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Abstract. When intelligent agents learn visuomotor behaviors from hu-
man demonstrations, they may benefit from knowing where the human
is allocating visual attention, which can be inferred from their gaze. A
wealth of information regarding intelligent decision making is conveyed
by human gaze allocation; hence, exploiting such information has the
potential to improve the agents’ performance. With this motivation, we
propose the AGIL (Attention Guided Imitation Learning) framework.
We collect high-quality human action and gaze data while playing Atari
games in a carefully controlled experimental setting. Using these data, we
first train a deep neural network that can predict human gaze positions
and visual attention with high accuracy (the gaze network) and then
train another network to predict human actions (the policy network).
Incorporating the learned attention model from the gaze network into
the policy network significantly improves the action prediction accuracy
and task performance.
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1 Introduction

In end-to-end learning of visuomotor behaviors, algorithms such as imitation
learning, reinforcement learning (RL), or a combination of both, have achieved
remarkable successes in video games [28], board games [37, 38], and robot manip-
ulation tasks [24, 30]. One major issue of using RL alone is its sample efficiency,
hence in practice human demonstration can be used to speedup learning [37, 6,
15].

Imitation learning, or learning from demonstration, follows a student-teacher
paradigm, in which a learning agent learns from the demonstration of human
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teachers [1]. A popular approach is behavior cloning, i.e., training an agent to
predict (imitate) demonstrated behaviors with supervised learning methods. Im-
itation learning research mainly focuses on the student–advancing our under-
standing of the learning agent–while very little effort is made to understand the
human teacher. In this work, we argue that understanding and modeling the
human teacher is also an important research issue in this paradigm. Specifically,
in visuomotor learning tasks, a key component of human intelligence–the visual
attention mechanism–encodes a wealth of information that can be exploited by
a learning algorithm. Modeling human visual attention and guiding the learning
agent with a learned attention model could lead to significant improvement in
task performance.

We propose the Attention Guided Imitation Learning (AGIL) framework, in
which a learning agent first learns a visual attention model from human gaze
data, then learns how to perform the visuomotor task from human decision data.
The motivation is that for deep imitation learning tasks where the decision state
is often in raw pixel space, the introduction of attention could help resolve two
issues:

1. Humans have a unique sensory system that is different from machines’ and
this leads to different perceived decision states.

2. The traits of this sensory system lead to gaze behaviors and visual attention–
intelligent mechanisms that are not yet available to the learning agent. With-
out these mechanisms, it is difficult for the agent to infer which visual fea-
tures are being attended and are relevant for the decision at a given moment
in a high dimensional feature space.

To elaborate the first point, humans have high acuity foveal vision in the
central 1-2 visual degrees of the visual field (i.e., covering the width of a finger
at arms length), with resolution decreasing in the periphery. This leads to a
discrepancy in the perceived states of a human and a machine, where the machine
perceives full resolution images like in Fig. 1a while a human would see Figs. 1b
if the stimulus is 64.6× 40.0cm and the distance to the subjects’ eyes is 78.7cm.
A foveal visual system may seem inferior compared to a full resolution camera,
but it leads to an outstanding property of human intelligence: Visual attention,
which can be seen as a feature selection mechanism. Humans manage to move
their foveae to the correct place at the right time in order to emphasize important
task-relevant features [8, 36]. In this way, a wealth of information is encoded in
human gaze behaviors–for example, the priority of one object over another in
performing an action.

Given the rich information encoded in human gaze, we hypothesize that a
promising approach to strengthen an imitation learning algorithm is to model
human visual attention through gaze, and subsequently include such a model
in the decision-learning process. Doing so would allow the learning agent to use
gaze information to help decipher the internal state representation used by the
human teacher. By extracting features that are most important for tasks, the
learning agent can better understand and imitate a human teachers’ behaviors.
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(a) (b)

Fig. 1: An original game frame for Atari Seaquest with a red circle indicating
the gaze position (a). The gaze position is used to generate foveated images (b)
that are biologically plausible retinal representations of the visual stimulus (the
stimulus as perceived by the human).

We start by extracting the large amount of high-quality training data neces-
sary for training. With modern high-speed eye trackers we collect human game
playing data and gaze data for various Atari games. We first train a deep neu-
ral network that can predict human gaze positions and visual attention (the
gaze network). Second, we train another deep neural network–guided by visual
attention information–to predict human actions (the policy network). Finally,
we evaluate the imitation learning results in terms of both behavior matching
accuracy and game playing performance.

2 Related Work

Modeling visual attention: bottom-up vs. top-down Previous work in
computer vision has formalized visual attention modeling as a saliency prediction
problem where saliency is derived from image statistics, such as intensity, color,
and orientation in the classic Itti-Koch model [17]. In recent years, this approach
has made tremendous progress due to large benchmark datasets and deep neural
networks [19, 5, 25, 22, 42, 21]. Many saliency datasets collect human eye tracking
data in a ”free-viewing” manner due to their task-free nature [19].

In contrast to this approach, top-down models emphasizes the effects of task-
dependent variables on visual attention [12, 39, 33, 2]. [36] have shown that vary-
ing task instructions drastically alters the gaze distributions on different cate-
gories of objects (e.g., task-irrelevant objects are ignored even though they are
salient from a bottom-up perspective). [20] has shown that in an urban driving
environment, attention shifts can be accurately predicted by changing both the
relative reward of different tasks and the level of uncertainty in the state esti-
mation. The top-down attention model is hence closely related to reinforcement
learning since they both concern visual state features that matter the most for
acquiring the reward [12, 23].
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Regardless of their approaches, these works argue that there is much valuable
information encoded in gaze behaviors. It should be said that the two approaches
are not mutually exclusive, since attention is modulated in both saliency-driven
and volition-controlled manners [17]. As mentioned before, deep neural networks
have been a standard approach to predict bottom-up saliency. In contrast, top-
down gaze models often rely on manually defined task variables. Our approach
seeks to combine these approaches and use the representation learning power
of deep networks to extract task-relevant visual features, given task-driven gaze
data. A recent work that also takes this approach is [31], where they predict
human gaze while driving from raw images using a multi-channel deep network.

Attention in visuomotor learning tasks While visual attention models have
shown very promising results in several visual learning tasks, including visual
question answering [43], image generation [11], image caption generation [41],
and spatial transformer networks [18], incorporating visual attention models into
visuomotor learning is yet to be explored.

The relation between attention and reinforcement learning has been revealed
by neuroscience researchers [9, 35, 23, 16]. [29] attempts to jointly learn atten-
tion and control, and show that a learned attention model can predict visual
attention much better than bottom-up saliency models. [40] show that differ-
ent network components learn to attend to different visual features, but they
do not explicitly model visual attention. [27] pioneered efforts to combine deep
reinforcement learning and visual attention, where attention is treated as a se-
quential decision problem (where to look) and is jointly trained with the control
policy (what to do) via deep reinforcement learning. Therefore their attention
model is a non-differentiable (or “hard”) attention model which leads to a com-
putationally expensive training procedure. In contrast, saliency approaches in
general prefer a differentiable (or “soft”) attention model that could be trained
more efficiently. Our work treats visual attention as an auxiliary component for
visuomotor learning tasks and chooses to use the more efficient soft attention
model.

3 Data Acquisition

We collected human game-playing actions using Atari games in the Arcade
Learning Environment [3], a rich environment with games of very different dy-
namics, visual features, and reward functions. These games capture many inter-
esting aspects of the natural visuomotor tasks meanwhile allow better experi-
mental control than real-world tasks.

At each time step t, the raw image frame It, the human keystroke action
at, and the gaze position gt were recorded. The gaze data was recorded using
an EyeLink 1000 eye tracker at 1000Hz. The game screen is 64.6 × 40.0cm and
the distance to the subjects’ eyes was 78.7cm. The visual angle of an object is
a measure of the size of the object’s image on the retina. The visual angle of
the screen was 44.6× 28.5 visual degrees. Standard eye tracking calibration and
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validation techniques were implemented, resulting in an average gaze positional
error of 0.44 visual degrees (covering the half width of a finger at arms length).

Our goal is to obtain the best possible control policy from human subjects,
hence we take into account the limitations of human reaction time and fatigue.
For visuomotor tasks like playing Atari games, human response time to visual
stimulus is on average 250 ms, so running the game at the original speed is too
challenging for most human subjects. To allow for enough response time, the
games only proceed when the subject makes an action (presses a key or keeps a
key pressed down). To reduce fatigue, players play for 15 minutes and rest for
at least 20 minutes.

We carefully chose eight Atari games from [28] that each represent a dif-
ferent genre. The data are from three amateur human players that contains a
total length of 1,335 minutes and 1,576,843 image frames. The frames without
gaze–due to blinking, off-screen gaze, or tracker error–are marked as bad data
and excluded from training and testing (5.04%). Data belong to a single trajec-
tory (an episode in Atari game) will not be split into training and testing set.
Due to the high sampling frequency of the data recording device, two adjacent
frames/actions/gazes are highly similar so we avoid putting one in training and
another in testing. The sample size information for training and testing can be
found in Appendix 1.

The data is collected under a different setting compared to the human exper-
iments reported in the previous deep imitation learning and RL literature [28,
40, 15]. Even though human players are recruited students who are familiar with
these games but non-experts, our experimental settings resulted in significantly
better human performance; see Appendix 1 for a human game score compari-
son. The high human game scores pave the way for a more insightful comparison
between human and deep RL performances in terms of decision making. The
dataset is available upon request to encourage future research in vision science,
visuomotor behaviors, imitation learning, and reinforcement learning.

4 Gaze Network

Computer vision research has formalized visual attention modeling as an end-
to-end saliency prediction problem, whereby a deep network can be used to
predict a probability distribution of the gaze (saliency map). The ground truth
saliency map is generated by converting discrete gaze positions to a continuous
distribution using a Gaussian kernel with σ equals to 1 visual degree, as suggested
by [4].

We use the same deep neural network architecture and hyperparameters for
all eight games (this is true for all models used in this work). The network ar-
chitecture we use (shown in Fig. 2) is a three-channel convolution-deconvolution
network. The inputs to the top channel are the images where the preprocessing
procedure follows [28] and hence consist of a sequence of 4 frames stacked to-
gether where each frame is 84 × 84 in grayscale. The reason to use 4 frames is
because a single image state is non-Markovian in Atari games, e.g., the direction



6 R. Zhang et al.

of a flying bullet is ambiguous if we only see a single frame. The mid channel
models motion information (optical flow) which is included since human gaze is
sensitive to movement, and motion information has been used to improve gaze
prediction accuracy [26]. Optical flow vectors of two continuous frames are calcu-
lated using the algorithm in [10] and fed into the network. The bottom channel
includes bottom-up saliency map computed by the classic Itti-Koch model [17].
The output of the network is a gaze saliency map trained with Kullback-Leibler
divergence as the loss function:

KL(P,Q) =
∑

i

Qi log
(

ǫ+
Qi

ǫ+ Pi

)

(1)

where P denotes the predicted saliency map and Q denotes the ground truth.
The regularization constant ǫ is set to 1e− 10.

Fig. 2: The three-channel gaze network. The top channel takes in images, the mid
channel takes in the corresponding optical flow, and the bottom channel takes
in the bottom-up image saliency. We then average the output of three channels.
The final output is a gaze saliency map that indicates the predicted probability
distribution of the gaze. The design of the convolutional layers follows the Deep
Q-network [28].

For a performance comparison we use the classic bottom-up saliency model [17]
as the first baseline (Saliency(S) in Table 1). Then we compute optical flow (Mo-
tion(M) in Table 1) of the current image as the second baseline, since motion is
a reasonable indicator of visual attention. Then an ablation study is performed
where the model consists only one or two channels of the original network in
Fig. 2, i.e., Image(I), Image+Saliency(I+S), or Image+Motion(I+M). The per-
formance of the algorithms are evaluated using four standard metrics in the
visual saliency literature [34]: Normalized Scanpath Saliency (NSS), Area Under
the Curve (AUC), Kullback-Leibler divergence (KL), and Correlation Coefficient
(CC).

The quantitative results are shown in Table 1. Overall, the prediction results
of our models are highly accurate across all games and largely outperform the
saliency and motion baselines, indicated by the high AUC (above 0.93 for all
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Break- Free- Enduro River- Sea- Ms- Centi- Ven-
out way raid quest Pacman pede ture

Saliency(S) NSS↑ -0.075 -0.175 -0.261 0.094 -0.208 -0.376 0.665 0.422
Motion(M) 2.306 1.015 0.601 1.200 2.016 0.891 1.229 1.004
Image(I) 6.336 6.762 8.455 5.776 6.417 4.522 5.147 5.429
I+S 6.363 6.837 8.379 5.746 6.384 4.518 5.215 5.469
I+M 6.432 6.874 8.481 5.834 6.485 4.600 5.445 6.222

I+S+M 6.429 6.852 8.435 5.873 6.510 4.571 5.369 6.125

Saliency(S) AUC↑ 0.494 0.560 0.447 0.494 0.352 0.426 0.691 0.607
Motion(M) 0.664 0.697 0.742 0.738 0.779 0.664 0.729 0.643
Image(I) 0.970 0.973 0.988 0.962 0.963 0.932 0.956 0.957
I+S 0.969 0.973 0.988 0.961 0.963 0.933 0.957 0.956
I+M 0.970 0.972 0.988 0.962 0.964 0.935 0.961 0.964

I+S+M 0.969 0.973 0.988 0.962 0.964 0.936 0.960 0.964

Saliency(S) KL↓ 4.375 4.289 4.517 4.235 4.744 4.680 3.774 3.868
Motion(M) 13.097 10.638 8.312 9.151 9.133 12.173 10.810 12.853
Image(I) 1.304 1.261 0.834 1.609 1.464 1.985 1.711 1.749
I+S 1.301 1.260 0.834 1.613 1.470 1.995 1.709 1.727
I+M 1.294 1.257 0.832 1.593 1.438 1.959 1.622 1.512
I+S+M 1.299 1.260 0.835 1.592 1.437 1.961 1.645 1.510

Saliency(S) CC↑ -0.009 -0.023 -0.033 -0.008 -0.035 -0.048 0.065 0.048
Motion(M) 0.205 0.099 0.077 0.125 0.190 0.092 0.132 0.105
Image(I) 0.583 0.588 0.705 0.505 0.558 0.439 0.481 0.483
I+S 0.583 0.588 0.702 0.503 0.555 0.436 0.479 0.488
I+M 0.584 0.591 0.706 0.509 0.564 0.441 0.499 0.543

I+S+M 0.584 0.589 0.704 0.511 0.562 0.440 0.492 0.541

Table 1: Quantitative results of predicting human gaze across eight games. Ran-
dom prediction baseline: NSS = 0.000, AUC = 0.500, KL = 6.159, CC = 0.000.
For comparison, the classic [17] model (Saliency) and optical flow (Motion) are
compared to versions of our model. All our models are accurate in predicting
human gaze (AUC>0.93). In general the Image+Motion (I+M) model achieves
the best prediction accuracy across games and four metrics.
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(a) Breakout (b) Freeway

(c) Enduro (d) Riverraid

(e) Seaquest (f) MsPacman

(g) Centipede (h) Venture

Fig. 3: Visualization of gaze prediction results for eight games (best viewed in
color). The solid red dot indicates the ground truth human gaze position. The
heatmap shows the model’s prediction as a saliency map, computed using the
Image+Motion gaze network.
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games) obtained. A two-channel model (Image+Motion) in general achieves the
best results. Further removing the motion information (having only the image)
results in only slightly less accuracy–with the exception of the game Venture
in which the speed of the monsters matters the most, hence removing motion
decreases prediction accuracy. Including bottom-up saliency into the model does
not improve the performance overall. This indicates that in the given tasks, the
top-down visual attention is different than and hard to be inferred from the
traditional bottom-up image saliency.

We encourage readers to view the video demo of the prediction results at
https://www.youtube.com/watch?v=-zTX9VFSFME. Example predictions for
all games are shown in Fig. 3 where the predicted gaze saliency map and ground
truth human gaze positions are overlayed on top of the game frames. It is worth
noticing that the prediction could be multimodal as in Figs 3d and 3g, indi-
cating the task requires divided attention in these situations which our model
successfully captured.

Sample efficiency In imitation learning tasks, sample efficiency is a major
concern since human demonstration data could be expensive to collect. The
proposed AGIL framework cannot be claimed to have an advantage over previous
imitation learning or RL approaches if learning the attention model requires
significantly more data. We study the effect of varying training sample size on
prediction accuracy and find that the Image+Motion model is able to achieve
high AUC values (above 0.88 for MsPacman and above 0.94 for 7 other games)
with a single trial of human gaze data (15-minute)–although additional data can
still help. The learning curves plotted against training sample size for all games
can be found in Appendix 2. Therefore, training the gaze network does not incur
a burden on sample size for the given task.

Generalization across subjects Do human subjects exhibit different gaze
behaviors when performing the same task? This question is further investigated
by training the gaze network on one subject’s data and testing on the others for
all games. We find that the gaze model is most accurate when trained and tested
on the same subject. When tested on a different subject, the average prediction
accuracy loss, in terms of correlation coefficient, is 0.091 comparing to trained
and tested on the same subject (0.387 vs. 0.478). A detailed analysis can be
found in Appendix 3.

5 AGIL: Policy Network with Attention

Given a gaze network that can accurately predict visual attention, we can incor-
porate it into a policy network that predicts a human’s decisions. A deep network
is trained with supervised learning to classify human actions given the current
frame. The baseline network architecture follows the Deep Q-Network [28]. Here,
we discuss two models that incorporate visual attention information to the imi-
tation learning process.
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5.1 Foveated rendering

One way to utilize gaze information is to reconstruct a biologically plausible
representation of the visual stimulus (the stimulus as perceived by the human
subject). We hypothesize that training the network with realistic retinal images
may improve prediction, since these images are closer to the true human rep-
resentation. We fed the visual angle of the game screen (44.58×28.50), a single
ground truth human gaze position, and the original image into the Space Variant
Imaging system [32]. The algorithm provides a biologically plausible simulation
of foveated retinal images as shown in Fig. 1b by down-sampling and blurring
the image according to the distribution of ganglion cells on the human retina.

The foveated images have a nice property of emphasizing the visual features
near the gaze position. However, humans do not feel like they perceive the world
like Figs. 1b, since memory plays an important role in reconstructing the visual
world. A foveated image highlights the visual information being perceived at
the moment, but it may lose other task-relevant information stored in memory.
To compensate for this effect, we feed both the original image and the foveated
image into a two-channel deep network. The model is referred as the Foveated
model.

The prediction results are shown in Table 2. As expected, the Foveated model
consistently achieves better or comparable performance over the plain imitation
model.

5.2 Masking with Attention

The foveated rendering approach directly incorporates human ground truth gaze
into imitation learning. However, we argue that using the gaze heatmap learned
by the gaze network might be better for two reasons: 1) While the ground truth
gaze position is a single location, the human attention may be distributed on
multiple objects (e.g., in Figs. 3d, 3e, and 3g); 2) The ground truth human gaze
could be noisy but the predicted attention is accurate and clean. In addition,
when the agent actually plays the game the ground truth human gaze will not
be available.

We treat the predicted gaze heatmap as a saliency mask and multiply the
mask with image frame element-wise. Similar to foveated rendering, the mask
has the effect of emphasizing the stimulus being attended. For the same reason
as in the Foveated model, we add a second channel that also takes the original
image as the input and call this the Attention model. The final architecture is
shown in Fig. 4. The prediction results are shown in Table 2. It is evident that the
incorporating attention model has an advantage over the baseline. In particular,
results for the four games that often require multitasking show large improve-
ments: 15.6% on Seaquest, 16% on MsPacman, 5.1% on Centipede, and 6.6% on
Venture. We conclude that including gaze information–either by foveated ren-
dering or masking–can significantly improves the performance in terms of policy
matching accuracy.
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Fig. 4: The policy network architecture for imitating human actions. The top
channel takes in the current image frame and the bottom channel takes in the
masked image which is an element-wise product of the original image and pre-
dicted gaze saliency map by the gaze network. We then average the output of
the two channels.

Imitation +Foveated +Attention

Breakout 81.5 ± 0.3 84.2 ± 0.1 86.2 ± 0.2

Freeway 96.7± 0.0 96.4 ± 0.1 96.4 ± 0.2
Enduro 60.6 ± 0.4 60.5 ± 0.4 61.9 ± 0.3

Riverraid 72.5 ± 0.3 72.4 ± 0.4 72.5 ± 0.4

Seaquest 46.0 ± 1.8 51.4 ± 1.0 61.6 ± 0.2

MsPacman 54.6 ± 1.0 65.1 ± 1.0 70.6 ± 0.3

Centipede 61.9 ± 0.2 64.8 ± 0.3 67.0 ± 0.3

Venture 46.7 ± 0.2 48.7 ± 0.1 53.3 ± 0.3

Table 2: Percentage accuracy (mean ± standard deviation) in predicting human
actions across eight games using different models. Random prediction baseline:
5.56. The model in Fig. 4 (+Attention) yields the best prediction accuracy.
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6 Evaluating the Learned Policy

The behavior matching accuracy is not the sole performance evaluation metric,
since the ultimate goal of imitation learning is to learn a good policy to actually
perform the task. When playing the games, the AGIL framework takes game im-
ages as input to the trained gaze network, and passes gaze network’s predicted
attention mask to the policy network to make decisions. The agent chooses an
action a probabilistically using a softmax function with Gibbs (Boltzmann) dis-
tribution according to policy network’s prediction P (a):

π(a) =
exp(ηP (a))

∑

a′∈A
exp(ηP (a′))

(2)

where A denotes the set of all possible actions, exp(.) denotes the exponential
function, and the temperature parameter η is set to 1.

The average games scores over 100 episodes per game are reported in Ta-
ble 3, in which each episode is initialized using a randomly generated game seed
to ensure enough variability in game dynamics [13]. Our model with attention
outperforms the previous plain imitation learning results of [15] and the one
without attention using our dataset. The improvement over the latter is 3.4%
to 1143.8%. The improvement is minor for Freeway since the scores are close to
the maximum possible score (34.0) for this task.

An advantage of imitation learning comparing to RL is its sample efficiency.
We show performance of deep Q-learning [28] implemented using the standard
OpenAI DQN benchmark [7] trained for the same sample size (training sample
size for each game can be found in Appendix 1). It is evident that DQN’s per-
formance is not at the same level with imitation learning given the same amount
of training data. Remarkably, after 200 million training samples (corresponds
to about 38.58 days of play experience when playing at 60Hz), our method is
still better than or comparable to DQN in four games: Freeway, Enduro, Cen-
tipede, and Venture. In fact, our method achieves the state-of-the-art result on
Centipede comparing to any RL methods or their combinations [14].

Why does the learned visual attention model improve action prediction ac-
curacy and task performance? First, attention highlights task-relevant visual
features in a high-dimensional state space, even though the features may only
occupy a few pixels in that space, as observed in Figs 3. Hence, attention can be
seen as a feature selection mechanism that biases the policy network to focus on
the selected features. Second, attention could help to identify and disambiguate
the goal of current action when multiple task-relevant objects are present. For
example, in Fig. 5b and 5c the gaze indicates that the goal of current action
involves the enemy to the left or above the yellow submarine. The corresponding
actions would be moving left for the first case and moving up for the second.
The two enemies are visually identical hence the learning agent cannot predict
the correct action without gaze information – an issue further exacerbated by
convolutional layers of the network due to their spatial invariant nature. For
these reasons, modeling human attention helps the agent infer the correct deci-
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Imitation Imitation AGIL Improv- DQN DQN
[15] Our data Our data ment Same N N = 200M

Breakout 3.5 1.6± 1.2 19.9± 14.1 1143.8% 1.52 401.2
Freeway 22.7 29.6± 1.2 30.6± 1.2 3.4% 0 30.3
Enduro 134.8 239.8± 90.8 295.7± 99.5 23.3% 0 301.8

Riverraid 2148.5 2419.7± 655.8 3338.5± 1485.9 38.0% 1510 8316
Seaquest 195.6 252.2± 109.2 788.9± 609.2 212.8% 100 5286

MsPacman 692.4 1069.9± 810.5 1755.1± 1000.9 64.0% 230 2311
Centipede N/A 5543.0± 3509.5 9515.4± 5626.8 71.7% 2080 8309
Venture N/A 363.0± 133.2 468.0± 176.6 28.9% 0 380.0

Table 3: A comparison of game scores (mean ± standard deviation) between
plain imitation learning from a previous work [15], plain imitation learning using
our dataset, AGIL, and deep reinforcement learning (DQN) [28, 7]. The DQN
scores are recorded at two different training sample sizes: one at the same sample
size with our dataset (114K-223K depends on the game) and the other one at
200 million samples. The ”Improvement” column indicates AGIL’s performance
increase over the plain imitation learning using our dataset.

sion state of the human teacher and understand the underlying reason for that
decision.

(a) (b) (c)

Fig. 5: Human gaze information helps the learning agent correctly infer the un-
derlying reason for the chosen action. The red circles indicate human teacher’s
gaze position.

7 Conclusion and Future Work

A research question for imitation learning in visuomotor tasks is: what should
be learned from the human teacher? The agent could learn the policy (behavior
cloning), the reward function (inverse RL), or some high-level cognitive function-
ality such as visual attention. To our knowledge, the proposed AGIL framework
represents the first attempt to learn visual attention for imitation learning tasks.
Through modeling the human teacher’s visual attention the student agent gains
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a deeper understanding of why a particular decision is made by the teacher. We
show that it is feasible to learn an accurate task-driven human visual attention
model, and that combining this with deep imitation learning yields promising
results.

The high accuracy achieved in predicting gaze in our work implies that,
given a cognitively demanding visuomotor task, human gaze can be modeled
accurately using an end-to-end learning algorithm. This suggests that popular
deep saliency models could be used to learn visual attention, given task-driven
data.

In this student-teacher paradigm, a better learning framework is possible
when we have more knowledge on both the student and the teacher. There is
much room for future work to understand more about the human teacher from
a psychological perspective. Due to human visuomotor reaction time, action
at may not be conditioned on the image and gaze at time t, but on images and
gazes several hundreds milliseconds prior. More importantly, the human memory
system allows for states of previously attended objects to be preserved, and an
internal model may perform model-based prediction to update the environmental
states in memory. These cognitive functionalities could be readily implemented
by deep networks models, such as a recurrent neural network to allow for a better
prediction of human actions.

The results of [28] have demonstrated the effectiveness of end-to-end learning
of visuomotor tasks, where the DQN excels at games that involve a single task.
However, for games such as Seaquest and MsPacman–which typically involve
multiple tasks–the performance is still below human levels, even though human
reaction time was limited in their setting. In addition, DQN takes millions of
samples to train. The above issues could be potentially alleviated by combining
AGIL and deep RL where attention model can help extract features to speedup
learning and to indicate task priority. By making our dataset available we en-
courage future research towards the combined approach.
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