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Abstract. We present an approach to robust estimation of fundamental matri-

ces from noisy data contaminated by outliers. The problem is cast as a series of

weighted homogeneous least-squares problems, where robust weights are esti-

mated using deep networks. The presented formulation acts directly on putative

correspondences and thus fits into standard 3D vision pipelines that perform fea-

ture extraction, matching, and model fitting. The approach can be trained end-

to-end and yields computationally efficient robust estimators. Our experiments

indicate that the presented approach is able to train robust estimators that outper-

form classic approaches on real data by a significant margin.

1 Introduction

Deep learning has shown promising results on computer vision problems such as image

categorization [20], image segmentation [24], and object detection [10]. Many problems

that have been successfully tackled with deep learning share a common trait: The map-

ping from input to output is difficult to characterize by explicit mathematical modeling.

This is especially true for the aforementioned applications, where even simple questions

like what actually constitutes an object of a specific class cannot be answered in a sim-

ple way that lends itself to mathematical modeling [11]. Consequently, approaches such

as deep learning, which are able to learn representations directly from large corpora of

data are necessarily superior in these tasks.

On the other hand, certain computer vision problems, such as fundamental matrix

estimation, can be defined in a precise mathematical way, provided that some assump-

tions are made about the data [12]. It is thus not surprising that these subfields have

largely been spared by the recent surge in deep learning research.

However, being able to define a problem in a precise mathematical way doesn’t

necessarily mean that it can be easily solved. We argue that robust fundamental matrix

estimation can be solved more accurately if the estimator can be adapted to the data at

hand. For example, in an automotive scenario not all fundamental matrices are equally

likely to occur. In fact, since the platform exhibits dominant forward or backward mo-

tion at all times, the space of fundamental matrices that can occur in this scenario is

much smaller than the complete space of fundamental matrices. Another example is

data that deviates from the common assumption of Gaussian inlier noise. Adapting

model fitting approaches to different inlier noise distributions requires significant effort

by an expert, but could be made much easier if the noise distribution can be learned

from data.

In this work we present an approach that is able to learn a robust algorithm for fun-

damental matrix estimation from data. Our approach combines deep networks with a



2 R. Ranftl and V. Koltun

well-defined algorithmic structure and can be trained end-to-end. In contrast to naive

deep learning approaches to this problem, our approach disentangles local motion esti-

mation and geometric model fitting, leading to simplified training problems and inter-

pretable estimation pipelines. As such it can act as a drop-in replacement for applica-

tions where the RANSAC [7] family of algorithms is commonly employed [27, 35]. To

achieve this, we formulate the robust estimation problem as a series of weighted homo-

geneous least-squares problems, where weights are estimated using deep networks.

Experiments on diverse real-world datasets indicate that the presented approach can

significantly outperform RANSAC and its variants. Our experiments also show that

estimators trained by the presented approach generalize across datasets. As a support-

ing result, we also show that the presented approach yields state-of-the-art accuracy in

homography estimation.

2 Related Work

Robust fundamental matrix estimation, and more generally geometric model fitting,

is a fundamental problem in computer vision that commonly arises in 3D processing

tasks [12]. The common starting point is to first derive an estimator for outlier-free

data. Various measures can then be taken to derive robust estimators that can deal with

a certain amount of outliers.

Perhaps the most widely used approach for dealing with outliers is RANdom SAmple

Consensus (RANSAC) [7], where one searches for a geometric model that has the most

support in the form of inliers (defined based on some problem-specific point-to-model

distance and a user-defined inlier threshold) using random sampling. There exists a vast

amount of literature on variations of this basic idea [5, 30, 21, 39, 37, 36]. What most

of these works have in common is the general structure of the algorithm. First, a set

of points is sampled and a model is estimated using a non-robust baseline estimator.

Second, the model is scored by evaluating a robust scoring function on all points and

the model is accepted as the current best guess if its score is better than all previously

scored models. This process is repeated until some stopping criterion is reached. A

common weakness that is shared by sampling-based approaches is their dependence on

the minimum number of data points required to unambiguously define a model. As the

size of the minimal set increases, the probability of sampling at least one outlier rises

exponentially. Note that RANSAC has been integrated into a deep scene coordinate

regression pipeline [3] for camera localization. This approach uses finite differences to

backpropagate through the non-robust base estimator and inherits the basic weaknesses

of RANSAC.

Another line of work adopts the basic idea of consensus set maximization, but tack-

les optimization using globally optimal methods [22, 44]. Since the underlying opti-

mization problem is NP-hard, these approaches are often prohibitively slow, degrading

to exhaustive search in the worst case. While some progress has been made in speeding

up globally optimal consensus set maximization [4], all known approaches are sig-

nificantly slower than randomized algorithms and often lack the flexibility to tackle

arbitrary geometric model fitting problems.
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It is possible to directly robustify the base estimator using M-estimators [49, 8, 14,

50]. This line of work is most closely related to the presented approach, as it usu-

ally leads to a series of weighted least-squares problems. The major weakness of these

approaches is that they require careful initialization and/or continuation procedures.

Moreover, these approaches typically implicitly assume that the inliers are subject to

Gaussian noise, which may not always be the case. In contrast, the presented approach

doesn’t make any assumptions on the inlier noise distributions, nor does it require ex-

tensive care to initialize the optimization, as both are learned from data.

There has been growing interest in applying deep learning to 3D processing tasks.

DeTone et al. learned a neural network to directly regress from a pair of input images to

a homography [6]. This work was later extended with an image-based loss to allow un-

supervised training [28]. Agrawal et al. [1] estimate ego-motion using a neural network

as a pre-training step for high-level tasks. PoseNet [17, 16] employs a convolutional

network to estimate the pose of a given image for camera relocalization. The DeMoN

architecture [41] provides, given two consecutive frames from a monocular camera,

both an estimate of the depth of each pixel and an estimate of the motion between

frames. A common characteristic of all these models is that they do not enforce the

intrinsic structure of the problem, beyond their parametrization and training loss. As a

consequence, a large amount of training data is needed and generalization performance

is often a concern. A notable exception is the approach of Rocco et al. [31], which

is modeled after the classical stages of feature extraction, matching, and model esti-

mation. Note, however, that the model estimator again is a deep regressor that doesn’t

incorporate any geometric constraints.

In contrast to these works, our approach directly operates on putative matches, in-

dependently of how these matches were obtained. Keypoint detection and matching

remain an independent step. As a consequence, our approach can be used as a drop-

in replacement in pipelines where RANSAC and similar algorithms are currently em-

ployed. We argue that such a modular approach to tackling 3D processing using deep

learning is highly desirable, given the lack of large-scale datasets in this domain. It is

much easier to learn different subparts of 3D reconstruction systems, such as feature

matching [45, 34] and model estimation separately, as generating realistic training data

for these subproblems becomes easier. Moreover, a modular approach leads to disen-

tangled intermediate representations, which significantly enhances the interpretability

of a pipeline.

Machine learning techniques have been applied to robustify and speed up optimiza-

tion problems. Andrychowicz et al. [2] use neural networks to find update directions

for gradient-descent algorithms. A framework to learn fixed-point iterations for point

cloud registration is presented in [42]. These approaches are not directly applicable to

fundamental matrix estimation, since gradient descent cannot be trivially applied.

3 Preliminaries

We refer to a single element of the input data of dimensionality d as a point pi ∈ R
d.

Let P ∈ P = R
N×d be a collection of points of dimensionality d that contains N (not

necessarily distinct) points. We use (P)i to refer to the i-th row of matrix P. Note that
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points can be either points in some metric space, or in the case of fundamental matrix

and homography estimation point correspondences (e.g., we have pi ∈ R
4 in this case

by concatenating the two image coordinates of putative correspondences p̃i ↔ p̃′
i).

In many geometric model fitting problems a homogeneous least-squares optimiza-

tion problem arises:

minimize
x

N
∑

i=1

‖(A(P))i · x‖
2

subject to ‖x‖ = 1, (1)

where x ∈ R
d′

defines the model parameters and A : P → R
kN×d′

(kN ≥ d′, k > 0)

is a problem-specific mapping of the data points.

Note that (1) admits a closed-form solution. Popular examples of algorithms where

optimization problems of this form arise are the eight-point algorithm for fundamental

matrix estimation [13], the Direct Linear Transform (DLT) [12], and general total least-

squares fitting.

Consider hyperplane fitting as a simple example. Let (n⊤, c)⊤ specify a hyperplane

with normal n and intercept c. The goal of hyperplane fitting is to infer (n⊤, c)⊤ from

a set of points P. To fit a hyperplane in a total least-squares sense, we have

A(P) ∈ R
N×d, (A(P))i = p⊤

i −
1

N

N
∑

j=1

p⊤
j . (2)

Solving (1) with this definition allows us to extract the plane using the model extraction

function g(x) that maps x to the model parameters:

g(x) =

(

x⊤,−x ·
1

N

N
∑

i=1

pi

)⊤

= (n⊤, c)⊤. (3)

If the data is free of outliers, the least-squares solution will be close to the true

solution (depending on the inlier noise distribution and the specific form of the prob-

lem). However, in practical applications the data does usually contain outliers. (Even

worse, there may be more outliers than inliers.) Solving the estimation problem in a

least-squares sense will yield wrong estimates even in the presence of a single outlier.

Much work has gone into finding robust approaches to geometric model fitting [7,

39, 30, 14]. One possible solution is to apply a robust loss function Φ to the residuals

in (1). The resulting optimization problem does not admit a closed-form solution in

general. A practical way to approximately solve the optimization problem is by solving

a sequence of reweighted least-squares problems [38]:

xj+1 = argmin
x: ‖x‖=1

N
∑

i=1

w(pi,x
j) ‖(A(P))i · x‖

2
, (4)

where the exact form of the weights w depends on Φ and the geometric model at hand.
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Coming back to the hyperplane fitting example, assume that w(pi,x
j) = wi = 1

if pi is an inlier and w(pi,x
j) = wi = 0 otherwise. It is clear that given these weights,

the correct model can be recovered in a single iteration of (4) by setting

(A(P))i = p⊤
i −

∑N

j=1 wjp
⊤
j

∑N

j=1 wj

, g(x) =

(

x⊤,−x ·

∑N

j=1 wjpj

∑N

j=1 wj

)⊤

. (5)

Knowing the weights in advance is a chicken-and-egg problem. On the one hand, if we

knew the true model we could trivially separate inliers from outliers. On the other hand,

if we knew which points are inliers we could directly recover the correct model. In what

follows, we will show that in many instances the weights can be estimated reasonably

well using a deep network with appropriate structure.

4 Deep Model Fitting

Our approach is inspired by the structure of (4). It can be thought of as an iteratively

reweighted least-squares algorithm (IRLS) with a complex, learned reweighting func-

tion. Since we are learning weights from data, we expect that our algorithm is able to

outperform general purpose approaches whenever one or more of the following assump-

tions are true. (1) The input data admits regularity in the inlier and outlier distributions

that can be learned. An example would be an outlier distribution that is approximately

uniform and sufficiently dissimilar to the inlier noise distribution. This is a mild as-

sumption that in fact has been exploited in sampling-based approaches previously [39].

(2) The problem has useful side information that can be integrated into the reweighting

function. An example would be matching scores or keypoint geometry. (3) The output

space is a subset of the full space of model parameters. An example would be funda-

mental matrix estimation for a camera mounted on a car or a wheeled robot.

We will show in our experimental evaluation that our approach indeed is able to

outperform generic baselines if regularity is present in the data, while being competitive

when there is no apparent regularity in the data.

In the following we adopt the general structure of algorithm (4), but do not assume

a simple form of the weight function w. Instead we parametrize it using a deep network

and learn the network weights from data such that the overall algorithm leads to accurate

estimates. Our approach can be understood as a meta-algorithm that learns a complex

and problem-dependent version of the IRLS algorithm with an unknown cost function.

We show that this approach can be used to easily integrate side information into the

problem, which can enhance and robustify the estimates.

Model estimator. We first describe the fundamental building block of our approach, a

version of (4) where the weights are parametrized by a deep network, and will discuss

how the network can be trained end-to-end. We start by redefining the weight function

as w : P × S × R
d′

→ (R>0)
N , where S ∈ S = R

N×s collects side information

that may be available for each point. Note that this function is defined globally, thus

individual points can influence each other. Since w can be a non-trivial function, we
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parametrize it by a deep network with weights θ. With this parametrization, a single

step in algorithm (4) becomes

xj+1 = argmin
x: ‖x‖=1

N
∑

i=1

(w(P,S,xj ;θ))i ‖(A(P))i · x‖
2
. (6)

The question is how to find a parametrization θ that leads to robust and accurate esti-

mates. We now drop the explicit dependence on the correspondences and side informa-

tion for notational brevity and move to matrix form:

xj+1 = argmin
x: ‖x‖=1

∥

∥Wj(θ)Ax
∥

∥

2
, (7)

where (Wj(θ))i,i =
√

w
j
i collects the individual weights into a diagonal matrix.

Proposition 1 Let X = UΣV⊤ denote the singular value decomposition (SVD) of a

matrix X. The solution xj+1 of (7) is given by the right singular vector vd′ correspond-

ing to the smallest singular value of the matrix W(θ)A.

This is a well-known fact as (7) is a homogeneous least-squares problem. For complete-

ness, a derivation is given in supplementary material.

Proposition 1 implies that a solution to the model fitting problem is recovered as

g(f(W(θ)A)), where f(X) = vd′ and g(x) is an appropriate function that maps from

the SVD to the parameters of the geometric model. An example was already given in (5)

for the case of hyperplane fitting. We will provide an example for fundamental matrix

estimation in Section 5.

In order to learn the weights θ using gradient-based optimization, we need to be

able to backpropagate the gradient through an SVD layer. Ionescu et al. [15] showed

how this can be achieved using matrix calculus:

Proposition 2 Assume that the singular vectors are ordered according to the magni-

tude of their singular values V = (v1,v2, . . . ,vd′) such that vd′ is the singular vector

corresponding to the smallest singular value. We need to backpropagate through g(f(X))
with f(X) = vd′ . The gradient of g with respect to the input X is given by

∂g

∂X
= U

{

2Σ
(

K⊤ ◦
(

V⊤ ∂g

∂vd′

)

sym

)}

V⊤, (8)

where

Kij =

{

1
σ2

i
−σ2

j

, if i 6= j

0, otherwise
(9)

and σi denotes the i-th singular value.

The structure of the gradient (8) follows as a special case of the derivations in [15].
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Layer # in # out L-ReLU+IN

1 – 64 X

2 64 128 X

3 128 1024 X

4 1024 512 X

5 512 256 X

6 256 1 ✗

Figure 1 & Table 1. Estimation module and network architecture. Left: The estimation module is

composed of two parts. Given input points and a weighting, a model is estimated using weighted

least-squares. In the second stage a new set of weights is generated given the points, their residuals

with respect to the previously estimated model, and possibly side information. Right: The network

architecture of winit and witer . A checkmark in column L-ReLU+IN indicates that a leaky ReLU

followed by instance normalization is applied to the output of the layer.

A schematic overview of the model estimator is shown in Figure 1. The block takes

as input the points P and a set of weights w. It constructs the matrix W(θ)A as a pre-

processing step, applies a singular value decomposition, and then performs the model

extraction step g(x) that yields an estimate of the geometric model given the input

weights. The estimated model can then be used to estimate a new set of weights, based

on the input points, side information, and the residuals of the currently estimated model.

Weight estimator. To accurately estimate weights, the estimator needs to fulfill two

requirements: It has to be equivariant to permutation of the input data and it has to

be able to process an arbitrary number N of input points. The first requirement arises

since the data presented to the weight estimator does not exhibit any natural ordering.

Thus the function approximator needs to integrate global information in a way that

is independent of the actual ordering of the input data points. The second requirement

arises from the fact that in most applications we do not know the number of input points

a priori.

To build a deep network that fulfills both requirements, we adopt the idea presented

in [29] and [48] for processing unordered sets of points using deep networks. The key

idea of these works is simple: In order to make a network equivariant to permutation of

the input data, every operation in the network itself has to be equivariant to permutation.

This is especially relevant for layers that operate across multiple data points. It can be

shown that global average and max-pooling along dimension N fulfill this property. We

adopt the general structure of [29] with a small modification: Instead of a single pooling

layer that integrates global information, we perform instance normalization [40] after

each layer:

(I(h))i =
hi − µ(h)
√

σ2(h) + ǫ
, (10)

where hi is the feature vector corresponding to point i and the mean µ(h) as well as

the variance σ2(h) are computed along dimension N . This operation integrates the dis-

tribution of global information across points and normalization into a single step. Since
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Algorithm 1 Forward pass

1: Construct A(P)
2: w0

← softmax(winit(P,S)) ⊲ Initial weights

3: for j = 0 to D do

4: X← diag(wj)A
5: U,Σ,V← svd(X)

6: Extract xj+1 = v
d′ from V ⊲ Solution to (7)

7: Compute residuals to construct r from g(xj+1)
8: w

j+1
← softmax(witer(P,S, r,wj))

9: end for

10: return g(xD)

instance normalization is entirely composed of permutation equivariant operations, the

overall network is equivariant to permutations of the input points. We found that this

modification improves stability during training, especially in the high noise regime. A

similar observation was made independently in concurrent work on essential matrix es-

timation [46]. We conjecture that for data with low signal-to-noise ratio, it is crucial to

have multiple operations in the network that integrate data globally. This is in contrast

to the original PointNet architecture [29], where a single global integration step in the

form of a pooling layer is proposed.

An overview of the architecture is shown in Table 1. It consists of repeated applica-

tion of a linear layer (acting independently for each point), followed by a leaky ReLU

activation function [26] and the instance normalization module that enables global com-

munication between points. In order to produce strictly positive weights, the error es-

timator is followed by a softmax. We experimented with different output activations

and found that the softmax activation leads to initializations that are close to the least-

squares estimate.

We define two networks: winit(P,S) to compute an initial set of weights and a

network witer(P,S, r,wj) to update the weights after a model estimation step, where r

denotes the geometric residuals of the current estimate, (r)i = r(pi, g(x
j)).

Architecture. The complete architecture consists of an input weight estimator winit,

repeated application of the estimation module, and a geometric model estimator on the

final weights. In practice we found that five consecutive estimation modules strike a

good balance between accuracy and speed. An overview of a complete forward pass is

shown in Algorithm 1.

We implement the network in PyTorch. In all applications that follow we use Adamax

[18] with an initial learning rate of 10−3 and a batch size of 16. We reduce the learning

rate every 10 epochs by a factor of 0.8 and train for a total of 100 epochs.

5 Fundamental Matrix Estimation

For a complete forward pass, the following problem-dependant components need to

be specified: The preprocessing step A(P), the model extractor g(x), and the residual
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r(pi,x). Note that all of these quantities also need to be specified for RANSAC-type

algorithms, since they specialize the general meta-algorithm to the specific problem in-

stance. While our exposition focuses on fundamental matrix estimation, our approach

can handle other types of problems that are based on homogeneous least-squares. We

use homography estimation as an additional example. Note that other types of estima-

tors which are not based on homogeneous least-squares could be integrated as long

as they are differentiable. In addition we need to specify a training loss to be able to

train the pipeline. We will show that the loss can be directly derived from the residual

function r.

We perform robust fundamental matrix estimation based on the normalized 8-point

algorithm [13]. We rescale all coordinates to the interval [−1, 1]2 and define the prepro-

cessing function

(A(P))i = vec
(

Tp̂i(T
′p̂′

i)
⊤
)

, (11)

where p̂i = ((pi)1, (pi)2, 1)
⊤ and p̂′

i = ((pi)3, (pi)4, 1)
⊤ are homogenous coordi-

nates of the correspondences in the left and right image respectively, and T, T′ are

normalization matrices that robustly center and scale the data [13] based on the esti-

mated weights. We further define the model extractor as

g(x) = argmin
F: det(F)=0

∥

∥F−T⊤(x)3×3T
′
∥

∥

F
, (12)

where F denotes the fundamental matrix. The model extractor explicitly enforces rank

deficiency of the solution by projecting to the set of rank-deficient matrices. It is well-

known that this projection can be carried out in closed formed by setting the smallest

singular value of the full-rank solution to zero [13]. We use the symmetric epipolar

distance as the residual function:

r(pi,F) =
∣

∣p̂⊤
i Fp̂

′
i

∣

∣

(

1
‖F⊤p̂i‖2

+ 1

‖Fp̂′

i‖2

)

. (13)

Fundamental matrices cannot be easily compared directly due to their structure.

We opt to compare them based on how they act on a given set of correspondences. To

this end we generate virtual pairs of correspondences that are inliers to the groundtruth

epipolar geometry by generating a grid of points in both images and reprojecting the

points to the groundtruth epipolar lines. This results in virtual, noise-free inlier corre-

spondences p
gt
i that can be used to define a geometrically meaningful loss. This can be

understood as sampling the groundtruth epipolar geometry in image space. We define

the training loss as

L =
1

Ngt

D
∑

j=0

Ngt
∑

i=1

min
(

r(pgt
i , g(xj)), γ

)

. (14)

Clamping the residuals ensures that hard problem instances in the training set do not

dominate the training loss. We set γ = 0.5 for all experiments. Note that since the

network admits interpretable intermediate representations, we attach a loss to all D

intermediate results.
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To faciliate efficient batch training, we constrain the number of keypoints per image

pair to 1000, by randomly sampling a set of keypoints if the detected number is larger.

We replicate random keypoints if the number of detected keypoints is smaller than 1000.

At test time we evaluate the estimated solution and perform a final, non-robust

model fitting step to the 20 points with smallest residual error in order to correct for

small inaccuracies in the estimated weights.

6 Experiments

In order to show that our approach is able to exploit regularity in data when it is present,

while providing competitive performance on generic fundamental matrix estimation

problems, we conduct experiments on datasets of varying regularity: (1) The Tanks

and Temples dataset, which depicts images of medium-scale scenes taken from a hand-

held camera [19]. This dataset presents a large-baseline scenario with generic camera

extrinsics, but exhibits some regularity (particularly in the intrinsics) as all sequences

in the dataset are acquired by two cameras. (2) The KITTI odometry dataset, which

consists of consecutive frames in a driving scenario [9]. This datasets exhibits high

regularity, with small baselines and epipolar geometries that are dominated by forward

motion. (3) An unstructured SfM dataset, with images taken from community photo

collections [43]. This dataset represents the most general case of fundamental matrix

estimation, where image pairs are taken from arbitrary cameras over large baselines.

We will show that our approach is still able to learn a robust estimator that performs as

well as or better than classic sampling-based approaches in the most general case, while

offering the possibility to specialize if regularity is present in the data.

Tanks and Temples. The Tanks and Temples dataset consists of medium-scale image

sequences taken from a hand-held camera [19]. We use the sequences Family, Francis,

Horse, and Lighthouse for training. We use M60 for validation and evaluate on the three

remaining ‘Intermediate’ sequences: Panther, Playground, and Train. (The train/val/test

split was done in alphabetical order, by sequence name.) We reconstruct the sequences

using the COLMAP SfM pipeline [35] to derive groundtruth camera poses and corre-

sponding fundamental matrices. We use SIFT [25] to extract putative correspondences

between all pairs of frames in a sequence and discard pairs which have less than 20

Table 2. Performance on the Tanks and Temples dataset for different numbers of iterations D.

D = 5∗ does not use any side information (the only inputs to the network are the x-y coordinates

of the putative matches). Direct reg. is a network that directly regresses to the fundamental matrix.

% Inliers F-score Mean Median Min Max Time [ms]

D = 1 42.30 44.80 3.45 1.00 0.08 1912.67 7
D = 3 44.91 47.25 1.98 0.82 0.08 566.70 18
D = 5 45.02 46.99 2.04 0.83 0.11 285.36 26

D = 5∗ 44.60 46.42 2.23 0.84 0.10 391.64 26
Direct reg. 4.42 9.14 16.67 11.96 0.83 386.15 3
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matches within one pixel of the groundtruth epipolar lines. The resulting dataset is

composed of challenging wide-baseline pairs. An example is shown in Figure 3 (right-

most column). Note that the SfM pipeline reasons globally about the consistency of 3D

points and cameras, leading to accurate estimates with an average reprojection error

below one pixel [35]. We generate two datasets: A default dataset were the correspon-

dences were prefiltered using a ratio test with a cut-off of 0.8. Unless otherwise stated

we train and test on this filtered dataset. The ratio test is a commonly employed tech-

nique in SIFT matching and can lead to greatly improved inlier ratios, but might lead

to a sparse set of candidate correspondences. We generate a second significantly harder

dataset without this pre-filtering step to test the robustness of our approach in the high

noise regime.

In a first experiment, we train our network with varying depths D and use the de-

scriptor matching score as well as the ratio of best to second best match as side in-

formation. We report the average percentage of inliers (correspondences with epipolar

distance below one pixel), the F1-score (where positives are defined as correspondences

with an epipolar distance below one pixel with respect to the groundtruth epipolar line),

and the mean and median epipolar distance to groundtruth matches. We additionally

report the minimum and maximum errors incurred over the dataset. The results are

summarized in Table 2. It can be observed that with a larger number of iterations, more

accurate results are found. The setting D = 1 corresponds to only applying the neural

network followed by a single weighted least-squares estimate. Using three steps of iter-

ative refinement (D = 3) considerably improves the average inlier count as well as the

overall accuracy. The network with five steps of iterative refinement (D = 5) performs

comparably to three steps in most measures, but is more robust in the worst case. We

thus use this architecture for all further evaluations.

We additionally evaluate the influence of side information. This is shown in the

D = 5∗ setting, where only the locations of the putative correspondences are passed

to the neural networks. Removing the side information leads to a small but noticeable

drop in average accuracy. Finally, Direct reg. shows the result of an unstructured neural

network that directly regresses from correspondences and side information to the coef-

ficients of the fundamental matrix. The architecture resembles the D = 1 setting, with

the weighted least-squares layer replaced by a pooling layer followed by three fully-

connected layers. Details of the architecture can be found in the supplementary mate-

rial. It can be seen that the unstructured network leads to considerably worse results.

This highlights the importance of modeling the problem structure. We additionally re-

port average execution times in milliseconds for the different architectures as measured

on an NVIDIA Titan X GPU.

Table 3 compares our approach (D = 5) to RANSAC [7], Least Median of Squares

(LMEDS) [32], MLESAC [39], and USAC [30]. Note that USAC is a state-of-the-art

robust estimation pipeline. Similarly to our approach, it can leverage matching quality

as additional side information to perform guided sampling. For fair comparison, we thus

provide the matching scores (side information) to USAC. For RANSAC, LMEDS, and

MLESAC we used the eight-point algorithm [13] as the base estimator, whereas USAC

used the seven-point algorithm. For the baseline methods we performed a grid-search

over hyperparameters on the training set.
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Table 3. Results on the Tanks and Temples dataset. We evaluate two scenarios: moderate noise,

where the putative correspondences were prefiltered using the ratio test, and high noise, without

the ratio test. Our approach outperforms the baselines in both scenarios.

Tanks and Temples – with ratio test Tanks and Temples – without ratio test

% Inliers F-score Mean Median % Inliers F-score Mean Median

RANSAC 42.61 42.99 1.83 1.09 2.98 10.99 122.14 79.28

LMEDS 42.96 40.57 2.41 1.14 1.57 4.78 120.63 108.72

MLESAC 41.89 42.39 2.04 1.08 2.13 8.28 131.11 93.04

USAC 42.76 43.55 3.72 1.24 4.45 23.55 46.32 8.52

Ours 45.02 46.99 2.04 0.83 5.62 26.92 36.81 7.82

As shown in Table 3, our approach outperforms all the baselines on both datasets.

The difference is particularly striking on the dataset that does not include the ratio test.

This datasets features very high outlier ratios (80%+), pushing the sampling-based ap-

proaches beyond their breakdown point in most cases. USAC and our approach perform

considerably better than the other baselines on this dataset, which highlights the impor-

tance of using side information to guide the estimates.

KITTI odometry dataset. The KITTI odometry dataset [9] consists of 22 distinct driv-

ing sequences, eleven of which have publicly available groundtruth odometry. We fol-

low the same protocol as on the previous dataset and use the ratio test to pre-filter

the putative correspondences. We train our network on sequences 00 to 05 and use se-

quences 06 to 10 for testing.

Table 4 summarizes the results on this dataset. We show the results of two different

models: One that was trained on the KITTI training set (Ours tr. on KITTI) and one

that was trained on Tanks and Temples (Ours tr. on T&T). The results indicate that our

approach is able to learn a model that is more accurate when specialized to the dataset.

It is interesting to note that the model that was trained on the Tanks and Temples dataset

generalizes to the KITTI dataset, even though the datasets are very different in terms of

Table 4. Results on the KITTI benchmark for different inlier thresholds. We evaluate a model that

was trained on the KITTI training set as well as a model that was trained on Tanks and Temples,

in order to show both ability to take advantage of regularities in the data and ability to learn an

estimator that generalizes across datasets.

@ 0.1px @ 1px

% Inliers F-score % Inliers F-score Mean Median

RANSAC 21.85 13.84 84.96 75.65 0.35 0.32

LMEDS 20.01 13.34 84.23 75.44 0.37 0.35

MLESAC 18.60 12.54 84.48 75.15 0.39 0.36

USAC 21.43 13.90 85.13 75.70 0.35 0.32

Ours tr. on T&T 21.00 13.31 84.81 75.08 0.39 0.33

Ours tr. on KITTI 24.61 14.65 85.87 75.77 0.32 0.29
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the camera geometry and the range of fundamental matrices that can occur. The model

that was trained on Tanks and Temples performs comparably to the baseline approaches,

which indicates that a robust estimator that is applicable across datasets can be learned.

Community photo collections. We additionally show experiments on general com-

munity photo collection datasets [43]. This dataset admits no obvious regularity, with

images taken from distinct cameras from a large variety of positions.

We use the sequence Gendarmenmarkt from this dataset for training, and use the se-

quence Roman Forum for testing. We reconstruct both sequences using COLMAP [35].

We randomly sample 10,000 image pairs from Gendarmenmarkt that contain at least 20

matches that are within 1 pixel of the groundtruth epipolar line to generate the training

set. We randomly sample 1000 image pairs from Roman Forum to generate the test set.

Table 5 summarizes the results on this dataset. It can be seen that our approach per-

forms as well as or better than the baselines according to most measures. Since there is

no apparent regularity in the data, this highlights the ability of our approach to learn a

general-purpose estimator, while still being able to exploit regularity to its advantage if

it is present in the data. We present qualitative results on this dataset in Figure 3.

Homography estimation. As a supporting contribution, we show that our approach

leads to state-of-the-art results on the task of homography estimation. We use the DLT

as a base estimator and provide exact expressions for A(P), g(x), and the residuals in

the supplementary material.

We follow the evaluation protocol defined in [6], which is based on the MS-COCO

dataset [23]. For each image we extract random patches of size 256×256 pixels. We

generate a groundtruth homography by perturbing the corners of the reference patch

uniformly at random by up to 64 pixels. The inverse homography is used to warp the

reference image and a second (warped) patch is extracted from the same location. We

refer to [6] for further details on the dataset generation. We generate 10,000 training

pairs and use ORB [33] and the Hamming distance for matching. We discard pairs with

less than 100 matches and use a total of 500 points to allow batching. We use matching

scores as side information and clamp the maximal residual in (14) to γ = 64.

We compare our approach to a deep network for homography estimation [6] (HNet),

RANSAC followed by a non-linear refinement stage, and USAC. To train the baseline

@ 0.1px @ 1px

% Inliers F-score % Inliers F-score Mean Median

RANSAC 49.55 40.80 67.52 59.12 2.29 1.21

LMEDS 51.74 41.87 67.85 59.38 2.50 1.16

MLESAC 48.07 40.01 67.40 58.64 1.45 1.17

USAC 51.21 41.87 66.65 58.93 2.94 1.22

Ours 51.41 43.28 68.31 60.67 1.51 1.02
HNet RANSAC USAC Ours

0

5

10

15
Median

Mean

Table 5 & Figure 2. Left: Performance of fundamental matrix estimation on Roman Forum. This

datasets exhibits a wide range of camera geometries and motions. Our approach leads to an esti-

mator that is competitive with the baselines. Right: Performance on the homography estimation

task in terms of average corner error.



14 R. Ranftl and V. Koltun

network, we follow the exact protocol described in [6]. The test set consists of 1000

images from the MS-COCO test set that where generated in the same way as the training

set with the exception that we do not discard pairs with less than 100 matches.

The results are summarized in Figure 2. We report statistics of the average corner

error of the estimated homographies. Note that our result of HNet is slightly better

than what was reported by the authors (avg. error 8.0 pixels vs 9.2 pixels in [6]). Our

approach outperforms both HNet and the SAC baselines.

7 Conclusion

We have presented a method for learning robust fundamental matrix estimators from

data. Our experiments indicate that the learned estimators are robust and accurate on

a variety of datasets. Our approach enables data-driven specialization of estimators to

certain scenarios, such as ones encountered in autonomous driving. Our experiments

indicate that general robust estimators that are competitive with the state of the art

can be learned directly from data, alleviating the need for extensive modeling of error

statistics.

We view the presented approach as a step towards modular SLAM and SfM systems

that combine the power of deep networks with mathematically sound geometric model-

ing. In addition to the presented problem instances, our approach is directly applicable

to other problems in multiple-view geometry that are based on the Direct Linear Trans-

form, such as triangulation or the PnP problem [13]. Furthermore, the general scheme

of the algorithm may be applicable to other problems where IRLS is employed [47].

Figure 3. Image pairs from Roman Forum (first and second column) and Tanks and Temples (last

column). Top row: First image with inliers (red) and outliers (blue). Bottom row: Epipolar lines

of a random subset of inliers in the second image. We show the epipolar lines of our estimate

(green) and of the groundtruth (blue). Images have been scaled for visualization.
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