
ESPNet: Efficient Spatial Pyramid of Dilated

Convolutions for Semantic Segmentation

Sachin Mehta1[0000−0002−5420−4725], Mohammad Rastegari2, Anat Caspi1,

Linda Shapiro1, and Hannaneh Hajishirzi1

1 University of Washington, Seattle, WA, USA

{sacmehta, caspian, shapiro, hannaneh}@cs.washington.edu
2 Allen Institute for AI and XNOR.AI, Seattle, WA, USA

mohammadr@allenai.org

Abstract. We introduce a fast and efficient convolutional neural network, ES-

PNet, for semantic segmentation of high resolution images under resource con-

straints. ESPNet is based on a new convolutional module, efficient spatial pyra-

mid (ESP), which is efficient in terms of computation, memory, and power. ES-

PNet is 22 times faster (on a standard GPU) and 180 times smaller than the

state-of-the-art semantic segmentation network PSPNet, while its category-wise

accuracy is only 8% less. We evaluated ESPNet on a variety of semantic segmen-

tation datasets including Cityscapes, PASCAL VOC, and a breast biopsy whole

slide image dataset. Under the same constraints on memory and computation,

ESPNet outperforms all the current efficient CNN networks such as MobileNet,

ShuffleNet, and ENet on both standard metrics and our newly introduced perfor-

mance metrics that measure efficiency on edge devices. Our network can process

high resolution images at a rate of 112 and 9 frames per second on a standard

GPU and edge device, respectively. Our code is open-source and available at

https://sacmehta.github.io/ESPNet/.

1 Introduction

Deep convolutional neural network (CNN) models have achieved high accuracy in vi-

sual scene understanding tasks [1–3]. While the accuracy of these networks has im-

proved with their increase in depth and width, large networks are slow and power

hungry. This is especially problematic on the computationally heavy task of seman-

tic segmentation [4–10]. For example, PSPNet [1] has 65.7 million parameters and

runs at about 1 FPS while discharging the battery of a standard laptop at a rate of 77

Watts. Many advanced real-world applications, such as self-driving cars, robots, and

augmented reality, are sensitive and demand on-line processing of data locally on edge

devices. These accurate networks require enormous resources and are not suitable for

edge devices, which have limited energy overhead, restrictive memory constraints, and

reduced computational capabilities.

Convolution factorization has demonstrated its success in reducing the computa-

tional complexity of deep CNNs [11–15]. We introduce an efficient convolutional mod-

ule, ESP (efficient spatial pyramid), which is based on the convolutional factorization

2 Mehta et al.

(a)

M,1× 1,dReduce

ESP Strategy

Split

Transform

Merge

· · ·d,n3 × n3,dd,n2 × n2,dd,n1 × n1,d d,nK ×nK,d

H
F

F Sum
Sum

Sum

Concat

Sum

(b)

Fig. 1: (a) The standard convolution layer is decomposed into point-wise convolution and spatial

pyramid of dilated convolutions to build an efficient spatial pyramid (ESP) module. (b) Block

diagram of ESP module. The large effective receptive field of the ESP module introduces gridding

artifacts, which are removed using hierarchical feature fusion (HFF). A skip-connection between

input and output is added to improve the information flow. See Section 3 for more details. Dilated

convolutional layers are denoted as (# input channels, effective kernel size, # output channels).

The effective spatial dimensions of a dilated convolutional kernel are nk × nk, where nk = (n−
1)2k−1 + 1, k = 1, · · · ,K. Note that only n × n pixels participate in the dilated convolutional

kernel. In our experiments n = 3 and d = M
K .

principle (Fig. 1). Based on these ESP modules, we introduce an efficient network struc-

ture, ESPNet, that can be easily deployed on resource-constrained edge devices. ESP-

Net is fast, small, low power, and low latency, yet still preserves segmentation accuracy.

ESP is based on a convolution factorization principle that decomposes a standard

convolution into two steps: (1) point-wise convolutions and (2) spatial pyramid of di-

lated convolutions, as shown in Fig. 1. The point-wise convolutions help in reducing

the computation, while the spatial pyramid of dilated convolutions re-samples the fea-

ture maps to learn the representations from large effective receptive field. We show that

our ESP module is more efficient than other factorized forms of convolutions, such as

Inception [11–13] and ResNext [14]. Under the same constraints on memory and com-

putation, ESPNet outperforms MobileNet [16] and ShuffleNet [17] (two other efficient

networks that are built upon the factorization principle). We note that existing spatial

pyramid methods (e.g. the atrous spatial pyramid module in [3]) are computationally

expensive and cannot be used at different spatial levels for learning the representations.

In contrast to these methods, ESP is computationally efficient and can be used at dif-

ferent spatial levels of a CNN network. Existing models based on dilated convolutions

[1, 3, 18, 19] are large and inefficient, but our ESP module generalizes the use of dilated

convolutions in a novel and efficient way.

To analyze the performance of a CNN network on edge devices, we introduce sev-

eral new performance metrics, such as sensitivity to GPU frequency and warp execution

efficiency. To showcase the power of ESPNet, we evaluate our model on one of the most

expensive tasks in AI and computer vision: semantic segmentation. ESPNet is empir-

ically demonstrated to be more accurate, efficient, and fast than ENet [20], one of the

most power-efficient semantic segmentation networks, while learning a similar number

of parameters. Our results also show that ESPNet learns generalizable representations

and outperforms ENet [20] and another efficient network ERFNet [21] on the unseen

dataset. ESPNet can process a high resolution RGB image at a rate of 112, 21, and 9

frames per second on the NVIDIA TitanX, GTX-960M, and Jetson TX2 respectively.

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation 3

2 Related Work

Different techniques, such as convolution factorization, network compression, and low-

bit networks, have been proposed to speed up CNNs. We, first, briefly describe these

approaches and then provide a brief overview of CNN-based semantic segmentation.

Convolution factorization: Convolutional factorization decomposes the convolutional

operation into multiple steps to reduce the computational complexity. This factoriza-

tion has successfully shown its potential in reducing the computational complexity of

deep CNN networks (e.g. Inception [11–13], factorized network [22], ResNext [14],

Xception [15], and MobileNets [16]). ESP modules are also built on this factorization

principle. The ESP module decomposes a convolutional layer into a point-wise convo-

lution and spatial pyramid of dilated convolutions. This factorization helps in reducing

the computational complexity, while simultaneously allowing the network to learn the

representations from a large effective receptive field. Network Compression: Another

approach for building efficient networks is compression. These methods use techniques

such as hashing [23], pruning [24], vector quantization [25], and shrinking [26, 27] to

reduce the size of the pre-trained network. Low-bit networks: Another approach to-

wards efficient networks is low-bit networks, which quantize the weights to reduce the

network size and complexity (e.g. [28–31]). Sparse CNN: To remove the redundancy

in CNNs, sparse CNN methods, such as sparse decomposition [32], structural sparsity

learning [33], and dictionary-based method [34], have been proposed.

We note that compression-based methods, low-bit networks, and sparse CNN meth-

ods are equally applicable to ESPNets and are complementary to our work.

Dilated convolution: Dilated convolutions [35] are a special form of standard convo-

lutions in which the effective receptive field of kernels is increased by inserting zeros

(or holes) between each pixel in the convolutional kernel. For a n× n dilated convolu-

tional kernel with a dilation rate of r, the effective size of the kernel is [(n−1)r+1]2.

The dilation rate specifies the number of zeros (or holes) between pixels. However, due

to dilation, only n× n pixels participate in the convolutional operation, reducing the

computational cost while increasing the effective kernel size.

Yu and Koltun [18] stacked dilated convolution layers with increasing dilation rate

to learn contextual representations from a large effective receptive field. A similar strat-

egy was adopted in [19, 36, 37]. Chen et al. [3] introduced an atrous spatial pyramid

(ASP) module. This module can be viewed as a parallelized version of [3]. These mod-

ules are computationally inefficient (e.g. ASPs have high memory requirements and

learn many more parameters; see Section 3.2). Our ESP module also learns multi-scale

representations using dilated convolutions in parallel; however, it is computationally

efficient and can be used at any spatial level of a CNN network.

CNN for semantic segmentation: Different CNN-based segmentation networks have

been proposed, such as multi-dimensional recurrent neural networks [38], encoder-

decoders [20, 21, 39, 40], hypercolumns [41], region-based representations [42, 43], and

cascaded networks [44]. Several supporting techniques along with these networks have

been used for achieving high accuracy, including ensembling features [3], multi-stage

training [45], additional training data from other datasets [1, 3], object proposals [46],

CRF-based post processing [3], and pyramid-based feature re-sampling [1–3].

4 Mehta et al.

Encoder-decoder networks: Our work is related to this line of work. The encoder-

decoder networks first learn the representations by performing convolutional and down-

sampling operations. These representations are then decoded by performing up-sampling

and convolutional operations. ESPNet first learns the encoder and then attaches a light-

weight decoder to produce the segmentation mask. This is in contrast to existing net-

works where the decoder is either an exact replica of the encoder (e.g. [39]) or is rela-

tively small (but not light weight) in comparison to the encoder (e.g. [20, 21]).

Feature re-sampling methods: The feature re-sampling methods re-sample the convo-

lutional feature maps at the same scale using different pooling rates [1, 2] and kernel

sizes [3] for efficient classification. Feature re-sampling is computationally expensive

and is performed just before the classification layer to learn scale-invariant representa-

tions. We introduce a computationally efficient convolutional module that allows feature

re-sampling at different spatial levels of a CNN network.

3 ESPNet

We describe ESPNet and its core ESP module. We compare ESP modules with similar

CNN modules, Inception [11–13], ResNext [14], MobileNet[16], and ShuffleNet[17].

3.1 ESP module

ESPNet is based on efficient spatial pyramid (ESP) modules, a factorized form of con-

volutions that decompose a standard convolution into a point-wise convolution and a

spatial pyramid of dilated convolutions (see Fig. 1a). The point-wise convolution ap-

plies a 1×1 convolution to project high-dimensional feature maps onto a low-dimensional

space. The spatial pyramid of dilated convolutions then re-samples these low-dimensional

feature maps using K, n× n dilated convolutional kernels simultaneously, each with a

dilation rate of 2k−1, k = {1, · · · ,K}. This factorization drastically reduces the number

of parameters and the memory required by the ESP module, while preserving a large

effective receptive field
[

(n−1)2K−1 +1
]2

. This pyramidal convolutional operation is

called a spatial pyramid of dilated convolutions, because each dilated convolutional

kernel learns weights with different receptive fields and so resembles a spatial pyramid.

A standard convolutional layer takes an input feature map Fi ∈R
W×H×M and applies

N kernels K ∈R
m×n×M to produce an output feature map Fo ∈R

W×H×N , where W and

H represent the width and height of the feature map, m and n represent the width and

height of the kernel, and M and N represent the number of input and output feature

channels. For simplicity, we will assume that m = n. A standard convolutional kernel

thus learns n2MN parameters. These parameters are multiplicatively dependent on the

spatial dimensions of the n×n kernel and the number of input M and output N channels.

Width divider K: To reduce the computational cost, we introduce a simple hyper-

parameter K. The role of K is to shrink the dimensionality of the feature maps uniformly

across each ESP module in the network. Reduce: For a given K, the ESP module first

reduces the feature maps from M-dimensional space to N
K

-dimensional space using a

point-wise convolution (Step 1 in Fig. 1a). Split: The low-dimensional feature maps are

split across K parallel branches. Transform: Each branch then processes these feature

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation 5

(a)

RGB without HFF with HFF

(b)

Fig. 2: (a) An example illustrating a gridding artifact with a single active pixel (red) convolved

with a 3×3 dilated convolutional kernel with dilation rate r = 2. (b) Visualization of feature maps

of ESP modules with and without hierarchical feature fusion (HFF). HFF in ESP eliminates the

gridding artifact. Best viewed in color.

maps simultaneously using n× n dilated convolutional kernels with different dilation

rates given by 2k−1, k = {1, · · · ,K −1} (Step 2 in Fig. 1a). Merge: The outputs of the

K parallel dilated convolutional kernels are concatenated to produce an N-dimensional

output feature map Fig. 1b visualizes the reduce-split-transform-merge strategy.

The ESP module has (NM +(Nn)2)/K parameters and its effective receptive field

is ((n−1)2K−1 +1)2. Compared to the n2NM parameters of the standard convolution,

factorizing it reduces the number of parameters by a factor of n2MK
M+n2N

, while increasing

the effective receptive field by ∼ (2K−1)2. For example, the ESP module learns ∼ 3.6×
fewer parameters with an effective receptive field of 17× 17 than a standard convolu-

tional kernel with an effective receptive field of 3 × 3 for n=3, N=M=128, and K=4.

Hierarchical feature fusion (HFF) for de-gridding: While concatenating the outputs

of dilated convolutions give the ESP module a large effective receptive field, it intro-

duces unwanted checkerboard or gridding artifacts, as shown in Fig. 2. To address the

gridding artifact in ESP, the feature maps obtained using kernels of different dilation

rates are hierarchically added before concatenating them (HFF in Fig. 1b). This simple,

effective solution does not increase the complexity of the ESP module, in contrast to

existing methods that remove the gridding artifact by learning more parameters using

dilated convolutional kernels [19, 37]. To improve gradient flow inside the network, the

input and output feature maps are combined using an element-wise sum [47].

3.2 Relationship with other CNN modules

The ESP module shares similarities with the following CNN modules.

MobileNet module: The MobileNet module [16], shown in Fig. 3a, uses a depth-wise

separable convolution [15] that factorizes a standard convolutions into depth-wise con-

volutions (transform) and point-wise convolutions (expand). It learns less parameters,

has high memory requirement, and low receptive field than the ESP module. An ex-

treme version of the ESP module (with K = N) is almost identical to the MobileNet

6 Mehta et al.

M,3×3,M

M,1×1,N

Depth-wise

Grouped

Standard

Convolution Type

MobileNet

(a) MobileNet

M,1×1,d

d,3×3,d

d,1×1,N

Sum

(b) ShuffleNet

· · ·M,1×1,dM,1×1,d M,1×1,d

· · ·d,n× n,dd,n× n,d d,n× n,d

Concat

(c) Inception

· · ·M,1×1,dM,1×1,d M,1×1,d

· · ·d,n× n,dd,n× n,d d,n× n,d

· · ·d,1× 1,Nd,1× 1,N d,1× 1,N

Sum

Sum

(d) ResNext

· · ·M,n×n,N
21

M,n×n,N
20

M,n×n,N
2K−1

Sum

(e) ASP

Module # Parameters Memory (in MB) Effective Receptive Field

MobileNet M(n2 +N) = 11,009 (M+N)WH = 2.39 [n]2 = 3×3

ShuffleNet d
g (M+N)+n2d = 2,180 WH(2∗d +N) = 1.67 [n]2 = 3×3

Inception K(Md +n2d2) = 28,000 2KWHd = 2.39 [n]2 = 3×3

ResNext K(Md +d2n2 +dN) = 38,000 KWH(2d +N) = 8.37 [n]2 = 3×3

ASP KMNn2 = 450,000 KWHN = 5.98
[

(n−1)2K−1 +1
]2

= 33×33

ESP (Fig. 1b) Md +Kn2d2 = 20,000 WHd(K +1) = 1.43
[

(n−1)2K−1 +1
]2

= 33×33

Here, M = N = 100, n = 3, K = 5, d = N
K = 20, g = 2, and W = H = 56.

(f) Comparison between different modules

Fig. 3: Different types of convolutional modules for comparison. We denote the layer as (# input

channels, kernel size, # output channels). Dilation rate in (e) is indicated on top of each layer.

Here, g represents the number of convolutional groups in grouped convolution [48]. For simplic-

ity, we only report the memory of convolutional layers in (d). For converting the required memory

to bytes, we multiply it by 4 (1 float requires 4 bytes for storage).

module, differing only in the order of convolutional operations. In the MobileNet mod-

ule, the spatial convolutions are followed by point-wise convolutions; however, in the

ESP module, point-wise convolutions are followed by spatial convolutions.

ShuffleNet module: The ShuffleNet module [17], shown in Fig. 3b, is based on the

principle of reduce-transform-expand. It is an optimized version of the bottleneck block

in ResNet [47]. To reduce computation, Shufflenet makes use of grouped convolutions

[48] and depth-wise convolutions [15]. It replaces 1× 1 and 3× 3 convolutions in the

bottleneck block in ResNet with 1×1 grouped convolutions and 3×3 depth-wise sep-

arable convolutions, respectively. The Shufflenet module learns many less parameters

than the ESP module, but has higher memory requirements and a smaller receptive field.

Inception module: Inception modules [11–13] are built on the principle of split-reduce-

transform-merge and are usually heterogeneous in number of channels and kernel size

(e.g. some of the modules are composed of standard and factored convolutions). In

contrast, ESP modules are straightforward and simple to design. For the sake of com-

parison, the homogeneous version of an Inception module is shown in Fig. 3c. Fig. 3f

compares the Inception module with the ESP module. ESP (1) learns fewer parameters,

(2) has a low memory requirement, and (3) has a larger effective receptive field.

ResNext module: A ResNext module [14], shown in Fig. 3d, is a parallel version of

the bottleneck module in ResNet [47], based on the principle of split-reduce-transform-

expand-merge. The ESP module is similar in branching and residual summation, but

more efficient in memory and parameters with a larger effective receptive field.

Atrous spatial pyramid (ASP) module: An ASP module [3], shown in Fig. 3e, is built

on the principle of split-transform-merge. The ASP module involves branching with

each branch learning kernel at a different receptive field (using dilated convolutions).

Though ASP modules tend to perform well in segmentation tasks due to their high

effective receptive fields, ASP modules have high memory requirements and learn many

more parameters. Unlike the ASP module, the ESP module is computationally efficient.

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation 7

4 Experiments

To showcase the power of ESPNet, we evaluate ESPNet’s performance on several se-

mantic segmentation datasets and compare to the state-of-the-art networks.

4.1 Experimental set-up

Network structure: ESPNet uses ESP modules for learning convolutional kernels as

well as down-sampling operations, except for the first layer: a standard strided convo-

lution. All layers are followed by a batch normalization [49] and a PReLU [50] non-

linearity except the last point-wise convolution, which has neither batch normalization

nor non-linearity. The last layer feeds into a softmax for pixel-wise classification.

Different variants of ESPNet are shown in Fig. 4. The first variant, ESPNet-A (Fig.

4a), is a standard network that takes an RGB image as an input and learns represen-

tations at different spatial levels3 using the ESP module to produce a segmentation

mask. The second variant, ESPNet-B (Fig. 4b), improves the flow of information inside

ESPNet-A by sharing the feature maps between the previous strided ESP module and

the previous ESP module. The third variant, ESPNet-C (Fig. 4c), reinforces the input

image inside ESPNet-B to further improve the flow of information. These three vari-

ants produce outputs whose spatial dimensions are 1
8
th of the input image. The fourth

variant, ESPNet (Fig. 4d), adds a light weight decoder (built using a principle of reduce-

upsample-merge) to ESPNet-C that outputs the segmentation mask of the same spatial

resolution as the input image.

To build deeper computationally efficient networks for edge devices without chang-

ing the network topology, a hyper-parameter α controls the depth of the network; the

ESP module is repeated αl times at spatial level l. CNNs require more memory at higher

spatial levels (at l = 0 and l = 1) because of the high spatial dimensions of feature maps

at these levels. To be memory efficient, neither the ESP nor the convolutional modules

are repeated at these spatial levels.

Dataset: We evaluated the ESPNet on the Cityscapes dataset [6], an urban visual scene-

understanding dataset that consists of 2,975 training, 500 validation, and 1,525 test

high-resolution images. The task is to segment an image into 19 classes belonging to

7 categories (e.g. person and rider classes belong to the same category human). We

evaluated our networks on the test set using the Cityscapes online server.

To study the generalizability, we tested the ESPNet on an unseen dataset. We used

the Mapillary dataset [51] for this task because of its diversity. We mapped the anno-

tations (65 classes) in the validation set (# 2,000 images) to seven categories in the

Cityscape dataset. To further study the segmentation power of our model, we trained

and tested the ESPNet on two other popular datasets from different domains. First,

we used the widely known PASCAL VOC dataset [52] that has 1,464 training images,

1,448 validation images, and 1,456 test images. The task is to segment an image into

20 foreground classes. We evaluate our networks on the test set (comp6 category) using

the PASCAL VOC online server. Following the convention, we used additional images

3 At each spatial level l, the spatial dimensions of the feature maps are the same. To learn repre-

sentations at different spatial levels, a down-sampling operation is performed (see Fig. 4a).

8 Mehta et al.

RGB Image

l = 0

Conv-3

(3, 16)

l = 1

ESP

(16, 64)

l = 2

ESP

×α2

(64, 64)

l = 2

ESP

(64, 128)

l = 3

ESP

×α3

(128, 128)

l = 3

Conv-1

(128, C)

l = 3

Segmentation Mask

(a) ESPNet-A

RGB Image

Conv-3

(3, 16)

ESP

(16, 64)

ESP

×α2

(64, 64)

Concat

ESP

(128, 128)

ESP

×α3

(128, 128)

Concat

Conv-1

(256, C)

Segmentation Mask

(b) ESPNet-B

RGB Image

Conv-3

(3, 16)

Concat

ESP

(19, 64)

ESP

×α2

(64, 64)

Concat

ESP

(131, 128)

ESP

×α3

(128, 128)

Concat

Conv-1

(256, C)

Segmentation Mask

(c) ESPNet-C

RGB Image

Conv-3

(3, 16)

Concat

ESP

(19, 64)

ESP

×α2

(64, 64)

Concat

ESP

(131, 128)

ESP

×α3

(128, 128)

Concat Conv-1

(256, C)

DeConv

(C, C)

Conv-1

(131, C)

Concat

ESP

(2C, C)

DeConv

(C, C)

Conv-1

(19, C)

Concat

Conv-1

(2C, C)

DeConv

(C, C)

Segmentation Mask

(d) ESPNet

Fig. 4: The path from ESPNet-A to ESPNet. Red and green color boxes represent the modules

responsible for down-sampling and up-sampling operations, respectively. Spatial-level l is indi-

cated on the left of every module in (a). We denote each module as (# input channels, # output

channels). Here, Conv-n represents n×n convolution.

from [53, 54]. Secondly, we used a breast biopsy whole slide image dataset [36], cho-

sen because tissue structures in biomedical images vary in size and shape and because

this dataset allowed us to check the potential of learning representations from a large

receptive field. The dataset consists of 30 training images and 28 validation images,

whose average size is 10,000×12,000 pixels, much larger than natural scene images.

The task is to segment the images into 8 biological tissue labels; details are in [36].

Performance evaluation metrics: Most traditional CNNs measure network perfor-

mance in terms of accuracy, latency, network parameters, and network size [16, 17, 20,

21, 55]. These metrics provide high-level insight about the network, but fail to demon-

strate the efficient usage of hardware resources with limited availability. In addition to

these metrics, we introduce several system-level metrics to characterize the performance

of a CNN on resource-constrained devices [56, 57].

Segmentation accuracy is measured as a mean Intersection over Union (mIOU) score

between the ground truth and the predicted segmentation mask.

Latency represents the amount of time a CNN network takes to process an image. This

is usually measured in terms of frames per second (FPS).

Network parameters represents the number of parameters learned by the network.

Network size represents the amount of storage space required to store the network pa-

rameters. An efficient network should have a smaller network size.

Power consumption is the average power consumed by the network during inference.

Sensitivity to GPU frequency measures the computational capability of an application

and is defined as a ratio of percentage change in execution time to the percentage change

in GPU frequency. Higher values indicate higher efficiency.

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation 9

Utilization rates measure the utilization of compute resources (CPU, GPU, and mem-

ory) while running on an edge device. In particular, computing units in edge devices

(e.g. Jetson TX2) share memory between CPU and GPU.

Warp execution efficiency is defined as the average percentage of active threads in

each executed warp. GPUs schedule threads as warps; each thread is executed in single

instruction multiple data fashion. Higher values represent efficient usage of GPU.

Memory efficiency is the ratio of number of bytes requested/stored to the number of

bytes transfered from/to device (or shared) memory to satisfy load/store requests. Since

memory transactions are in blocks, this metric measures memory bandwidth efficiency.

Training details: ESPNet networks were trained using PyTorch [58] with CUDA 9.0

and cuDNN back-ends. ADAM [59] was used with an initial learning rate of 0.0005,

and decayed by two after every 100 epochs and with a weight decay of 0.0005. An

inverse class probability weighting scheme was used in the cross-entropy loss function

to address the class imbalance [20, 21]. Following [20, 21], the weights were initial-

ized randomly. Standard strategies, such as scaling, cropping and flipping, were used

to augment the data. The image resolution in the Cityscape dataset is 2048×1024, and

all the accuracy results were reported at this resolution. For training the networks, we

sub-sampled the RGB images by two. When the output resolution was smaller than

2048× 1024, the output was up-sampled using bi-linear interpolation. For training on

the PASCAL dataset, we used a fixed image size of 512× 512. For the WSI dataset,

the patch-wise training approach was followed [36]. ESPNet was trained in two stages.

First, ESPNet-C was trained with down-sampled annotations. Second, a light-weight

decoder was attached to ESPNet-C and then, the entire ESPNet network was trained.

Three different GPU devices were used for our experiments: (1) a desktop with a

NVIDIA TitanX GPU (3,584 CUDA cores), (2) a laptop with a NVIDIA GTX-960M

GPU (640 CUDA cores), and (3) an edge device with a NVIDIA Jetson TX2 (256

CUDA cores). Unless and otherwise stated explicitly, statistics are reported for an RGB

image of size 1024× 512 averaged over 200 trials. For collecting the hardware-level

statistics, NVIDIA’s and Intel’s hardware profiling and tracing tools, such as NVPROF

[60], Tegrastats [61], and PowerTop [62], were used. In our experiments, we will refer

to ESPNet with α2 = 2 and α3 = 8 as ESPNet until and otherwise stated explicitly.

4.2 Segmentation results on the Cityscape dataset

Comparison with efficient convolutional modules: In order to understand the ESP

module, we replaced the ESP modules in ESPNet-C with state-of-the-art efficient con-

volutional modules, sketched in Fig. 3 (MobileNet [16], ShuffleNet [17], Inception [11–

13], ResNext [14], and ResNet [47]) and evaluated their performance on the Cityscape

validation dataset. We did not compare with ASP [3], because it is computationally ex-

pensive and not suitable for edge devices. Fig. 5 compares the performance of ESPNet-

C with different convolutional modules. Our ESP module outperformed MobileNet and

ShuffleNet modules by 7% and 12%, respectively, while learning a similar number of

parameters and having comparable network size and inference speed. Furthermore, the

ESP module delivered comparable accuracy to ResNext and Inception more efficiently.

A basic ResNet module (stack of two 3×3 convolutions with a skip-connection) deliv-

ered the best performance, but had to learn 6.5× more parameters.

10 Mehta et al.

(a) Accuracy vs. network size (b) Accuracy vs. speed (laptop)

Fig. 5: Comparison between state-of-the-art efficient convolutional modules. For a fair compari-

son between different modules, we used K = 5, d = N
K , α2 = 2, and α3 = 3. We used standard

strided convolution for down-sampling. For ShuffleNet, we used g = 4 and K = 4 so that the

resultant ESPNet-C network has the same complexity as with the ESP block.

Comparison with segmentation methods: We compared the performance of ESPNet

with state-of-the-art semantic segmentation networks. These networks either use a pre-

trained network (VGG [63]: FCN-8s [45] and SegNet [39], ResNet [47]: DeepLab-v2

[3] and PSPNet [1], and SqueezeNet [55]: SQNet [64]) or were trained from scratch

(ENet [20] and ERFNet [21]). ESPNet is 2% more accurate than ENet [20], while run-

ning 1.27× and 1.16× faster on a desktop and a laptop, respectively (Fig. 6). ESPNet

makes some mistakes between classes that belong to the same category, and hence has

a lower class-wise accuracy. For example, a rider can be confused with a person. How-

ever, ESPNet delivers a good category-wise accuracy. ESPNet had 8% lower category-

wise mIOU than PSPNet [1], while learning 180× fewer parameters. ESPNet had lower

power consumption, had lower battery discharge rate, and was significantly faster than

state-of-the-art methods, while still achieving a competitive category-wise accuracy;

this makes ESPNet suitable for segmentation on edge devices. ERFNet, an another effi-

cient segmentation network, delivered good segmentation accuracy, but has 5.5× more

parameters, is 5.44× larger, consumes more power, and has a higher battery discharge

rate than ESPNet. Also, ERFNet does not utilize limited available hardware resources

efficiently on edge devices (Section 4.4).

4.3 Segmentation results on other datasets

Unseen dataset: Table 1a compares the performance of ESPNet with ENet [20] and

ERFNet [21] on an unseen dataset. These networks were trained on the Cityscapes

dataset [6] and tested on the Mapillary (unseen) dataset [51]. ENet and ERFNet were

chosen, due to the efficiency and power of ENet and high accuracy of ERFNet. Our

experiments show that ESPNet learns good generalizable representations of objects and

outperforms ENet and ERFNet on the unseen dataset.

PASCAL VOC 2012 dataset: (Table 1c) On the PASCAL dataset, ESPNet is 4% more

accurate than SegNet, one of the smallest network on the PASCAL VOC, while learning

81× fewer parameters. ESPNet is 22% less accurate than PSPNet (one of the most

accurate network on the PASCAL VOC) while learning 180× fewer parameters.

Breast biopsy dataset: (Table 1d) On the breast biopsy dataset, ESPNet achieved the

same accuracy as [36] while learning 9.5× less parameters.

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation 11

mIOU

Network Class Category

ENet [20] 58.3 80.4

ERFNet [21] 68.0 86.5

SQNet [27] 59.8 84.3

SegNet [39] 57.0 79.1

ESPNet (Ours) 60.3 82.2

FCN-8s [39] 65.3 85.7

DeepLab-v2 [3] 70.4 86.4

PSPNet [1] 78.4 90.6

(a) Test set (b) Accuracy vs. network size (c) Accuracy vs. # parameters

(d) Battery discharge rate vs. network (laptop) (e) Accuracy vs. speed (laptop)

(f) Power consumption vs. speed (laptop) (g) Power consumption vs. speed (desktop)

Fig. 6: Comparison between segmentation methods on the Cityscape test set on two different de-

vices. All networks (FCN-8s [45], SegNet [39], SQNet [64], ENet [20], DeepLab-v2 [3], PSPNet

[1], and ERFNet [21]) were without CRF and converted to PyTorch for a fair comparison.

mIOU # Params◦

ENet [20] 0.33 0.364

ERFNet [21] 0.25 2.06

ESPNet 0.40 0.364

(a) Mapillary validation set [51] (b) Mapillary validation set [51] (unseen)

Model ESPNet SegNet RefineNet DeepLab PSPNet LRR Dilation-8 FCN-8s

(Ours) [39] [44] [3] [1] [65] [18] [45]

Params◦ 0.364 29.5 42.6 44.04 65.7 48 141.13 134.5

mIOU 63.01 59.10 82.40 79.70 85.40 79.30 75.30 67.20

(c) PASCAL VOC test set [52]

Model Module mIOU # Params◦

SegNet [39] VGG 37.6 12.80

Mehta et al. [36] ResNet 44.20 26.03

ESPNet⋆ ESP 44.03 2.75

(d) Breast biopsy validation set [36]

Table 1: Results on different datasets, where ◦ denotes the values are in millions. ⋆See [66].

4.4 Performance analysis on the NVIDIA Jetson TX2 (edge device)

Network size: Fig. 7a compares the uncompressed 32-bit network size of ESPNet with

ENet and ERFNet. ESPNet had a 1.12× and 5.45× smaller network than ENet and

ERFNet, respectively, which reflects well on the architectural design of ESPNet.

12 Mehta et al.

Inference speed and sensitivity to GPU frequency: Fig. 7b compares the inference

speed of ESPNet with ENet and ERFNet. ESPNet had almost the same frame rate as

ENet, but it was more sensitive to GPU frequency (Fig. 7c). As a consequence, ESPNet

achieved a higher frame rate than ENet on high-end graphic cards, such as the GTX-

960M and TitanX (see Fig. 6). For example, ESPNet is 1.27× faster than ENet on an

NVIDIA TitanX. ESPNet is about 3× faster than ERFNet on an NVIDIA Jetson TX2.

Utilization rates: Fig. 7d compares the CPU, GPU, and memory utilization rates of

networks that are throughput intensive; GPU utilization rates are high, while CPU uti-

lization rates are low for these networks. Memory utilization rates are significantly dif-

ferent for these networks. The memory footprint of ESPNet is low in comparison to

ENet and ERFNet, suggesting that ESPNet is suitable for memory-constrained devices.

Warp execution efficiency: Fig. 7e compares the warp execution efficiency of ESPNet

with ENet and ERFNet. The warp execution of ESPNet was about 9% higher than

ENet and about 14% higher than ERFNet. This indicates that ESPNet has less warp

divergence and promotes the efficient usage of limited GPU resources available on edge

devices. We note that warp execution efficiency gives a better insight into the utilization

of GPU resources than the GPU utilization rate. GPU frequency will be busy even if

few warps are active, resulting in a high GPU utilization rate.

Memory efficiency: (Fig. 7e) All networks have similar global load efficiency, but

ERFNet has a poor store and shared memory efficiency. This is likely due to the fact that

ERFNet spends 20% of the compute power performing memory alignment operations,

while ESPNet and ENet spend 4.2% and 6.6% time for this operation, respectively.

Power consumption: Fig. 7f and 7g compares the power consumption of ESPNet with

ENet and ERFNet at two different GPU frequencies. The average power consumption

(during network execution phase) of ESPNet, ENet, and ERFNet were 1 W, 1.5 W, and

2.9 W at a GPU frequency of 824 MHz and 2.2 W, 4.6 W, and 6.7 W at a GPU frequency

of 1,134 MHz, respectively; suggesting ESPNet is a power-efficient network.

Network Size

ENet 1.64 MB

ERFNet 7.95 MB

ESPNet 1.46 MB

(a) (b)

Network
Sensitivity to GPU freq.

828 to 1134 1134 to 1300

ENet 71% 70%

ERFNet 69% 53%

ESPNet 86% 95%

(c)

Network
Utilization (%)

CPU GPU Memory

ENet 20.5 99.00 50.6

ERFNet 19.7 99.00 61.3

ESPNet 20.3 99.00 44.0

(d)

(e) (f) GPU freq. @ 828 MHz (g) GPU freq. @ 1,134 MHz

Fig. 7: Performance analysis of ESPNet with ENet and ERFNet on a NVIDIA Jetson TX2: (a)

network size, (b) inference speed vs. GPU frequency (in MHz), (c) sensitivity analysis, (d) uti-

lization rates, (e) efficiency rates, and (f, g) power consumption at two different GPU frequencies.

In (d), initialization phase statistics were not considered, due to similarity across all networks.

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation 13

4.5 Ablation studies on the Cityscapes: The path from ESPNet-A to ESPNet

Larger networks or ensembling the output of multiple networks delivers better perfor-

mance [1, 3, 19], but with ESPNet (sketched in Fig. 4), the goal is an efficient network

for edge devices. To improve the performance of ESPNet while maintaining efficiency,

a systematic study of design choices was performed. Table 2 summarizes the results.

ReLU vs PReLU: (Table 2a) Replacing ReLU [67] with PReLU [50] in ESPNet-A im-

proved the accuracy by 2%, while having a minimal impact on the network complexity.

Residual learning in ESP: (Table 2b) The accuracy of ESPNet-A dropped by about

2% when skip-connections in ESP (Fig. 1b) modules were removed. This verifies the

effectiveness of the residual learning.

Down-sampling: (Table 2c) Replacing the standard strided convolution with the strided

ESP in ESPNet-A improved accuracy by 1% with 33% parameter reduction.

Width divider (K): (Table 2e) Increasing K enlarges the effective receptive field of

the ESP module, while simultaneously decreasing the number of network parameters.

Importantly, ESPNet-A’s accuracy decreased with increasing K. For example, raising

K from 2 to 8 caused ESPNet-A’s accuracy to drop by 11%. This drop in accuracy is

explained in part by the ESP module’s effective receptive field growing beyond the size

of its input feature maps. For an image with size 1024× 512, the spatial dimensions

of the input feature maps at spatial level l = 2 and l = 3 are 256× 128 and 128× 64,

respectively. However, some of the kernels have larger receptive fields (257× 257 for

K = 8). The weights of such kernels do not contribute to learning, thus resulting in

lower accuracy. At K = 5, we found a good trade-off between number of parameters

and accuracy, and therefore, we used K = 5 in our experiments.

ESPNet-A → ESPNet-C: (Table 2f) Replacing the convolution-based network width

expansion operation in ESPNet-A with the concatenation operation in ESPNet-B im-

proved the accuracy by about 1% and did not increase the number of network parame-

ters noticeably. With input reinforcement (ESPNet-C), the accuracy of ESPNet-B fur-

mIOU # Params◦

ReLU 0.36 0.183

PReLU 0.38 0.183

(a)

Module mIOU # Params◦

ESP 0.39 0.183

-RL 0.37 0.183

RL - residual learning

(b)

Downsample mIOU # Params◦

Strided conv. 0.38 0.274

Strided ESP 0.39 0.183

(c)

ESPNet-C ESP operations # params Network

configuration Reduce Transform size mIOU

C1 - (α3 = 3) 3×3 SPC 0.276 1.2 MB 50.8

C2 - (α3 = 3) 1×1 SPC 0.187 0.8 MB 49.0

C3 - (α3 = 3) 1×1 SPC-s 0.187 0.8 MB 47.4

(d)

Width divider K

2 4 5 6 7 8

mIOU 0.415 0.378 0.381 0.359 0.321 0.303

Params◦ 0.358 0.215 0.183 0.165 0.152 0.143

ERF (n2 = n×n) 52 172 332 652 1292 2572

(e)

Network mIOU # Params◦

ESPNet-A⋆ 0.39 0.183

ESPNet-B 0.40 0.186

ESPNet-C 0.42 0.187

ESPNet-C† 0.42 0.206

(f)

α3

ESPNet-C (Fig. 4c) ESPNet (Fig. 4d)

mIOU
Params Network

mIOU
Params Network

(in million) size (in million) size

3 49.0 0.187 0.75 MB 56.3 0.202 0.82 MB

5 51.2 0.252 1.01 MB 57.9 0.267 1.07 MB

8 53.3 0.349 1.40 MB 61.4 0.364 1.46 MB

(g)

Table 2: The path from ESPNet-A to ESPNet. Here, ERF represents effective receptive field, ⋆

denotes that strided ESP was used for down-sampling, † indicates that the input reinforcement

method was replaced with input-aware fusion method [36], and ◦ denotes the values are in mil-

lion. All networks in (a-c,e-f) are trained for 100 epochs, while networks in (d,g) are trained for

300 epochs. Here, SPC-s denotes that 3× 3 standard convolutions are used instead of dilated

convolutions in the spatial pyramid of dilated convolutions (SPC).

14 Mehta et al.

ther improved by about 2%, while not increasing the network parameters drastically.

This is likely due to the fact that the input reinforcement method establishes a direct

link between the input image and encoding stage, improving the flow of information.

The closest work to our input reinforcement method is the input-aware fusion method

of [36], which learns representations on the down-sampled input image and additively

combines them with the convolutional unit. When the proposed input reinforcement

method was replaced with the input-aware fusion in [36], no improvement in accuracy

was observed, but the number of network parameters increased by about 10%.

ESPNet-C vs ESPNet: (Table 2g) Adding a light-weight decoder to ESPNet-C im-

proved the accuracy by about 6%, while increasing the number of parameters and net-

work size by merely 20,000 and 0.06 MB from ESPNet-C to ESPNet, respectively.

Impact of different convolutions in the ESP block: The ESP block uses point-wise

convolutions for reducing the high-dimensional feature maps to low-dimensional space

and then transforms those feature maps using a spatial pyramid of dilated convolutions

(SPCs) (see Sec. 3). To understand the influence of these two components, we per-

formed the following experiments. 1) Point-wise convolutions: We replaced point-wise

convolutions with 3×3 standard convolutions in the ESP block (see C1 and C2 in Table

2d), and the resultant network demanded more resources (e.g., 47% more parameters)

while improving the mIOU by 1.8%, showing that point-wise convolutions are effec-

tive. Moreover, the decrease in number of parameters due to point-wise convolutions in

the ESP block enables the construction of deep and efficient networks (see Table 2g). 2)

SPCs: We replaced 3× 3 dilated convolutions with 3× 3 standard convolutions in the

ESP block. Though the resultant network is as efficient as with dilated convolutions, it

is 1.6% less accurate; suggesting SPCs are effective (see C2 and C3 in Table 2d).

5 Conclusion

We introduced a semantic segmentation network, ESPNet, based on an efficient spatial

pyramid module. In addition to legacy metrics, we introduced several new system-level

metrics that help to analyze the performance of a CNN network. Our empirical analysis

suggests that ESPNets are fast and efficient. We also demonstrated that ESPNet learns

good generalizable representations of the objects and perform well in the wild.

Acknowledgement: This research was supported by the Intelligence Advanced Re-

search Projects Activity (IARPA) via Interior/Interior Business Center (DOI/IBC) con-

tract number D17PC00343, the Washington State Department of Transportation re-

search grant T1461-47, NSF III (1703166), the National Cancer Institute awards (R01

CA172343, R01 CA140560, and RO1 CA200690), Allen Distinguished Investigator

Award, Samsung GRO award, and gifts from Google, Amazon, and Bloomberg. We

would also like to acknowledge NVIDIA Corporation for donating the Jetson TX2

board and the Titan X Pascal GPU used for this research. We also thank the anonymous

reviewers for their helpful comments. The U.S. Government is authorized to reproduce

and distribute reprints for Governmental purposes notwithstanding any copyright anno-

tation thereon. Disclaimer: The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily representing endorsements, either

expressed or implied, of IARPA, DOI/IBC, or the U.S. Government.

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation 15

References

1. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR. (2017)

2. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks

for visual recognition. In: ECCV. (2014)

3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic

image segmentation with deep convolutional nets, atrous convolution, and fully connected

crfs. TPAMI (2018)

4. Ess, A., Müller, T., Grabner, H., Van Gool, L.J.: Segmentation-based urban traffic scene

understanding. In: BMVC. (2009)

5. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. The

International Journal of Robotics Research (2013)

6. Cordts et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR.

(2016)

7. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR. (2015)

8. Franke, U., Pfeiffer, D., Rabe, C., Knoeppel, C., Enzweiler, M., Stein, F., Herrtwich, R.G.:

Making bertha see. In: ICCV Workshops, IEEE (2013)

9. Xiang, Y., Fox, D.: DA-RNN: Semantic mapping with data associated recurrent neural net-

works. Robotics: Science and Systems (RSS) (2017)

10. Kundu, A., Li, Y., Dellaert, F., Li, F., Rehg, J.M.: Joint semantic segmentation and 3d recon-

struction from monocular video. In: ECCV. (2014)

11. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V., Rabinovich, A., et al.: Going deeper with convolutions. In: CVPR. (2015)

12. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception archi-

tecture for computer vision. In: CVPR. (2016)

13. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of resid-

ual connections on learning. CoRR (2016)

14. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep

neural networks. In: CVPR. (2017)

15. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. CVPR (2017)

16. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,

Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applica-

tions. arXiv preprint arXiv:1704.04861 (2017)

17. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolutional neural

network for mobile devices. In: CVPR. (2018)

18. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. ICLR (2016)

19. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. CVPR (2017)

20. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: A deep neural network architecture

for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016)

21. Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized

convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transporta-

tion Systems (2018)

22. Jin, J., Dundar, A., Culurciello, E.: Flattened convolutional neural networks for feedforward

acceleration. arXiv preprint arXiv:1412.5474 (2014)

23. Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural networks

with the hashing trick. In: ICML. (2015)

24. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding. ICLR (2016)

25. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural networks for

mobile devices. In: CVPR. (2016)

16 Mehta et al.

26. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: Icnet for real-time semantic segmentation on

high-resolution images. arXiv preprint arXiv:1704.08545 (2017)

27. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with

low rank expansions. BMVC (2014)

28. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classification using

binary convolutional neural networks. In: ECCV. (2016)

29. Hwang, K., Sung, W.: Fixed-point feedforward deep neural network design using weights 1,

0, and -1. In: 2014 IEEE Workshop on Signal Processing Systems (SiPS). (2014)

30. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks:

Training neural networks with weights and activations constrained to+ 1 or- 1. arXiv preprint

arXiv:1602.02830 (2016)

31. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural net-

works: Training neural networks with low precision weights and activations. arXiv preprint

arXiv:1609.07061 (2016)

32. Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional neural net-

works. In: CVPR. (2015) 806–814

33. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural

networks. In: NIPS. (2016) 2074–2082

34. Bagherinezhad, H., Rastegari, M., Farhadi, A.: Lcnn: Lookup-based convolutional neural

network. In: CVPR. (2017)

35. Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time algorithm

for signal analysis with the help of the wavelet transform. In: Wavelets. (1990)

36. Mehta, S., Mercan, E., Bartlett, J., Weaver, D.L., Elmore, J.G., Shapiro, L.G.: Learning to

segment breast biopsy whole slide images. WACV (2018)

37. Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., Cottrell, G.: Understanding

convolution for semantic segmentation. In: WACV. (2018)

38. Graves, A., Fernández, S., Schmidhuber, J.: Multi-dimensional recurrent neural networks.

In: ”17th International Conference on Artificial Neural Networks – ICANN 2007. (”2007”)

39. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder

architecture for image segmentation. TPAMI (2017)

40. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image

segmentation. In: MICCAI. (2015)

41. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation

and fine-grained localization. In: CVPR. (2015)

42. Dai, J., He, K., Sun, J.: Convolutional feature masking for joint object and stuff segmentation.

In: CVPR. (2015)

43. Caesar, H., Uijlings, J., Ferrari, V.: Region-based semantic segmentation with end-to-end

training. In: ECCV. (2016)

44. Lin, G., Milan, A., Shen, C., Reid, I.: Refinenet: Multi-path refinement networks for high-

resolution semantic segmentation. In: CVPR. (2017)

45. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.

In: CVPR. (2015)

46. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In:

ICCV. (2015)

47. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR.

(2016)

48. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: NIPS. (2012)

49. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing

internal covariate shift. In: ICML. (2015)

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation 17

50. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification. In: ICCV. (2015)

51. Neuhold, G., Ollmann, T., Rota Bulò, S., Kontschieder, P.: The mapillary vistas dataset for

semantic understanding of street scenes. In: ICCV. (2017)

52. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual

object classes (voc) challenge. IJCV (2010)

53. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse

detectors. In: ICCV. (2011)

54. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick,

C.L.: Microsoft coco: Common objects in context. In: ECCV. (2014)

55. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet:

AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size. arXiv preprint

arXiv:1602.07360 (2016)

56. Yasin, A., Ben-Asher, Y., Mendelson, A.: Deep-dive analysis of the data analytics workload

in cloudsuite. In: Workload Characterization (IISWC), 2014 IEEE International Symposium

on. (2014)

57. Wu, Y., Wang, Y., Pan, Y., Yang, C., Owens, J.D.: Performance characterization of high-level

programming models for gpu graph analytics. In: Workload Characterization (IISWC), 2015

IEEE International Symposium on, IEEE (2015) 66–75

58. PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration.

http://pytorch.org/ Accessed: 2018-02-08.

59. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. ICLR (2015)

60. NVPROF: CUDA Toolkit Documentation. http://docs.nvidia.com/cuda/profiler-users-

guide/index.html Accessed: 2018-02-08.

61. TegraTools: NVIDIA Embedded Computing. https://developer.nvidia.com/embedded/develop/tools

Accessed: 2018-02-08.

62. PowerTop: For PowerTOP saving power on IA isn’t everything. It is the only thing!

https://01.org/powertop/ Accessed: 2018-02-08.

63. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-

nition. ICLR (2015)

64. Treml et al.: Speeding up semantic segmentation for autonomous driving. In: MLITS, NIPS

Workshop. (2016)

65. Ghiasi, G., Fowlkes, C.C.: Laplacian pyramid reconstruction and refinement for semantic

segmentation. In: ECCV. (2016)

66. Mehta, S., Mercan, E., Bartlett, J., Weaver, D., Elmore, J., Shapiro, L.: Y-Net: Joint Segmen-

tation and Classification for Diagnosis of Breast Biopsy Images. In: MICCAI. (2018)

67. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In:

ICML. (2010)

