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Abstract. View-graph selection is a crucial step for accurate and effi-
cient large-scale structure from motion (sfm). Most sfm methods remove
undesirable images and pairs using several fixed heuristic criteria, and
propose tailor-made solutions to achieve specific reconstruction objec-
tives such as efficiency, accuracy, or disambiguation. In contrast to these
disparate solutions, we propose an optimization based formulation that
can be used to achieve these different reconstruction objectives with task-
specific cost modeling and construct a very efficient network-flow based
formulation for its approximate solution. The abstraction brought on
by this selection mechanism separates the challenges specific to datasets
and reconstruction objectives from the standard sfm pipeline and im-
proves its generalization. This paper mainly focuses on application of
this framework with standard sfm pipeline for accurate and ghost-free
reconstructions of highly ambiguous datasets. To model selection costs
for this task, we introduce new disambiguation priors based on local ge-
ometry. We further demonstrate versatility of the method by using it
for the general objective of accurate and efficient reconstruction of large-
scale Internet datasets using costs based on well-known sfm priors.

Keywords: View-graph · Structure from Motion · Disambiguation

1 Introduction

View-graph is a crucial input structure for large-scale structure from motion
(sfm). Nodes in this graph represent images (also called cameras/views) and
edges represent relative motion or epipolar geometries (egs) between the nodes.
View-graphs help in ‘organizing’ unordered image collections useful to, (i) select
a core set of images for reconstruction, and (ii) identify noisy egs that might
degrade the quality of reconstruction. State-of-the-art sfm methods like incre-
mental [22, 32, 17], hierarchical [3, 7, 28, 18], or global [21, 2, 14, 13, 1], all rely on
a view-graph based initial pruning step for efficient and accurate reconstruction.

Large community photo collections often display point-of-view bias, as some
viewing angles are more popular than others. Using the full view-graph for sfm is
often computationally expensive and unnecessary due to high redundancy. Also,
for closely clustered images, narrow baselines increase the uncertainty of trian-
gulation, causing large re-projection errors. While isolated erroneous egs can
be overcome by robust averaging (global sfm) and repeated bundle adjustment
(incremental sfm), large number of incorrect egs can degrade reconstruction.
Hence, it is crucial to select ‘good’ images and more importantly ‘good’ pairs for
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Fig. 1: Outline of the proposed selection framework. With appropriately modeled costs,
the framework can select view-graphs that meet desired reconstruction objectives.

accuracy. Standard sfm methods apply fixed heuristics such as inliers, baselines,
homography, loop closure for conservative selection/pruning of images and pairs.
While these heuristics work well for a large variety of datasets, they are insuffi-
cient to identify and remove consistent noise that arise in ambiguous scenes.

Ambiguity in pairwise matching arises because man-made structures often
comprise of repetitions (windows, arches), symmetries (circular structures, sim-
ilar facades), and large duplicate elements (minarets, domes). While standard
sfm pipelines are robust to handle a large number of inaccurate egs in isolation,
for scenes with high ambiguity, such wrong egs form consistent sets, resulting
in mis-registered cameras, ‘phantom’ structures, or structures incorrectly folded
along symmetry. Previous works propose tailor-made solutions to handle such
scenes with local/global steps for ‘reasoning’ ambiguity [34, 16, 11, 29, 10, 33].
While these methods show good results on challenging datasets, they do not
operate within the framework of standard sfm pipelines. We believe that these
challenges can be addressed under the same umbrella of ‘selecting’ a complete,
consistent and noise-free view-graph for accurate and efficient reconstruction.

The main motivation of our work is to formalize the core problem of view-
graph selection to meet different objectives within a unified framework. We pose
this as an optimization problem with image and pair selection costs and propose
a novel network-flow based approximation for its efficient solution. This abstrac-
tion allows different objectives to be achieved by plugging in task-specific costs
while keeping the overall selection and reconstruction framework the same. Fig-
ure 1 shows an outline of this framework. We mainly focus on the application of
this framework for accurate and ghost-free reconstructions of highly ambiguous
datasets and show how pairwise selection cost can be modeled using local pri-
ors, and also introduce a new context-based prior. Additionally, we also show its
usefulness for accurate and efficient reconstruction of general large-scale Internet
landmarks datasets with costs modeled using commonly used local heuristics.

To the best of our knowledge, this is the first attempt at systematizing view-
graph selection. The proposed framework brings greater flexibility and general-
ization to standard sfm pipelines and its application is not limited to the speci-
fied use-cases. A unified framework also lands optimal view-graph selection as a
learning problem if and when task-specific ground-truth data becomes available.
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2 Related Work

In sfm literature, view-graph selection is not dealt with in a unified sense, instead,
specific methods are designed to meet specific selection objectives. For efficiency
and completeness, incremental/hierarchical sfm methods compute spanning sub-
graphs [24, 15, 8, 28], with different criteria and selection strategies. For global
methods, optimality of a subgraph is often related to consistency and robustness
goals [13, 35, 5, 27, 14, 31]. Our framework is not a one-size-fits-all replacement
to specialized methods, but provides a mechanism to express different objec-
tives using task-specific image and pairwise selection costs. Here, we revisit prior
works related to the general objective of accuracy and the specific objective of
disambiguation, and discuss their relevance to our work.

Implicit view-graph filtering in SfM methods Pruning undesirable images/pairs
from input view-graph is implicit to both incremental and global sfm methods
and is often done using thresholds on various criteria. Accuracy of incremental
sfm hinges on seed pairwise reconstruction and next best view selection. Wide
baseline seed pair selection is ensured using criteria based on epipolar inliers
(that don’t fit a homography) [22, 23], or inlier ratios (to detect pairwise motion
as planar, rotational, or general) [17]. For next best view selection, triangulation
angle, inliers, or correspondence distribution are used as criteria [22, 17].

Global sfm methods first use relative rotations to estimate global rotations
followed by global translations estimation [21, 2, 13, 1, 30, 27]. In [2], to reduce
the state space of camera parameters for MRF based estimation, relative twist
and unusual aspect ratios are used as view filtering criteria. Methods that use
lie-algebraic averaging of relative rotations [4, 5, 35, 14, 13, 1, 27] often discard
images with unknown calibration and handle outlier egs with loop consistency
checks [35, 14, 13] and robust cost functions.

Many of these heuristics are easy to incorporate as image and pairwise se-
lection costs into our framework. Other heuristics that employ global reasoning
(such as loop consistency) can be potentially remodeled as a pairwise heuristic.

SfM methods for Disambiguation Initial methods for disambiguation focused on
inferring missing correspondences [34] and using it as a prior with global ob-
jectives of camera pose inference [16] or consistent view-graph expansion [11].
Other methods consist of social network principles based track refinement [29],
geometry-aware feature matching [19], triplet-consistent graph expansion [20],
and geodesic manifold based ambiguity detection and correction [33]. A post-
reconstruction approach to disambiguation uses back-projected 3D points to
identify conflicting observations [9, 10]. In contrast to these specialized algo-
rithms, we use our selection framework with costs modeled as a combination of
disambiguation priors. We also propose a new context based pairwise selection
prior that is based on both, missing correspondences and conflicting observations
and unlike [9], it can be computed pre-reconstruction. Our solution is more gen-
eral and very efficient as compared to prior methods and still recovers correct
structures for a variety of ambiguous datasets.
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3 Posing view-graph selection as optimization

Let the input view-graph be G = (V, E), where the set of vertices (nodes) V
represents the images and the set of edges E represents the pairwise epipolar
geometries (EGs). The goal is to select a subset of nodes V ′ and a subset of
edges E ′ (a subgraph G′ = (V ′, E ′)) that meets a desired objective. We denote
the indicator variables for image selection as δi and pair selection as δij . Here,
each δi, δij correspond to the image vertex vi ∈ V and the pairwise edge eij ∈ E .
Intuitively, this problem can be represented as a minimization of the form,

argmin f(δ) =
∑

i

qiδi +
∑

i

∑

j

qijδij (1)

subject to
∑

δi ≤ N,
∑

δij ≤ M (2)

δij ≤ δi, δij ≤ δj (3)

where ∀i ∈ V, ∀(i, j) ∈ E , δi, δij ∈ {0, 1},

N < |V|, M < |E|

Activation of indicator variables δi and δij imply selection of corresponding
image vi and pair eij . qi is the cost of selecting the view vi and qij is the cost of
selecting the edge eij and these costs assumed to be negative in the minimization
sense. N and M indicate thresholds on maximum number of selected images and
pairs and ensure that the subgraph selection is non-trivial (eqn. 2). Selection of
image pair (i, j) requires that both images i and j constituting the pair also
must be selected (eqn. 3).

Modeling these costs appropriately can express different objectives for view-
graph selection. In this paper, we discuss cost modeling for accurate and ghost-
free reconstructions using a few relevant priors. However, this can be used to
achieve other objectives using a variety of other priors known in the literature
or even learned costs.

This minimization problem can be formulated as a binary integer linear pro-
gram (bilp), which is np-complete. To find an exact optimal solution, stock
solvers for bilp use branch-and-bound like techniques to intelligently iterate
through all possible solutions. However, owing to the np-complete nature of the
problem, it is infeasible to compute the exact optimal solution for many prob-
lems of our interest. In fact, in our experiments, the computation time for a
branch-and-bound based ilp solver was very high even for toy-sized problems.
A standard trick to achieve efficient solutions with some approximation is to
use a linear programming (lp) relaxation with rounding to obtain an integer
solution. However, in preliminary experiments, the solutions obtained using this
approach seemed too inaccurate to be useful. Furthermore, this formulation does
not take into account connectivity of the selected subgraph. To tackle both these
problems, we pose view-graph selection as a minimum cost network-flow (mcnf)
problem (see supplementary material for more discussion) that guarantees us a
binary solution in polynomial time and encourages connectivity in the selected
sub-graph. The proposed mcnf formulation is explained in the next section.
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4 View-graph Selection as MCNF Problem

The network in mcnf problems is a directed graph with at least one source and
one sink nodes. We denote the network as T = (N ,A), where N represents the
set of nodes and A represents the set of directed edges/arcs. Each edge (i, j)
in the network has a cost cij associated to let across one unit of flow, and the
cost incurred by an edge is proportional to the flow (xij) through it. Each edge
also has a lower and an upper bound (lij , uij) on the amount of flow (xij) that
can pass through it, known as capacity constraints (c.c). The source sends a
certain units of flow that the sink node must receive. At all other nodes, flow
must be conserved. Let us denote the total flow as F and the remainder flow at
a node i as bi, then bi = F when i is source, bi = −F when i is sink, and bi = 0
otherwise. These constraints are known as equal flow constraints (e.f.c). The
mcnf problem is about sending the total flow from source to sink at a minimum
cost, without violating the capacity and flow constraints. This minimization with
flow and capacity constraints can be described as,

minimize
∑

(i,j)∈A

cijxij (5)

subject to,
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = bi ∀i ∈ N e.f.c (6)

lij ≤ xij ≤ uij ∀(i, j) ∈ A c.c (7)

Network construction To pose view-graph selection as an mcnf problem, we con-
struct the network as follows. All indicator variables corresponding to image/pair
selection {δi}, {δij} are represented using arcs (i, j) ∈ A in the network, source
and sink nodes are auxiliary. Since view selection variables are represented as
arcs, each vertex i in the view-graph corresponds to two nodes, (2i−1, 2i) in the
network. Each odd node (2i−1) corresponding to the vertex i in the view-graph
is connected to the source node and similarly each even node (2i) is connected to
the sink node. The arcs corresponding to the pairwise selection variables {δij},
join the even node of the lower index image with the odd node of the higher
index image. This choice prevents cycle formation in the network. Summarizing,
the network has |N | = 2|V| + 2 nodes and |A| = |3V| + |E| arcs. These arc
connections are summarized in Figure 2 along with a pictorial example.

Edge Type Connected Nodes Capacity

Source: (0, 2i− 1) ∀i ∈ V, 0 : source [0, F ]
Sink: (2i, |V|+ 1) ∀i ∈ V, |V|+ 1 : sink [0, F ]

Image: (2i− 1, 2i) ∀i ∈ V [0, degree(i)]
Pairwise: (2i, 2j − 1), ∀e(i, j) ∈ E , i < j [0, 1]

Fig. 2: Network construction for a sample view-graph is shown on the left. Image nodes
and selection arcs in are color-coded to match vertices in the view-graph. Pairwise
selection arcs are depicted by black dashed lines. Arc connections and their capacities
are described in the table shown on the right.
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Fig. 3: Effect of to-
tal flow on edge se-
lection : selected edges
increase monotonically
with flow.

Fig. 4: Image pair (A,B) capture a scene with du-
plicate elements. Though duplicate elements in the
images yield many matches, elements in context re-
gions tend to find matches with non-intersecting
sets of images.

Equal flow and capacity constraints At source and sink the sent and received
flow is equal to the total flow. Equal flow constraints require that in and out
flow at every other node remain equal. In our formulation, capacity constraints
- lower and upper bounds on flow through an arc are specified based on the edge
type as mentioned in Figure 2.

To understand the choice of these capacities, consider the vertex v1 in the
depicted view-graph. The arc corresponding to v1’s selection variable δ1 in the
network is a(1, 2). Corresponding to v1’s degree in the view-graph, the node n2 in
the network has three outgoing arcs a(2, 3), a(2, 5), and a(2, 7) for pairwise selec-
tion variables δ12, δ13, and δ14. The flow starting from source node, after passing
through a(1, 2), should plausibly be able to pass through all three outgoing arcs.
Since flow can only be divided in integer units, the minimum capacity of image
selection arc a(1, 2) has to be at least 3 (deg(vi)). Under minimum cost solution,
the flow at any node will continue to take the path of least resistance (cost).
Now, suppose that the cost assigned to a(2, 3) is the least amongst the three
outgoing arcs and its max. capacity is 3 units (or any value 1 < k < deg(vi)).
In this scenario, a(2, 3) being the lowest cost arcs will pull all 3 units of flow
from a(1, 2), starving the other arcs of any flow and preventing the correspond-
ing view-graph edges from ever getting selected. To avoid this, we restrict the
maximum flow through pairwise selection arcs to 1.

Effect of cost normalization and flow on solution In minimization sense, negative
costs provide encouragement for flow to pass through an arc, whereas positive
costs provide discouragement. Suppose, all costs are negative, then total flow F

of 1 unit will select the lowest cost chain in the network (often the longest). As
we increase the value of total flow, more paths get explored and when F = |E| all
images and egs get selected. When costs are both encouraging and discouraging,
many positive cost arcs will act as barriers for the flow. As a result, at some
value of total flow F the selection will (nearly) saturate and may never select
the full view-graph. For the proposed applications, we use only encouraging costs
(−1 ≤ cij ≤ 0), while flow remains the only free parameter.
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Tuning flow parameter To systematically understand the effect of total flow on
image and pair selection, we created synthetic view-graphs with varying number
of vertices, varying degrees of connectivity simulated using Gaussian assumptions
on neighborhood, and randomly assigned (negative) costs (discussed in detail in
the suppl. material). We performed sub-graph selection on ∼100 such synthetic
view-graphs using the proposed mcnf approach for increasing values of total
flow and observed a consistent pattern in selection behavior. Figure 3 shows
the plot for fraction of total edges selected vs. normalized total flow. It can
be seen that for negative costs, the relation between total flow and selected
vertices and edges is logarithmic in nature. This relation is also observed on real-
world (Internet) datasets with well-connected view-graphs (see supplementary
material). Depending on the fraction of total vertices and edges we want to be
selected, the logarithmic dependence allows us to find the desired sub-graph by
a binary search of the flow parameter over the [0, 1] interval with a logarithmic
scale. Such an iterative search is particularly effective in view of the extremely
low computational time of the mcnf algorithm. In fact, the combined processing
time of the the whole search procedure is still an insignificant fraction of the total
time required for SfM, and is thus far from being the computational bottleneck.

Running time A crucial advantage of this formulation is that it can be solved
very efficiently. Constructing the network and solving for mcnf takes less than
a second even for graphs with ∼1000 nodes and ∼100K edges.

5 Applications and Cost Modeling

To show that the proposed framework can address different concerns using task-
specific costs, we tackle two use-cases. We first discuss cost modeling for recon-
struction of highly ambiguous datasets using local disambiguation priors. Later,
we discuss cost modeling for the general use-case of accurate and efficient recon-
struction of large-scale Internet datasets using common sfm priors.

5.1 Cost modeling for ambiguous datasets

We propose that even for highly ambiguous datasets, with conservative selection
of an input view-graph such that it consists of a higher fraction of ‘true’ egs,
correct reconstruction can be recovered without any change in the reconstruction
pipeline. To achieve this, we use three pairwise measures that act as strong priors
for disambiguation and express pair selection cost as a linear combination of these
three priors (with uniform weights). These priors are based on local geometry and
can be easily computed at the time of initial view-graph construction without
significant overhead. Note that ck(eij) denotes the contribution of prior k to
the total cost c for the pair eij , and g denotes a normalization function that
distributes raw prior value to the desired cost range.
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Context Similarity Missing correspondences (matches in a pair, not matching
the third image in a triplet) are a useful prior for disambiguation. However,
by itself, this prior is not very effective for disambiguation and it is commonly
used in an inference framework with other priors or with a global objective
[34, 16, 11]. Track covisibility statistics [29] are also useful for disambiguation,
but it is not straightforward to apply this prior to describe pairwise fitness.
In a post-reconstruction disambiguation approach [10], reconstructed 3D points
are back-projected into image pairs and conflicting observations in unmatched
regions (context) are identified. However, this measure is also not directly useful
as our approach is a pre-process to sfm reconstruction. Motivated by these priors,
we propose a new, context based pairwise prior that is suitable to our framework.

For image pair (Ii, Ij), the sets of all matched features (matched with any
image) are Si, Sj and the sets of features that match between (Ii, Ij) are Mi,
Mj . The difference sets Ui = Si\Mi, Uj = Sj \Mj consist of unique features in Ii
and Ij. Suppose images Ii and Ij are looking at a scene with duplicate instances
of a structure. The features in the match sets Mi, Mj will most likely lie on
the duplicate elements. We consider the unique feature sets Ui, Uj to belong to
the context regions. If two images are truly looking at the same instance, the
context features of both images would have matched similar set of images. On
the other hand, if two images are looking at duplicate instances, the context
features would be distributed over different sets of images (see Figure 4). We
find distribution of features in Ui and Uj over all N images in the collection
based on their matches and make an N dimensional description of the context
space. Context feature of image Ii w.r.t. image Ij can be described as,

wij = [w1
i , w

2
i , . . . , w

N
i ] w

j
i = 0 (8)

wk
i = |{u ∈ Ui | u ↔ u′, u′ ∈ Sk, k 6= j}| (9)

This measure is slightly biased against pairs with very low visual overlap,
however, combined with the other two measures, it works effectively for selection.
We compared the context features of a pair using cosine similarity or hamming
distance (after binarization) and found them to be working similarly. The context
similarity can be defined as, ck(eij) = g(wT

ijwji).

Loop consistency Loop consistency suggests that rotations in an eg triplet when
chained should yield identity [6]. We find all triplets in the view-graph and label
them as consistent or inconsistent. For each eg, we count the total number
of consistent egs it participates in and use this as a measure of its fitness.
Though it is not same as explicitly enforcing loop consistency, it is a convenient
way to incorporate a non-local (pairwise) geometric cue as a pairwise prior.

ck(eij) = g( # consistent triplets on (i,j)
median(# consistent triplets on any(i,j)) ).

Multiple motions We model this prior to disambiguate image pairs capturing
repetitive or duplicate instances of some scene elements. We remove the corre-
spondences that satisfy the estimated eg from the initial set of matches and
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(a) ∆Rθ = 2◦, ∆Cθ = 4◦ (b) ∆Rθ = 2◦, ∆Cθ = 119◦

Fig. 5: Multiple motion detection : for correctly matched pair (a) both motions are in
agreement, while for pair (b) matches due to ambiguity cause large position difference.

estimate the secondary relative pose using the leftover matches. If sufficient in-
liers are found, we decompose the relative pose into rotation and translation. We
estimate the angular difference between primary and secondary rotations (∆Rθ)
and also the angle between the both position vectors (arccos

(

∆CT

ij∆Cij

)

). If the
difference angles are small, the secondary motion is most possibly arising due
to threshold sensitivity and measurement drift, otherwise, these indicate pres-
ence of correspondences on ambiguous structures. Examples of these scenarios
are shown in Figure 5. ck(eij) = g(∆Rθ, arccos

(

∆CT

ij∆Cij

)

). When secondary
motion is detected, the value of this prior is very effective in disambiguating
(except for the instances when camera is purely translating along the direction
of repetition). However, this prior alone is insufficient for disambiguation, as
for many incorrect pairs secondary geometry is not detected. We combine this
prior with the other two priors only for the pairs where secondary geometry is
detected.

5.2 Cost modeling for general datasets

View-graph selection for general datasets is typically done to achieve complete
reconstructions with smaller re-projection errors and shorter run-time. For these
goals, we use simple priors based on graph-connectivity and local geometry that
express common-knowledge selection heuristics and criteria of general sfm meth-
ods in form of image and pairwise selection costs, suitable for our framework.

Image selection priors For the purposes of accurate and complete reconstruction,
we consider three image priors, (i) degree of an image node in the view-graph, (ii)
fraction of an image’s features that participates in tracks, (iii) local clustering
coefficient of an image node in the view-graph. First two measures favor selecting
images with many observations and connections to support longer tracks useful
for accurate triangulation. Since Internet photo collections often suffer from point
of view bias, using only connectivity based priors could lead to selections within
popular components. To compensate for this effect, we include local clustering
coefficient (lcc) of a vertex as an image prior to prefer images that provide
connections across components than within components. Image selection cost is
a linear combination of these priors with uniform weights.
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Pairwise selection priors Fitness of a pair in traditional sfm pipelines is mea-
sured using two common criteria, baseline and number of eg inliers. We use four
pairwise priors, (i) number of inliers, (ii) median triangulation angle of pairwise
reconstructed features, (iii) overlap (area of a convex hull of the matched fea-
tures), and (iv) infinite homography, that are reflective of this selection criteria.
While the usefulness of first three priors is evident, detecting infinite homogra-
phy is useful in discouraging pairs with panoramic motion (rotation around a
fixed center). Despite a high overlap, such pairs are undesirable as they lead to
degenerate or ill-conditioned eg. Simply using homography inliers also rejects
valid egs due to planar regions. We use the fact that calibration normalized
infinite homographies are basically rotations [6]. Hence, HTH should be close to
identity for such pairs and we model this prior as, ||HT

ijHij − I||F.

A more detailed expression of the priors discussed in this section is provided in
supplementary material along with other implementation details such as choice
of thresholds and normalization (g) for different priors.

6 Results and Discussion

We apply our view-graph (henceforth mentioned as vg for brevity) selection
framework for the two use-cases discussed and show results on a variety of
datasets. Implementation details are provided in the supplementary material
along with additional analysis and results. Code can be found at, https://cvit.
iiit.ac.in/research/projects/cvit-projects/viewgraphselection.

6.1 Ambiguous datasets reconstruction

We show successful reconstruction results on 12 highly ambiguous datasets con-
sisting of small-scale lab-style scenes [16], and large-scale urban scenes [10, 20]
with the standard incremental sfm pipeline and vgs selected using our approach.
Details of these datasets and selection statistics are given in Table 1a.

Qualitative comparison Figure 7 shows reconstruction results for small-scale am-
biguous scenes [16]. With selected vgs, we are able to recover true structures
for all datasets. Figure 8 shows reconstruction results for large-scale urban am-
biguous scenes [10, 20]. Our method is able to recover comparable splits to the
method of [10] and successful reconstruction for toh dataset. Our result for anc
dataset is incomplete as compared to [10, 33] (shown in supplementary material).

Ablation of priors To highlight the effectiveness of disambiguation specific pri-
ors, we also reconstruct these datasets for vgs selected using random costs (fails
on all datasets), baseline priors based costs (fails on all but the ‘books’ dataset),
and combination of all costs based on priors for general reconstruction and dis-
ambiguation (fails on ‘cup’ and ‘cereal’ datasets). Among the disambiguation
priors, context similarity based prior is the most effective standalone. To further

https://cvit.iiit.ac.in/research/projects/cvit-projects/viewgraphselection
https://cvit.iiit.ac.in/research/projects/cvit-projects/viewgraphselection
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Sr. Dataset |V| |E| F |Vs| |Es| tsel

1 Cereal 25 228 4 25 49 0.0137
2 Cup 64 1217 16 64 265 0.0268
3 Oats 24 220 4 24 49 0.0137
4 Street 19 95 2 19 26 0.0089
5 Books 21 161 4 21 41 0.0135
6 Desk 31 261 4 31 64 0.0138

7 ANC 448 5037 512 416 2497 0.1288
8 ADT 381 3627 512 340 2148 0.0940
9 RDC 271 3378 128 258 1498 0.0717
10 BG 161 2003 128 129 848 0.0522
11 CSB 277 5191 128 233 1380 0.0743

12 ToH 341 50332 32 341 1990 0.2372

(a) Datasets and selection details

1 2 3 4 5 6

O
th
er

M
et
h
o
d
s Roberts et al. [16]∗ ✗ ✗ ✗ ✗ ✗ ✗

Jiang et al. [11] ✓ ✗ ✓ ✓ ✓ ✓

Wilson and Snavely [29] ✗ ✗ ✗ ✓ ✗ ✗

Heinly et al. [10] ✓ – – – – ✓

Shen et al. [20] – ✓ ✓ ✓ – ✗

Yan et al. [33] – ✓ – – ✓ –

O
u
rs

w
it
h
d
iff
.
p
ri
o
rs

Baseline ✗ ✗ ✗ ✗ ✓ ✗

General+Disamb. ✗ ✗ ✓ ✓ ✓ ✓

Context ✓ ✓ ✓ ✓ ✓ ✓

Loop ✗ ✓ ✓ ✓ ✓ ✓

MM ✗ ✗ ✗ ✗ ✓ ✓

Context+Loop ✓ ✓ ✓ ✓ ✓ ✓

Context+MM ✓ ✓ ✓ ✓ ✓ ✓

Loop+MM ✓ ✓ ✓ ✓ ✓ ✓

Context+Loop+MM ✓ ✓ ✓ ✓ ✓ ✓

(b) Comparison and Ablation

Table 1: (a) shows details of ambiguous datasets and selection statistics. tsel shows
the combined running time for all search iterations of mcnf solver. Abbreviated labels
correspond to : anc – Alexander Nevsky Cathedral, adt – Arc de Triomphe, bg –
Brandenburg Gate, csb – Church on Splilled Blood, rdc – Radcliff Camera, toh –
Temple of Heaven; (b) top rows show results reported by other methods on small-scale
ambiguous datasets (1 to 6) where − implies results not reported, ∗[16] succeeds on
these sets only with time-stamp info. Bottom rows show results of our selection method
with various prior based costs for given flow.

evaluate the effectiveness of the disambiguation priors and their combinations,
we study the range of flow values for which the given prior based selection re-
sults in successful reconstruction (see Figure 6). We observed Context+Loop
prior combination to be the most robust in this ablation study but empirically
observed benefits of using multiple motions based prior on larger datasets. Qual-
itative results for the ablation study are provided in supplementary material.

Runtime comparison Method proposed in [10] operates post-reconstruction to
split incorrectly merged model parts and takes ∼16 to ∼85 minutes to process for
these datasets. Our framework pre-selects the vg and reconstruction is performed
without any additional processing. Recently proposed method of [33] also tackles
the disambiguation problem as a pre-process to sfm but their method takes 2–
11 minutes on these datasets. Our subgraph selection framework is extremely
efficient taking 1–2 seconds for constructing and solving the mcnf problem for
these and even larger datasets. Moreover, our framework is intended to be general
purpose with disambiguation as one of the specific objectives.

Criteria for flow parameter search As can be seen in Table 1a, for the lab-style
datasets, the full vg is generally quite dense, with an average vertex degree (edges
per vertex) ∼32% of total vertices. However, due to the very high ambiguity in
the scenes, large number of pairs are expected to be outliers. Therefore, it makes
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Fig. 6: Range of flow values (y−axis on log scale) for which given prior combinations
(x−axis) lead to correct reconstructions. Priors that lead to correct reconstruction for
higher values of flow are better at disambiguation and more robust, since this behavior
implies selection of smaller fraction of outlier egs. Since multiple motions are detected
for a smaller fraction of pairs. For most datasets, context prior performs better than
loop prior. Combination of all priors performs equivalently for practical purposes.

intuitive sense to expect that a pruned vg comprising a reasonably small fraction
(∼25%) of the total number edges would lead to a good reconstruction. On the
other hand, the vgs for urban ambiguous scenes [10] are not well-connected, as
these datasets are already sampled subgraphs (iconics) of the original image set.
This is also reflected from the fact that average number of edges per vertex is
only ∼5% of total vertices. In view of this sparse connectivity, it makes sense
to keep as many vertices as possible and a bigger fraction of edges. Practically,
we chose these threshold to be, |Vs| >= 80% of |V|, and |Es| >= 5|V| and use
the method described in section 4 to get the desired sub-graph by efficiently
searching for the appropriate flow value.

6.2 General datasets reconstruction

We show that the proposed framework is versatile and can also be used for
the general goals of accuracy and efficiency for reconstruction of standard sfm
datasets, by modeling image and pair selection costs with well-known and com-
monly used sfm priors. For this task, we show the results on two datasets, (i)
mvs benchmark [25], and (ii) Internet landmarks [22, 12]. These datasets are
reconstructed with incremental [32] and global sfm [26] pipelines, using both,
full vgs and vgs selected by our method.

mvs benchmark consists of three toy-sized datasets with ground-truth (gt)
camera positions. Table 2a shows that, for both sfm methods, the selected vgs
based reconstructions are comparable to the full vgs based reconstructions. Flow
parameter for these selections was chosen such that all vertices are selected (for
gt comparisons). For large-scale Internet landmarks datasets, we reconstruct
the scenes using selected vgs and full vgs with global sfm pipeline (typically
slightly less robust than incremental sfm methods) in order to compare the
reconstruction accuracy w.r.t. incremental sfm based baseline reconstructions
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Incremental SfM Global SfM
Dataset vg |V| |E| Rerr Terr rerr Rerr Terr rerr

Castle
S

30
49 2.44 0.15 0.38 2.21 1.29 1.01

F 118 2.22 0.22 0.34 2.17 7.49 1.14

Fountain
S

11
21 2.90 0.01 0.29 2.82 0.29 0.35

F 25 2.90 0.01 0.72 2.82 0.27 0.59

Herzjesu
S

25
55 2.36 0.03 0.50 2.38 0.75 1.18

F 128 2.38 0.02 0.43 2.39 0.56 1.71

(a) MVS dataset statistics

Dataset vg |V| |E| tsel Nc rerr Rerr Terr tsfm

Notre Dame
S 659 16970 1.744 628 1.41 0.072 0.195 1151
F 714 46746 – 682 1.53 0.089 0.217 1760

Pantheon
S 761 15975 3.721 754 1.06 0.098 0.310 1785
F 781 139630 – 775 1.31 0.125 0.309 3601

St. Peters
S 1132 39640 2.864 1095 1.341 0.037 0.517 1147
F 1155 119977 – 1111 1.458 0.028 0.496 1367

(b) Internet landmarks datasets statistics

Table 2: Selection and reconstruction statistics for general datasets. Labels ‘S’ and ‘F’
show selected and full vgs, |V|, |E| – vertices and edges, Nc – #reconstructed cameras,
Rerr, Terr, and rerr – median rotation, translation, and reprojection errors, tsel and
tsfm – runtime for vg selection (cumulative) and sfm reconstruction.

(in absence of ground-truth). Table 2b shows the selection and reconstruction
statistics for these datasets. It can be seen that the reconstructions with selected
vgs are comparable or more accurate as compared to those with full vgs and sfm
run-time with selected vgs is notably shorter. For completeness of the recovered
structure, it is desirable to have as many vertices as possible in the subgraph. For
efficiency, it is desirable to select fewer edges, however too few edges (low vertex
degree) can lead to many short feature tracks and high reprojection errors. With
these considerations, we keep |Vs| = 90% of |V| and |Es| = 20|V| as flow search
criteria. The selected vg reconstructions are qualitatively similar or better than
full vg reconstructions (shown in supplementary material).

7 Conclusions and Future Work

We presented a novel and efficient, unified framework for selecting subgraphs
from initial view-graphs that can achieve different selection objectives with ap-
propriately modeled image and pairwise selection costs. This mechanism provides
an interesting way to separate dataset and task specific challenges from the stan-
dard sfm pipeline, thereby improving its generality. We demonstrated utility and
potential of this framework by achieving satisfactory results for two objectives.
One interesting way to achieve even further abstraction to this problem would
be to replace hand-designed costs by a weighted combination (ci =

∑

k αkfk(i))
of a number of known and designed priors. Cost formulation of this form would
be expressive enough to cater to a wide variety of selection objectives. The prob-
lem of modeling costs to meet the desired objective then translates to that of
devising new priors to add to the combination and finding the right weights
for prior combination. In future, we wish to explore this direction for extending
our framework. While this is non-trivial, it can lead to interesting directions of
research for searching/learning new priors and the combination weights.
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funding this work.
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Fig. 7: Reconstructions for small ambiguous datasets (numbered as per Table 1a): (A)
indicate full vg based reconstructions, (B) indicate selected vg based reconstructions.

Fig. 8: Comparison of our reconstruction results on large ambiguous datasets (num-
bered as per Table 1a). For 8 to 11, bottom left – incorrect model with full vg, bottom
right – result of correctly split models using the post-reconstruction pipeline of [10],
and top row – our result (color-coded to match the splits of [10]. For 12, top – full vg
result, bottom – result with our selection.
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