finally we want to test the ability of our method in learning not to

forget a specific subset of a task. When learning a new task, we care about the perfor-

mance on that specific set more than the rest. For that reason, we clustered the dataset

into 4 disjoint groups of facts, representing 4 tasks, and then selected a specialized sub-

set of T1, namely 7 facts of person playing sports. More details on the split can be found

in the supplemental material. We run our method with the importance parameters com-

puted only over the examples from this set along the 4 tasks sequence. Figure 7 shows

the achieved performance on this sport subset by each method at each step of the learn-

ing sequence. Joint Training (black dashed) is shown as reference. It violates the LLL

setting as it trains on all data jointly. Note that SI can only learn importance weights

during training, and therefore cannot adapt to a particular subset. Our MAS (pink) suc-

ceeds to learn that this set is important to preserve and achieves a performance of 0.50

at the end of the sequence, while the performance of finetuning and SI on this set was

close to 0.20.

6 Conclusion

In this paper, we argued that, given a limited model capacity and unlimited evolving
tasks, it is not possible to preserve all the previous knowledge. Instead, agents should
learn what (not) to forget. Forgetting should relate to the rate at which a specific piece
of knowledge is used. This is similar to how biological systems are learning. In the
absence of error signals, synapses connecting biological neurons strengthen or weaken
based on the concurrence of the connected neurons activations. In this work and inspired
by the synaptic plasticity, we proposed a method that is able to learn the importance of
network parameters from the input data that the system is active on, in an unsupervised
manner. We showed that a local variant of our method can be seen as an application of
Hebb’s rule in learning the importance of parameters. We first tested our method on a
sequence of object recognition problems in a traditional LLL setting. We then moved to
a more challenging test case where we learn facts from images in a continuous manner.
We showed i) the ability of our method to better learn the importance of the parameters
using training data, test data or both; ii) state-of-the-art performance on all the designed
experiments and iii) the ability of our method to adapt the importance of the parameters
towards a frequent set of data. We believe that this is a step forward in developing
systems that can always learn and adapt in a flexible manner.
Acknowledgment: The first author’s PhD is funded by an FWO scholarship.

Memory Aware Synapses: Learning what (not) to forget 15

References

1. Aljundi, R., Chakravarty, P., Tuytelaars, T.: Expert gate: Lifelong learning with a network of

experts. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

2. Andrychowicz, M., Denil, M., Gómez, S., Hoffman, M.W., Pfau, D., Schaul, T., de Freitas,

N.: Learning to learn by gradient descent by gradient descent. In: Lee, D.D., Sugiyama,

M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing

Systems 29, pp. 3981–3989. Curran Associates, Inc. (2016)

3. de Campos, T.E., Babu, B.R., Varma, M.: Character recognition in natural images. In: Pro-

ceedings of the International Conference on Computer Vision Theory and Applications, Lis-

bon, Portugal (February 2009)

4. Elhoseiny, M., Cohen, S., Chang, W., Price, B.L., Elgammal, A.M.: Sherlock: Scalable fact

learning in images. In: AAAI. pp. 4016–4024 (2017)

5. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PAS-

CAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html

6. Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A.A., Pritzel, A., Wierstra,

D.: Pathnet: Evolution channels gradient descent in super neural networks. arXiv preprint

arXiv:1701.08734 (2017)

7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep

networks. In: Proceedings of the International Conference on Machine Learning (ICML)

(2017)

8. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in cognitive sci-

ences 3(4), 128–135 (1999)

9. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation

of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211

(2013)

10. Hebb, D.: The organization of behavior. 1949. New York Wiely (2002)

11. Huszár, F.: Note on the quadratic penalties in elastic weight consolidation. Proceedings

of the National Academy of Sciences (2018). https://doi.org/10.1073/pnas.1717042115,

http://www.pnas.org/content/early/2018/02/16/1717042115

12. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan,

K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming catastrophic forgetting

in neural networks. arXiv preprint arXiv:1612.00796 (2016)

13. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-grained catego-

rization. In: Proceedings of the IEEE International Conference on Computer Vision Work-

shops. pp. 554–561 (2013)

14. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. arXiv

preprint arXiv:1404.5997 (2014)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Ad-

vances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates,

Inc. (2012)

16. Lee, S.W., Kim, J.H., Ha, J.W., Zhang, B.T.: Overcoming catastrophic forgetting by incre-

mental moment matching. arXiv preprint arXiv:1703.08475 (2017)

17. Li, Z., Hoiem, D.: Learning without forgetting. In: European Conference on Computer Vi-

sion. pp. 614–629. Springer (2016)

18. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances

in Neural Information Processing Systems. pp. 6470–6479 (2017)

16 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach and T. Tuytelaars

19. Maji, S., Kannala, J., Rahtu, E., Blaschko, M., Vedaldi, A.: Fine-grained visual classification

of aircraft. Tech. rep. (2013)

20. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: The se-

quential learning problem. Psychology of learning and motivation 24, 109–165 (1989)

21. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781 (2013)

22. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural

images with unsupervised feature learning (2011)

23. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of

classes. In: Proceedings of the Indian Conference on Computer Vision, Graphics and Im-

age Processing (Dec 2008)

24. Pentina, A., Lampert, C.H.: Lifelong learning with non-i.i.d. tasks. In: Cortes, C., Lawrence,

N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Process-

ing Systems 28, pp. 1540–1548 (2015)

25. Pentina, A., Lampert, C.H.: Lifelong learning with non-iid tasks. In: Advances in Neural

Information Processing Systems. pp. 1540–1548 (2015)

26. Quadrianto, N., Petterson, J., Smola, A.J.: Distribution matching for transduction. In: Ad-

vances in Neural Information Processing Systems. pp. 1500–1508 (2009)

27. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). pp. 413–420. IEEE (2009)

28. Rannen, A., Aljundi, R., Blaschko, M.B., Tuytelaars, T.: Encoder based lifelong learning.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.

1320–1328 (2017)

29. Rebuffi, S.A., Kolesnikov, A., Lampert, C.H.: icarl: Incremental classifier and representation

learning. arXiv preprint arXiv:1611.07725 (2016)

30. Ring, M.B.: Child: A first step towards continual learning. Machine Learning 28(1), 77–104

(1997)

31. Royer, A., Lampert, C.H.: Classifier adaptation at prediction time. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. pp. 1401–1409 (2015)

32. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,

Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recogni-

tion Challenge. International Journal of Computer Vision (IJCV) 115(3), 211–252 (2015).

https://doi.org/10.1007/s11263-015-0816-y

33. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K.,

Pascanu, R., Hadsell, R.: Progressive neural networks. arXiv preprint arXiv:1606.04671

(2016)

34. Shmelkov, K., Schmid, C., Alahari, K.: Incremental learning of object detectors without

catastrophic forgetting. In: The IEEE International Conference on Computer Vision (ICCV)

(2017)

35. Silver, D.L., Yang, Q., Li, L.: Lifelong machine learning systems: Beyond learning al-

gorithms. In: AAAI Spring Symposium: Lifelong Machine Learning. pp. 49–55. Citeseer

(2013)

36. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-

nition. arXiv preprint arXiv:1409.1556 (2014)

37. Thrun, S., Mitchell, T.M.: Lifelong robot learning. Robotics and autonomous systems 15(1-

2), 25–46 (1995)

38. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-

UCSD Birds 200. Tech. Rep. CNS-TR-2010-001, California Institute of Technology (2010)

39. Zenke, F., Poole, B., Ganguli, S.: Improved multitask learning through synaptic intelligence.

In: Proceedings of the International Conference on Machine Learning (ICML) (2017)

