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Abstract. While machine learning approaches to visual emotion recog-
nition offer great promise, current methods consider training and test-
ing models on small scale datasets covering limited visual emotion con-
cepts. Our analysis identifies an important but long overlooked issue of
existing visual emotion benchmarks in the form of dataset biases. We
design a series of tests to show and measure how such dataset biases ob-
struct learning a generalizable emotion recognition model. Based on our
analysis, we propose a webly supervised approach by leveraging a large
quantity of stock image data. Our approach uses a simple yet effective
curriculum guided training strategy for learning discriminative emotion
features. We discover that the models learned using our large scale stock
image dataset exhibit significantly better generalization ability than the
existing datasets without the manual collection of even a single label.
Moreover, visual representation learned using our approach holds a lot
of promise across a variety of tasks on different image and video datasets.

Keywords: Emotion Recognition, Webly Supervised Learning

1 Introduction

Recently, algorithms for object recognition and related tasks have become suf-
ficiently proficient that new vision tasks beyond objects can now be pursued.
One such task is to recognize emotions expressed by images which has gained
momentum in last couple of years in both academia and industries [63, 30, 40,
43, 62, 4]. Teaching machines to recognize diverse emotions is a very challenging
problem with great application potential.

Let us consider the image shown in Figure 1.a. Can you recognize the basic
emotion expressed by this image? Practically, this should not be a difficult task
as a quick glance can well reveal that the overall emotional impact of the image
is negative (i.e., sadness) (9 out of 10 students in our lab made it correct!). In
fact, this is the image of a Six Flags theme park at New Orleans which has been
closed since Hurricane Katrina struck the state of Louisiana in August 2005. 4

4 The image is taken from Google Images with the search keyword sad amusement

park. Source: https://goo.gl/AUwoPZ
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Fig. 1. (a) An example image of an amusement park with negative emotion (sadness) (Source:
Google Images). (b)-(c) Nearest neighbor images extracted from “amusement” and “sadness” cate-
gory in the Deep Emotion dataset [63], which show a strong data bias. We use the pool5 features
from our ResNet-50 trained on Deep Emotion dataset to extract these nearest neighbor images.

Intrigued, we decided to perform a toy experiment using Convolutional Neu-
ral Networks (CNNs) to recognize emotions. A ResNet-50 [22] model that we
trained on the current largest Deep Emotion dataset [63] predicts an emotion of
“amusement/joy” with 99.9% confidence from the image in Figure 1.a. Why is
this happening? Our initial investigation with the nearest neighbour images in
Figure 1.b/c shows that the dataset bias appears to be the main culprit. Specifi-
cally, the Deep Emotion dataset [63] suffers from two types of biases. The first is
the positive set bias, which makes the amusement category in the dataset full of
photos of amusement parks (see Figure 1.b). This is due to the lack of diversity
in visual concepts when collecting the source images. The second is the negative
set bias, where the rest of the dataset does not well represent the rest of the
world, i.e., no images of sad park in the dataset (see Figure 1.c).

In this paper, instead of focusing on beating the latest benchmark numbers
on the latest dataset, we take a step back and pose an important question: how
well do the existing datasets stack up overall in the emerging field of visual emo-

tion recognition? We first conduct a series of tests including a novel correlation
analysis between emotion and object/scene categories to analyze the presence
of bias in existing benchmarks. We then present a number of possible remedies,
mainly proposing a new weakly-labeled large-scale emotion dataset collected
from a stock website and a simple yet effective curriculum guided training strat-
egy for learning discriminative features. Our systematic analysis, which is first in
emotion recognition, will provide insights to the researchers working in this area
to focus on the right training/testing protocols and more broadly simulate dis-
cussions in the community regarding this very important but largely neglected
issue of dataset bias in emotion recognition. We also hope our efforts in releasing
several emotion benchmarks in this work will open up avenues for facilitating
progress in this emerging area of computer vision. 5

The key takeaways from this paper can be summarized as follows:

– Existing visual emotion datasets appear to have significant bias.We
conduct extensive studies and experiments for analyzing emotion recognition
datasets (Sec. 3). Our analysis reveals the presence of significant biases in

5 All our datasets, models and supplementary material are publicly available on our
project page: https://rpand002.github.io/emotion.html
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current benchmark datasets and calls for rethinking the current methodology
for training and testing emotion recognition models.

– Learning with large amounts of web data helps to alleviate (at least
minimize) the effect of dataset bias. We show that models learned using
large-scale stock data exhibit significantly better generalization ability while
testing on new unseen datasets (Sec. 5.1). We further propose a simple yet
effective curriculum guided training strategy (Sec. 4) for learning discrimina-
tive emotion features that achieves state-of-the-art performance on various
tasks across different image and video datasets (Sec. 5.2). For example, we
show improved performance (∼3% in top-5 mAP) of a state-of-the-art video
summarization algorithm [41] by just plugging in our emotion features.

– New Datasets. We introduce multiple image emotion datasets collected
from different sources for model training and testing. Our stock image dataset
is one of the largest in the area of visual emotion analysis containing about
268,000 high quality stock photos across 25 fine-grained emotion categories.

2 Related Work

Emotion Wheels. Various types of emotion wheels have been studied in psy-
chology, e.g., Ekmans emotions [13] and Plutchik’s emotions [45]. Our work is
based on the popular Parrott’s wheel of emotions [42] which organizes emotions
in the form of a tree with primary, secondary and tertiary emotions. This hierar-
chical grouping is more interpretable and can potentially help to learn a better
recognition model by leveraging the structure.
Image Emotion Recognition. A number of prior works studying visual emo-
tion recognition focus on analyzing facial expressions [31, 12, 16, 14, 15, 47, 12,
7]. Specifically, these works mainly predict emotions for images that involve a
clear background with people as the primary subject. Predicting emotions from
user-generated videos [29, 27, 60], social media images [57, 60, 56] and artistic
photos [65, 1] are also some recent trends in emotion recognition. While these
approaches have obtained reasonable performance on such controlled emotion
datasets, they have not yet considered predicting emotions from natural images
as discussed in this paper. Most related to our work along the direction of rec-
ognizing emotions from natural images are the works of [63, 38, 30, 43] which
predict emotions from images crawled from Flickr and Instagram. As an exam-
ple, the authors in [63] learn a CNN model to recognize emotions in natural
images and performs reasonably well on the Deep Emotion dataset [63]. How-
ever, it requires expensive human annotation and is difficult to scale up to cover
the diverse emotion concepts. Instead, we focus on webly supervised learning of
CNNs which can potentially avoid (at least minimize) the dataset design biases
by utilizing vast amount of weakly labeled data from diverse concepts.
Webly Supervised Learning. There is a continued interest in the vision com-
munity on learning recognition models directly from web data since images on
the web can cover a wide variety of visual concepts and, more importantly, can
be used to learn computational models without using instance-level human an-
notations [35, 5, 10, 28, 17, 37, 18, 49, 32, 36]. While the existing works have shown



4 R. Panda, J. Zhang, H. Li, J. Lee, X. Lu, and A. K. Roy-Chowdhury

advantages of using web data by either manually cleaning the data or developing
a specific mechanism for reducing the noise level, we demonstrate that noisy web
data can be surprisingly effective with a curriculum guided learning strategy for
recognizing fine-grained emotions from natural images.
Curriculum Learning. Our work is related to curriculum learning [33, 11, 64,
19, 44, 2] that learns a model by gradually including easy to complex samples in
training so as to increase the entropy of training samples. However, unlike these
prior works that typically focus on the evolution of the input training data,
our approach focuses on the evolution of the output domain, i.e., evolution of
emotion categories from being easy to difficult in prediction.
Hierarchical Recognition. Category hierarchies have been successfully lever-
aged in several recognition tasks: image classification [61, 58, 20, 34, 3, 8], object
detection [9, 39], image annotation [52], and concept learning [24] (see [46] for
an overview). CNN based methods [48, 61, 58, 55] have also used class hierarchy
for large scale image classification. Unlike these methods that mostly use clean
manually labeled datasets to learn the hierarchy, we adopt an emotion hierarchy
from psychology [42] to guide the learning with noisy web data. Our basic idea
is that the emotion hierarchy can provide guidance for learning more difficult
tasks in a sequential manner and also provide regularization for label noises.

3 Understanding Bias in Emotion Datasets

Goal. Our main goal in this section is to identify, show and measure dataset
bias in existing emotion recogntion datasets using a series of tests.
Datasets. We pick three representative datasets including one newly created
by us: (1) Deep Sentiment [62] dataset containing 1269 images from Twitter,
(2) the current largest Deep Emotion dataset [63], (3) our Emotion-6 dataset
of 8350 images (anger : 1604, fear : 1280, joy : 1964, love: 724, sadness: 2221,
surprise: 557) labeled by five human subjects from intially 150K images collected
from Google and Flickr (see supp). Our main motivation on creating Emotion-6
dataset is to repeat the standard data collection/annotation protocol used by
existing works [63, 62] and see how well it performs regarding the dataset biases.
Test 1. Name That Dataset Game. With the aim of getting an initial idea
on the relation among different datasets, we start our analysis by running Name

That Dataset Game as in [51]. We randomly sample 500 images from the training
portions of each of the three datasets and train a 3-class linear classifier over the
ResNet-50 features. We then test on 100 random images from each of the test
sets and observe that the classifier is reasonably good at telling different datasets
apart, giving 63.67% performance. The distinct diagonal in confusion matrix
(Figure 2.a) shows that these datasets possesses an unique signature leading
to the presence of bias. For example, visually examining the high confidence
correct predictions from the test set in Figure 2.b indicates that Deep Emotion
dataset has a strong preference for outdoor scenes mostly focusing on parks (2nd
row), while Emotion-6 tend to be biased toward images where a single object is
centered with a clean background and a canonical viewpoint (3rd row).
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Fig. 2. (a) Confusion matrix, (b) From top to bottom, depicted are examples of high confident
correct predictions from Deep Sentiment, Deep Emotion and Emotion-6 datasets respectively.

Table 1. Binary Cross-Dataset Generalization. Diagonal numbers refer to training and testing on
same dataset while non-diagonal numbers refer to training on one dataset and testing on others. %
Drop refers to the performance drop across the diagonal and the average of non-digonal numbers.

Train on:
Test on:

Deep Sentiment Deep Emotion Emotion-6 % Drop

Deep Sentiment 78.74 68.38 49.76 24.98
Deep Emotion 61.41 84.81 69.22 22.99
Emotion-6 54.33 64.28 77.72 23.69

Test 2. Binary Cross-Dataset Generalization. Given all three datasets, we
train a ResNet-50 classifier to show cross-dataset generalization i.e., training on
one dataset while testing on the other. For both Deep Emotion and Emotion-6,
we randomly sample 80% of images for training and keep rest 20% for test-
ing, while on Deep Sentiment, we use 90% of images for the training and keep
the rest for testing, as in [62]. Since, exact emotion categories can vary from
one dataset to another, we report binary classification accuracies (positive vs
negative) which are computed by tranforming the predicted labels to two basic
emotion categories, following Parrott’s emotional grouping [42]. We call this Bi-
nary Cross-Dataset Generalization Test, as it asks the CNN model to predict the
most trivial basic emotion category from an image. If a model cannot generalize
well in this simple test, it will not work on more fine-grained emotion categories.
Moreover, the binary generalization test only involves minimum post-processing
of the model predictions, so it can evaluate different datasets more fairly.

Table 1 shows a summary of results. From Table 1, the following observations
can be made: (1) As expected, training and testing on the same dataset provides
the best performance on all cases (marked in red). (2) Training on one dataset
and testing on the other shows a significant drop in accuracy, for instance, the
classifier trained on Deep Emotion dataset shows a average drop of 22.99% in
accuracy while testing on other two datasets. Why is this happening? Our ob-
servations suggest that the answer lies in the emotion dataset itself: it’s size is
relatively small, which results in the positive set bias due to the lack of diver-
sity in visual concepts. As a result, models learned using such data essentially
memorize all it’s idiosyncrasies and lose the ability to generalize.
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Table 2. Quantifying Negative Bias. Self refers to testing on the original test set while Others refer
to the testing on a set where positives come from the original dataset but negatives come from the
other. % Drop refers to the performance drop across the self and others. Values in Others represent
the average numbers. WEBEmo refers to our released dataset that we will discuss in next section.

Task
-ve set:

+ve set:
Deep Emotion Emotion-6 WEBEmo

anger vs non-anger Self/Others/% Drop 90.64/78.98/12.86 92.40/83.56/9.57 83.90/83.37/0.63
fear vs non-fear Self/Others/% Drop 85.95/80.77/6.05 81.14/76.02/2.56 82.97/84.79/-2.19
sadness vs non-sadness Self/Others/% Drop 81.90/61.35/25.09 89.20/82.07/7.99 89.89/90.55/-0.73

Test 3. Quantifying Negative Bias. We choose three common emotion cat-
egories across Deep Emotion and Emotion-6 datasets (anger, fear and sadness)
to measure negative set bias in different datasets. For each dataset, we train a
binary classifier (e.g., anger vs non-anger) on its own set of positive and nega-
tive instances while for testing, the positives come from that dataset, but the
negatives come from other datasets. We train the classifiers on 500 positive and
2000 negative images randomly selected from each dataset. Then for testing, we
use 200 positive and 4000 negative images from other datasets.

Table 2 summarizes the results. For both datasets, we observe a significant
decrease in performance (maximum of about 25% for Deep Emotion dataset on
sadness emotion), suggesting that some of the new negative samples coming
from other datasets are confused with positive examples. This indicates that
rest of the dataset does not well represent the rest of the visual world leading to
overconfident, and not very discriminative, classifiers.

Test 4. Correlation Analysis with Object/Scene Categories. Given exist-
ing object/scene recognition models, the objective of this test is to see how well
emotions are correlated with object/scene categories and whether analyzing the
correlations can help to identify the presence of bias in emotion datasets. We use
ResNet-50 pre-trained on ImageNet and ResNet-152 pre-trained on Places365 as
object and scene recognition models respectively. We start our analysis by pre-
dicting object/scene categories from images of three common emotion categories
used in previous task. We then select top 200 most occuring object/scene cate-
gories from each emotion class and compute the conditional entropy of each ob-
ject/scene category across positive and negative set of a specific emotion. Mathe-
matically, given an object/scene category c and emotion category e, we compute
the conditional entropy as H(Y |X = c) = −

∑
yǫ{ep,en}

p(y|X = c)logp(y|X =

c), where ep and en represent the positive and negative set of emotion e respec-
tively (e.g., anger and non-anger). More number of object/scene categories with
zero conditional entropy will most likey lead to a biased dataset as it shows the
presence of these object/scene categories in either positive or negative set of an
emotion resulting in an unbalanced representation of the visual world (Figure 1).

Figure 3 shows the distribution of object/scene categories w.r.t conditional
entropy for both Deep Emotion and Emotion-6 datasets. While analyzing cor-
relations between objects and sadness emotion in Figure 3.a, we observe that
about 30% of object categories (zero conditional entropy) are only present in
either sadness or non-sadness category and then further examining these cate-
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(a) Object Categories for Sadness Emotion (b) Scene Categories for Anger emotion.

Fig. 3. Distribution of object/scene categories w.r.t conditional entropy. (a) objects in sadness
emotion, (b) scenes in anger emotion. Both datasets show a strong presence of bias.

gories, we find most of them will lead to a dataset bias (see supp). For example,
objects like balloon, candy store and parachute are only present in negative set of
sadness. Categories like balloon are strongly related to happiness, but still there
should be a few negative balloon images such as sad balloon in the negative
set6. Completely missing the negative balloon images will lead to dataset bias.
Emotion-6 appears to be less biased compared to Deep Emotion but still it has
25% of object categories in the entropy range of [0,0.5]. Similarly, on analyzing
scene categories for anger emotion in Fig. 3.b, we see that both datasets are
biased towards to specific scene categories, e.g., for Deep Emotion, about 55%
of scene categories have zero conditional entropy while about 20% of categories
have zero entropy in Emotion-6. More results are included in the supplementary.

Our main conclusions from these series of tests indicate that despite all three
datasets being collected from Internet and labeled using a similar paradigm in-
volving multiple humans, they appear to have strong bias which severly obstruct
learning a generalizable recognition model.

4 Curriculum Guided Webly Supervised Learning

Goal. The main goal of this section is to present possible remedies to the
dataset bias issues described above, mainly proposing a large-scale web emo-
tion database, called WEBEmo and an effective curriculum guided strategy for
learning discrimative emotion features. Our basic idea is that we can potentially
avoid (at least minimize) the effect of dataset design biases by exploiting vast
amount of freely available web data covering a wide variety of emotion concepts.
Emotion Categories. Emotions can be grouped into different categories. Most
prior works only consider a few independent emotion categories, e.g., Ekmas’s
six emotions [13] or Plutchik’s eight emotion categories [45]. Instead, we opt for
Parrott’s hierarchical model of emotions [42] for two main advantages. First,
by leveraging this hierarchy with associated lists of keywords, we are able to
allieviate the search engine bias by diversifying the image search. Second, we are
able to learn discriminative features by progressively solving different tasks.

Following [42], we design a three-level emotion hierarchy, starting from two
basic categories (positive and negative) at level-1, six categories (anger, fear, joy,
love, sadness, and surprise) at level-2 to 25 fine-grained emotion categories at

6 For example, see: https://tinyurl.com/yazvkjmv
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Fig. 4. Sample images from our WEBEmo dataset across six secondary emotion categories. These
images cover a wide range of visual concepts. Best viewed in color.

level-3 (see Figure 5 for all categories). Note that while data-driven learning [54,
34] can be used for constructing such hierarchy, we chose to design it following
prior psychological studies [42] as emotion has been well studied in psychology.
Retrieving Images from the Web. We use a stock website to retrieve web
images and use those images without any additional manual labeling. Below, we
provide a brief description of the dataset and refer to supplementary for details.

Fig. 5. Category-wise distribution of images

in WEBEmo dataset. The are more than 30K
images on cheerfulness category while only
629 images are there on enthrallment emo-
tion category. Categories are sorted accord-
ing to the number of images in corresponding
category, from the highest (left) to the lowest
(right). Best viewed in enlarged version.
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To collect web images for emotion recognition, we follow [42] to assemble a
list of keywords (shown in supp) for each 25 fine-grained emotions, focusing on
diverse visual concepts (see Figure 4). We then use the entire list of keywords to
query a stock site and retrieve all the images (∼10,000) together with their tags
returned for each query. In this way, we are able to collect about 300,000 weakly
labeled images, i.e., labeled by the queries. We then remove images with non-
English tags and also use captions with top-5 tags to remove duplicate images.
After deduplication, we ended up with about 268,000 high-quality stock images.
Figure 5 shows category-wise distribution of images in WEBEmo dataset. The
total number of images in our WEBEmo dataset is about 12 times larger than
the current largest Deep Emotion dataset [63].
Curriculum Guided Training. Our goal is to learn discriminative features for
emotion recognition directly using our WEBEmo database. While it seems that
one can directly train a CNN with such data, as in [32] for image classificaton,
we found it is extremely hard to learn good features for our task, as emotions
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are intrinsically fine-grained, ambigious, and web data is more prone to label
noise. However, as shown in psychology [42], emotions are organized in a hier-
archy starting from basic emotions like postive or negative to more fine-grained
emotions like affection, contentment, optimism and exasperation, etc. Catego-
rizing images to two basic emotions is an easier task compared to categorizing
images to such fine-grained emotions. So, what we want is an approach that
can learn visual representation in a sequential manner like we humans normally
learn difficult tasks in an organized manner.

Inspired by curriculum learning [2] and the emotion wheel from psychol-
ogy [42], we develop a curriculum guided strategy for learning discriminative
features in a sequential manner. Our basic idea is to gradually inject the infor-
mation to the learner (CNN) so that in the early stages of training, the coarse-
scale properties of the data are captured while the finer-scale characteristics are
learned in later stages. Moreover, since the amount of label noise is likey to be
much less in coarse categories, it can produce regularization effect and enhance
the generalization of the learned representations.

Let C be the set of fine-grained emotion categories (= 25 in our case) and
k ∈ {1 . . .K} be the different stages of training. Assume CK = C is the fine-
grained emotion categories that we want to predict; that is, our target is to
arrive at the prediction of these emotion labels at the final stage of learning
K. In our curriculum guided learning, we require a stage-to-stage emotional
mapping operator F which projects Ck, the output labels at stage k, to a lower-
dimensional Ck−1 which is easier to predict compared to the prediction of Ck

labels. We follow the Parrott’s emotion grouping [42] as the mapping operator
that groups CK categories into six secondary and two primary level emotions
as described earlier. Specifically, a CNN (pre-trained on ImageNet) is first fine-
tuned with 2 basic emotions (positive/negative) at level-1 and then it serves to
initialize a second one that discriminates six emotion categories at level-2 and
the process is finally repeated for 25 fine-grained emotion categories at level-3.

5 Experiments

Goal. We perform rigorous experiments with the following two main objectives:

(a) How well our newly introduced WEBEmo dataset along with the cur-
riculum guided learning help in reducing the dataset bias? (Sec. 5.1)

(b) How effective our visual representation learned using WEBEmo dataset
in recognizing both image and video emotions? Do emotion features benefit other
visual analysis tasks, say video summarization? (Sec. 5.2)

Implementation Details. All the networks are trained using the Caffe tool-
box [25]. We choose ResNet-50 [22] as our default deep network and initialize
from an ImageNet checkpoint while learning using web data [50]. During train-
ing, all input images are resized to 256 × 256 pixels and then randomly cropped
to 224 × 224. We use batch normalization after all the convolutional layers and
train using stochastic gradient descent with a minibatch size of 24, learning rate
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Table 3. Cross-Dataset Generalization. “Self” refers to training and testing on same dataset and
“Mean Others” refers to the mean performance on all others. Model trained using curriculum guided
webly supervised learning generalizes well to other datasets.

Train on:
Test on:

Deep Sentiment Deep Emotion Emotion-6 WEBEmo Self Mean Others

Deep Sentiment [62] 78.74 68.38 49.76 47.79 78.74 55.31
Deep Emotion [63] 61.41 84.81 69.22 59.95 84.81 63.52
Emotion-6 (Sec. 3) 54.33 64.28 77.72 64.30 77.72 62.30
WEBEmo (Ours) 68.50 71.42 78.38 81.41 81.41 72.76

of 0.01, momentum of 0.9 and weight decay of 0.0001. We reduce the learning
rate to its 1

10 while making transition in our curriculum guided training.

5.1 Revisiting Dataset Bias with Our Approach

Experiment 1: Quantifying Negative Bias. We use the same number of
images (total 2500 for training and 4200 for testing) and follow the exact same
testing protocol mentioned in Sec. 3: Test 2 to analyze negative bias on our
WEBEmo dataset. Table 2 shows that classifiers trained on our dataset do
not seem to be affected by a new external negative set across all three emo-
tion categories (see right most column in Table 2). This is because WEBEmo
dataset benefits from a large variability of negative examples and hence more
comprehensively represent the visual world of emotions.

Fig. 6. Distribution of object/scene

categories w.r.t conditional entropy on
WEBEmo dataset. (a) objects in sad-
ness, (b) scenes in anger emotion.

Experiment 2: Correlation Analysis with Object/Scene Categories.
Figure 6 shows the correlation between emotion and object/scene categories in
our WEBEmo dataset. As can be seen from Figure 6.a, less than 10% of object
categories are within the entropy range [0,0.6] for sadness emotion leading to a
much less biased dataset. This result is also consistent with the performance of
the classifier trained for sadness vs non-sadness image classification in previous
experiment (see Table 2). We also observe that more number of scene categories
have entropy in the higher range (see Figure 6.b) showing that most of the scenes
are well distributed across positive and negative emotion sets in our dataset. Note
that the negative bias still persists regardless of the large size of our dataset
covering a wide variety of concepts (some object/scene categories still have zero
entropy). We can further minimize the bias by adding weakly labeled images
associated with zero entropy categories such that both positive and negative
set can have a balanced distribution. This experiment demonstrates that our
correlation analysis can help to detect as well as reduce biases in datasets.



Contemplating Visual Emotions 11

Table 4. Exploration study on different webly supervised learning strategies.

Methods Deep Sentiment Deep Emotion Emotion-6 WEBEmo Self Mean Others

Direct Learning 62.20 67.48 74.73 76.65 76.65 68.13
Self-Directed Learning 64.56 68.76 76.15 78.69 78.69 69.82
Joint Learning 66.71 69.08 75.36 78.27 78.27 70.38
Curriculum Learning 68.50 71.42 78.38 81.41 81.41 72.76

Experiment 3: Binary Cross-Dataset Generalization. Table 3 summa-
rizes the results. We have the following key observations from Table 3: (1) Model
trained using our WEBEmo dataset shows the best generalization ability com-
pared to the models trained using manually labeled emotion datasets. We believe
this is because learning by utilizing web data helps in minimizing the dataset
biases by covering a wide variety of emotion concepts. (2) More interestingly, on
Emotion-6 dataset, the model trained using our stock images even outperforms
the model trained with images from the same Emotion-6 dataset (77.72% vs
78.38%). This is quite remarkable as our model has only been trained using the
web images without any strong supervision.

Exploration Study. To better understand effectiveness of curriculum guided
learning strategy, we analyze cross-dataset generalization performance by com-
paring with following methods: (1) Direct Learning – directly learning using the
noisy web images of 25 fine-grained emotion categories, as in [63, 32, 28]; (2)
Self-Directed Learning – start learning with a small clean set (500 images) and
then progressively adapt the model by refining the noisy web data, as in [62, 18];
(3) Joint Learning – simultaneously learning with all the tasks in a multi-task
setting. For details please refer to our supplementary material. We have the fol-
lowing key observations from Table 4: (1) Performance of direct learning baseline
is much worse compared to our curriculum guided learning. This is not surprising
since emotions are highly complex and ambigious that directly learning models
to categorize such finegrained details fails to learn discriminative features. (2)
Self-directed learning shows better generalization compared to the direct learn-
ing but still suffers from the requirement of initial labeled data. (3) The joint
learning baseline is more competitive since it learns a shared representation from
multiple tasks. However, the curriculum guided learning still outperforms it in
terms generalization across other datasets (70.38% vs 72.76%). We believe this
is because by ordering training from easy to difficult in a sequential manner, it
is able to learn more discriminative feature for recognizing complex emotions.

Impact of Emotion Categories. We compare our three stage curricu-
lum learning strategy (2-6-25) with a two stage one involving only six emotion
categories (2-6). We found that the later produces inferior results, with an ac-
curacy of 78.21% on the self test set and a mean accuracy of 70.05% on other
two datasets, compared to 81.41% and 72.76% respectively by the three stage
curriculum learning. Similarly, there is a drop of 2.31% in “self” test accuracy
of the direct learning baseline while training with six emotion categories com-
pared to the training with 25 emotion categories. In summary, we observe that
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Fig. 7. Sample images from our challenging UnBiasedEmo test set.See supplementary file for
more example images on different object/scenes. Best viewed in color.

the generalization ability of learned models increase with increased number of
fine-grained emotion categories.

State-of-the-Art Results. Note that all the numbers presented in Table 3
represent the binary accuracies we achieved without using any ground truth
training data from the testing dataset. By fine-tuning, our model achieves a
state-of-the-art accuracy of 61.13% in classifying eight emotions on Deep Emo-
tion dataset [63] and an accuracy of 54.90% on Emotion-6 dataset. Similarly,
by utilizing training data from Deep Sentiment dataset, our model achieves an
accuracy of 82.67% which is about 8% improvement over the prior work [62].

5.2 Analyzing Effectiveness of Our Learned Emotion Features

Table 5. Experimental results on our Un-

BiasedEmo test dataset. Features learned
using curriculum learning outperforms all
other basline features, including ImageNet.

Methods Accuracy (%)
ImageNet 64.20
Direct Learning 71.64
Self-Directed Learning 72.45
Joint Learning 71.64
Curriculum Learning 74.27

Experiment 1: Testing on Cross-Domain Unbiased Data. In this ex-
periment, we introduce a new unbiased emotion test set, UnBiasedEmo of
about 3000 images dowloaded from Google to evaluate our learned models in
recognizing very challenging emotions, e.g., different emotions with same ob-
ject/scene (see Figure 7). Since source of this test set is different from our
WEBEmo dataset, it helps us alleviate the dataset bias issue in evaluation,
so we can compare the generalization ability of various learning strategies in a
less biased manner. Note that developing a large-scale unbiased dataset contain-
ing hundred thousands of images like this is a very difficult task as it requires
extensive effort and also provides poor scalability. For an example, we could
only able to get 3045 emotional images across six emotion categories (same as
Emotion-6 dataset) from a collection of about 60,000 images. More details on this
unbiased dataset collection and annotations are included in the supplementary.

We use our learned models as feature extractors. We use 80% of the images for
training and keep rest 20% for testing. Table 5 shows the classification accuracies
achieved by the features learned using different methods. We have the following
observations from Table 5: (1) Our curriculum learning strategy significantly
outperforms all other baselines in recognizing fine-grained emotions from natural
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images. (2) Among the alternatives, self-directed learning baseline is the most
competitive. However, our approach still outperforms it due to the fact that
we use the emotion hierarchy to learn discriminative features by focusing tasks
in a sequential manner. (3) Performance of ImageNet features is much worse
compared to the features learned using our curriculum guided webly supervised
learning (64.20% vs 74.27%). This is expected as ImageNet features are tailored
towards object/scene classification while emotions are more fine-grained and can
be orthogonal to object/scene category, as shown in Figure 7.

We also inverstigate the quality of features learned using the current largest
Deep Emotion dataset [63] in recognizing image emotions on this unbiased test
set and found that it produces inferior results, with an accuracy of 68.88% com-
pared to 74.27% by our curriculum guided webly-supervised learning strategy
on the WEBEmo dataset. We believe this is because of the effective utilization
of large scale web data covering a wide variety of emotion concepts.

Methods Accuracy (%)
ImageNet 23.42
Direct Learning 25.43
Self-Directed Learning 24.92
Joint Learning 26.18
Curriculum Learning 27.96

Table 6. Experimental results on Im-
age Advertisement dataset. Our curriculum
learning model performs the best.

Methods Accuracy (%)
ImageNet 43.27
Direct Learning 45.67
Self-Directed Learning 46.18
Joint Learning 47.25
Knowledge Transfer [59] 45.10
Curriculum Learning 49.22

Table 7. Experimental results on VideoStory-
P14 dataset. Features learned using our proposed
curriculum learning outperforms the knowledge
transfer approach by a margin of about 4%.

Experiment 2: Sentiment Analysis. We perform this experiment to verify
the effectivenss of our features in recognizing sentiments from online advertise-
ment images. We conduct experiments using Image Advertisement dataset [23]
consisting of 30,340 online ad images labeled with 30 sentiment categories (e.g.,
active, alarmed, feminine, etc, – see [23] for more details). We use the model
weights as initialization and fine-tune the weights [23]. We use 2403 images for
testing and rest for training as in [23]. We follow [23] and chose the most frequent
sentiment as the ground-truth label for each advertisement image.

Table 6 shows results of different methods on predicting image sentiments
on the Advertisement dataset. From Table 6, the following observations can be
made: (1) Once again, our curriculum guided learning significantly outperforms
all other baselines in predicting sentiments from online ad images. (2) We achieve
an improvement of about 6% over the ImageNet baseline showing the advantage
of our learned features in automatic ad understanding tasks.

Experiment 3: Video Emotion Recognition. The goal of this experiment
is to evaluate quality of our features in recognizing emotions from user videos.
We conduct experiments on VideoStory-P14 emotion dataset [59] consisting of
626 user videos across Plutchik’s 14 emotion classes. We fine-tune the weights
using video datasets and use 80%/20% of the videos in each category for train-
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ing/testing. To produce predictions for an entire video, we average the frame-
level predictions of 20 frames which are randomly selected from the video.

From Table 7, the following observations can be made: (1) We can see that
all the models trained using WEBEmo dataset outperforms both ImageNet
and transfer encoding features [59] indicating the generalizability of our learned
features in recognizing video emotions. (2) We further observe that curriculum
guided learning provides about 2% improvement over the joint learning baseline.
Experiment 4: Video Summarization. Our goal in this experiment is to see
whether our learned features can benefit summarization algorithms in extracting
high quality summaries from user videos. We believe this is possible since an
accurate summary should keep emotional content conveyed by the original video.

We perform experiments on the CoSum dataset [6] containing 51 videos cov-
ering 10 topics from the SumMe benchmark [21]. We follow [41, 6] and segment
the videos into multiple non-uniform shots for processing. We first extract pool5
features from the network trained with curriculum learning on our WEBEmo
dataset and then use temporal mean pooling to compute a single shot-level fea-
ture vector, following [41]. We follow the exact same parameter settings of [41]
and compare the summarization results by only replacing the visual features.

By using our learned emotion features, the top-5 mAP score of the recent
summarization method [41] improves by a margin of about 3% over the C3D
features [53] (68.7% vs 71.2%). This improvement is attributed to the fact that
good summary should be succinct but also provide good coverage of the original
video’s emotion content. This is an important finding in our work and we believe
this can largely benefit researchers working in video summarization to consider
the importance of emotion while generating good quality video summaries.
Additional Experiments in Supplementary. We analyze the effectivenss of
our learned features in predicting communicative intents from persuasive images
(e.g., politician photos) [26] and see that our approach outperforms all other
baselines by a signifcant margin (∼8% improvement over ImageNet features).
We also provide sample prediction results in the supplementary material.

6 Conclusion

In this paper, we have provided a thorough analysis of the existing emotion
benchmarks and studied the problem of learning recognition models directly us-
ing web data without any human annotations. We introduced a new large-scale
image emotion dataset containing about 268,000 high-quality images crawled
from a stock website to train generalizable recognition models. We then pro-
posed a simple actionable curriculum guided training strategy for learning dis-
criminative emotion features that holds a lot of promise on a wide variety of
visual emotion understanding tasks. Finally, we demonstrated that our learned
emotion features can improve state-of-the-art methods for video summarization.
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