
Rethinking Spatiotemporal Feature Learning:

Speed-Accuracy Trade-offs in Video Classification

Saining Xie1,2, Chen Sun1, Jonathan Huang1, Zhuowen Tu1,2, and Kevin Murphy1

1 Google Research
2 University of California San Diego

Abstract. Despite the steady progress in video analysis led by the adoption of

convolutional neural networks (CNNs), the relative improvement has been less

drastic as that in 2D static image classification. Three main challenges exist in-

cluding spatial (image) feature representation, temporal information representa-

tion, and model/computation complexity. It was recently shown by Carreira and

Zisserman that 3D CNNs, inflated from 2D networks and pretrained on Ima-

geNet, could be a promising way for spatial and temporal representation learn-

ing. However, as for model/computation complexity, 3D CNNs are much more

expensive than 2D CNNs and prone to overfit. We seek a balance between speed

and accuracy by building an effective and efficient video classification system

through systematic exploration of critical network design choices. In particular,

we show that it is possible to replace many of the 3D convolutions by low-cost

2D convolutions. Rather surprisingly, best result (in both speed and accuracy) is

achieved when replacing the 3D convolutions at the bottom of the network, sug-

gesting that temporal representation learning on high-level “semantic” features

is more useful. Our conclusion generalizes to datasets with very different proper-

ties. When combined with several other cost-effective designs including separable

spatial/temporal convolution and feature gating, our system results in an effective

video classification system that that produces very competitive results on several

action classification benchmarks (Kinetics, Something-something, UCF101 and

HMDB), as well as two action detection (localization) benchmarks (JHMDB and

UCF101-24).

1 Introduction

The resurgence of convolutional neural networks (CNNs) has led to a wave of unprece-

dented advances for image classification using end-to-end hierarchical feature learning

architectures [1–4]. The task of video classification, however, has not enjoyed the same

level of performance jump as in image classification. In the past, one limitation was

the lack of large-scale labeled video datasets. However, the recent creation of Sports-

1M [5], Kinetics [6], Something-something [7], ActivityNet [8], Charades [9], etc. has

partially removed that impediment.

Now we face more fundamental challenges. In particular, we have three main bar-

riers to overcome: (1) how best to represent spatial information (i.e., recognizing the

appearances of objects); (2) how best to represent temporal information (i.e., recogniz-

ing context, correlation and causation through time); and (3) how best to tradeoff model

complexity with speed, both at training and testing time.



2 Saining Xie et al.

Fig. 1. Our goal is to classify videos into different categories, as shown in the top row. We focus on

two qualitatively different kinds of datasets: Something-something which requires recognizing

low-level physical interactions, and Kinetics, which requires recognizing high-level activities.

The main question we seek to answer is what kind of network architecture to use. We consider 4

main variants: I2D, which is a 2D CNN, operating on multiple frames; I3D, which is a 3D CNN,

convolving over space and time; Bottom-Heavy I3D, which uses 3D in the lower layers, and 2D

in the higher layers; and Top-Heavy I3D, which uses 2D in the lower (larger) layers, and 3D in

the upper layers.

In this paper, we study these three questions by considering various kinds of 3D

CNNs. Our starting point is the state of the art approach, due to Carreira and Zis-

serman [10], known as “I3D” (since it “inflates” the 2D convolutional filters of the

“Inception” network [2] to 3D). Despite giving good performance, this model is very

computationally expensive. This prompts several questions, which we seek to address

in this paper:

– Do we even need 3D convolution? If so, what layers should we make 3D, and what

layers can be 2D? Does this depend on the nature of the dataset and task?

– Is it important that we convolve jointly over time and space, or would it suffice to

convolve over these dimensions independently?

– How can we use answers to the above questions to improve on prior methods in

terms of accuracy, speed and memory footprint?

To answer the first question, we apply “network surgery” to obtain several variants

of the I3D architecture. In one family of variants, which we call Bottom-Heavy-I3D, we

retain 3D temporal convolutions at the lowest layers of the network (the ones closest to

the pixels), and use 2D convolutions for the higher layers. In the other family of variants,

which we call Top-Heavy-I3D, we do the opposite, and retain 3D temporal convolutions

at the top layers, and use 2D for the lower layers (see Figure 1). We then investigate

how to trade between accuracy and speed by varying the number of layers that are

“deflated” (converted to 2D) in this way. We find that the Top-Heavy-I3D models are

faster, which is not surprising, since they only apply 3D to the abstract feature maps,



Rethinking Spatiotemporal Feature Learning 3

which are smaller than the low level feature maps due to spatial pooling. However, we

also find that Top-Heavy-I3D models are often more accurate, which is surprising since

they ignore low-level motion cues.

To answer the second question (about separating space and time), we consider re-

placing 3D convolutions with spatial and temporal separable 3D convolutions, i.e., we

replace filters of the form kt × k × k by 1× k × k followed by kt × 1× 1, where kt is

the width of the filter in time, and k is the height/width of the filter in space. We call the

resulting model S3D, which stands for “separable 3D CNN”. S3D obviously has many

fewer parameters than models that use standard 3D convolution, and it is more compu-

tationally efficient. Surprisingly, we also show that it also has better accuracy than the

original I3D model.

Finally, to answer the third question (about putting things together for an efficient

and accurate video classification system), we combine what we have learned in answer-

ing the above two questions with a spatio-temporal gating mechanism to design a new

model architecture which we call S3D-G. We show that this model gives significant

gains in accuracy over baseline methods on a variety of challenging video classifica-

tion datasets, such as Kinetics, Something-something, UCF-101 and HMDB, and also

outperforms many other methods on other video recognition tasks, such as action local-

ization on JHMDB.

2 Related work

2D CNNs have achieved state of the art results for image classification, so, not surpris-

ingly, there have been many recent attempts to extend these successes to video classi-

fication. The Inception 3D (I3D) architecture [10] proposed by Carreira and Zisserman

is one of the current state-of-the-art models. There are three key ingredients for its

success: first, they “inflate” all the 2D convolution filters used by the Inception V1 ar-

chitecture [2] into 3D convolutions, and carefully choose the temporal kernel size in the

earlier layers. Second, they initialize the inflated model weights by duplicating weights

that were pre-trained on ImageNet classification over the temporal dimension. Finally,

they train the network on the large-scale Kinetics dataset [6].

Unfortunately, 3D CNNs are computationally expensive, so there has been recent

interest in more efficient variants. In concurrent work, [11] has recently proposed a

variety of models based on top of the ResNet architecture [4]. In particular, they con-

sider models that use 3D convolution in either the bottom or top layers, and 2D in the

rest; they call these “mixed convolutional” models. This is similar to our top-heavy and

bottom-heavy models. They conclude that bottom heavy networks are more accurate,

which contradicts our finding. However, the differences they find between top heavy and

bottom heavy are fairly small, and are conflated with changes in computational com-

plexity. By studying the entire speed-accuracy tradeoff curve (of Inception variants), we

show that there are clear benefits to using a top-heavy design for a given computational

budget (see Section 4.2).

Another way to save computation is to replace 3D convolutions with separable con-

volutions, in which we first convolve spatially in 2D, and then convolve temporally in

1D. We call the resulting model S3D. This factorization is similar in spirit to the depth-



4 Saining Xie et al.

wise separable convolutions used in [12–14], except that we apply the idea to the tem-

poral dimension instead of the feature dimension. This idea has been used in a variety

of recent papers, including [11] (who call it “R(2+1)D”), [15] (who call it “Pseudo-3D

network”), [16] (who call it “factorized spatio-temporal convolutional networks”), etc.

We use the same method, but combine it with both top-heavy and bottom-heavy de-

signs, which is a combination that leads to a very efficient video classification system.

We show that the gains from separable convolution are complementary to the gains

from using a top-heavy design (see Section 4.4).

An efficient way to improve accuracy is to use feature gating, which captures depen-

dencies between feature channels with a simple but effective multiplicative transforma-

tion. This can be viewed as an efficient approximation to second-order pooling as shown

in [17]. Feature gating has been used for many tasks, such as machine translation [18],

VQA [19], reinforcement learning [20], image classification [21, 22], and action recog-

nition [23]. We consider a variant of the above techniques in which we place the feature

gating module after each of the temporal convolutions in an S3D network, and show

that this results in substantial gains in accuracy (see Section 4.6).

Another way to improve accuracy (at somewhat higher cost) is to use precom-

puted optical flow features. This idea was successfully used in [24], who proposed a

two-stream architecture where one CNN stream handles raw RGB input, and the other

handles precomputed optical flow. Since then, many video classification methods fol-

low the same multi-stream 2D CNN design, and have made improvements in terms of

new representations [25, 26], different backbone architecture [27–29, 17], fusion of the

streams [30–33] and exploiting richer temporal structures [34–36]. We will study the

benefits of using optical flow in Section 5.1.

3 Experiment Setup

3.1 Datasets

In this paper, we consider two large video action classification datasets. The first one

is Kinetics [6], which is a large dataset collected from YouTube, containing 400 ac-

tion classes and 240K training examples. Each example is temporally trimmed to be

around 10 seconds. Since the full Kinetics dataset is quite large, we have created a

smaller dataset that we call Mini-Kinetics-200.3 Mini-Kinetics-200 consists of the 200

categories with most training examples; for each category, we randomly sample 400

examples from the training set, and 25 examples from the validation set, resulting in

80K training examples and 5K validation examples in total. The splits are publicly

released to enable future comparisons. We also report some results on the original Ki-

netics dataset, which we will call Kinetics-Full for clarity.

The second main dataset is Something-something [7]. It consists of 110k videos

of 174 different low-level actions, each lasting between 2 to 6 seconds. In contrast

to Kinetics, this dataset requires making fine-grained low-level distinctions, such as

between “Pushing something from left to right” and “Pushing something from right to

3 The original “Mini-Kinetics” dataset used in [6] contains videos that are no longer available.

We created the new Mini-Kinetics-200 dataset in collaboration with the original authors.



Rethinking Spatiotemporal Feature Learning 5

left”. It is therefore an interesting question whether the same principles will hold and

the same architectures will work well on both datasets.

We also consider two smaller action classification datasets to test the transferability

of our model, which we discuss in Section 5.2, as well as two action detection datasets,

which we discuss in Section 5.3.

3.2 Model training

Our training procedure largely follows [10]. During training, we densely sample 64

frames from a video and resize input frames to 256 × 256 and then take random crops

of size 224×224. During evaluation, we use all frames and take 224×224 center crops

from the resized frames. Our models are implemented with TensorFlow and optimized

with a vanilla synchronous SGD algorithm with momentum of 0.9 and on 56 GPUs,

batch size is set to 6 per GPU. For Mini-Kinetics-200, we train our model for 80k

steps with an initial learning rate of 0.1. We decay the learning rate at step 60k to 0.01,

and step 70k to 0.001. Since Something-something is a smaller dataset, we reduce the

number of GPUs to 16 and train at learning rate of 0.1 for 10k steps.

3.3 Measuring speed and accuracy

We report top-1 and top-5 accuracy. To measure the computational efficiency of our

models, we report theoretical FLOPS based on a single input video sequence of 64

frames and spatial size 224× 224. We pad the total number of frames to 250 for Mini-

Kinetics-200 and 64 for Something-something when evaluating.

4 Network surgery

In this section, we report the results of various “network surgery” experiments, where

we vary different aspects of the I3D model to study the effects on speed and accuracy.

4.1 Replacing all 3D convolutions with 2D

In this section, we seek to determine how much value 3D convolution brings, motivated

by the surprising success of 2D CNN approaches to video classification (see e.g., [36]).

We do this by replacing every 3D filter in the I3D model with a 2D filter. This yields

what we will refer to as the I2D model.4

Theoretically, the I2D network should be invariant to the temporal reversal of the in-

put frames, since it is not capable of incorporating global signals. To verify this, we train

I2D and the original I3D model on the Kinetics-Full and Something-something datasets

4 To reduce the memory and time requirements, and to keep the training protocol identical to

I3D (in terms of the number of clips we use for training in each batch, etc), we retain two max-

pooling layers with temporal stride 2 between Inception modules. Hence, strictly speaking,

I2D is not a pure 2D model. However, it is very similar to a single-frame 2D classification

model.



6 Saining Xie et al.

7,7,7 

Conv 

Stride 2

1x3x3

Max-Pool

Stride 

1,2,2

1x1x1 

Conv 

1x1x1 

Conv

3x3x3 

Conv

1x3x3

Max-Pool

Stride 

1,2,2

3D

Inc.

3D

Inc.

3x3x3

Max-Pool

Stride 2

3D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

2x2x2

Max-Pool

Stride 2

2x7x7

Avg-Pool

Video
(64 Frames)

Prediction
(400D)

(a) I3D

1,7,7 

Conv 

Stride 2

1x3x3

Max-Pool

Stride 

1,2,2

1x1x1 

Conv 

1x1x1 

Conv

1x3x3 

Conv

1x3x3

Max-Pool

Stride 

1,2,2

2D

Inc.

2D

Inc.

3x3x3

Max-Pool

Stride 

2,2,2

2D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2x2x2

Max-Pool

Stride 

2,2,2

1x7x7

Avg-Pool

Video

Prediction

(b) I2D

7,7,7 

Conv 

Stride 2

1x3x3

Max-Pool

Stride 

1,2,2

1x1x1 

Conv 

1x1x1 

Conv

3x3x3 

Conv

1x3x3

Max-Pool

Stride 

1,2,2

3D

Inc.

3D

Inc.

3x3x3

Max-Pool

Stride 

2,2,2

3D

Inc.

3D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2x2x2

Max-Pool

Stride 

2,2,2

2x7x7

Avg-Pool

Video

Prediction

K=0 K=1
K=2

K=3K=4K=5K=6K=7

K=8 K=9 K=10

(c) Bottom-heavy I3D

1,7,7 

Conv 

Stride 2

1x3x3

Max-Pool

Stride 

1,2,2

1x1x1 

Conv 

1x1x1 

Conv

1x3x3 

Conv

1x3x3

Max-Pool

Stride 

1,2,2

2D

Inc.

2D

Inc.

3x3x3

Max-Pool

Stride 

2,2,2

2D

Inc.

2D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

2x2x2

Max-Pool

Stride 

2,2,2

2x7x7

Avg-Pool Prediction

Video

K=0 K=1
K=2

K=3K=4K=5K=6K=7

K=8 K=9 K=10

(d) Top-heavy I3D

Fig. 2. Network architecture details for (a) I3D, (b) I2D, (c) Bottom-Heavy and (d) Top-Heavy

variants. K indexes the spatio-temporal convolutional layers. The “2D Inc.” and “3D Inc.” blocks

refer to 2D and 3D inception blocks, defined in Figure 3.

2D Inc.

Conv

1x3x3

Conv

1x1x1

1x3x3

Max-Pool

Conv

1x1x1

Previous Layer

Conv

1x1x1

Conv

1x1x1

Next Layer

Concat

Conv

1x3x3

(a)

3D Inc.

Conv

3x3x3

Conv

1x1x1

3x3x3

Max-Pool

Conv

1x1x1

Previous Layer

Conv

1x1x1

Conv

1x1x1

Next Layer

Concat

Conv

3x3x3

(b)

Sep-Inc.

Conv

1x3x3

Conv

3x1x1

Conv

3x1x1

Conv

1x1x1

3x3x3

Max-Pool

Conv

1x1x1

Previous Layer

Conv

1x1x1

Conv

1x1x1

Next Layer

Concat

Conv

1x3x3

(c)

Fig. 3. (a) 2D Inception block; (b) 3D Inception block; (c) 3D temporal separable Inception block

used in S3D networks.



Rethinking Spatiotemporal Feature Learning 7

with normal frame order, and apply the trained models on validation data in which the

frames are in normal order and reversed temporal order. The results of the experiment

are shown in Table 1. We see that I2D has the same performance on both versions dur-

ing testing, as is to be expected. However, we notice an interesting difference between

the Kinetics dataset and the Something-something dataset. In the former case, the per-

formance of I3D is indifferent to the “arrow of time” [37], whereas in the latter case,

reversing the order hurts performance. We believe this is because Something-something

dataset requires fine-grained distinctions between visually similar action categories.

Kinetics-Full Something-something

Model Normal (%) Reversed (%) Normal (%) Reversed (%)

I3D 71.1 71.1 45.8 15.2

I2D 67.0 67.2 34.4 35.2

Table 1. Top-1 accuracy on Kinetics-Full and Something-something datasets. We train on frames

in normal order, and then test on frames in normal order or reverse order. Not surprisingly, 2D

CNNs do not care about the order of the frames. For 3D CNNs on Kinetics-Full the results are the

same on normal and reverse order, indicating that capturing the “arrow of time” is not important

on this dataset. However, on Something-something the exact order does matter.

4.2 Replacing some 3D convolutions with 2D

Although we have seen that 3D convolution can boost accuracy compared to 2D con-

volution, it is computationally very expensive. In this section, we investigate the conse-

quences of only replacing some of the 3D convolutions with 2D. Specifically, starting

with an I2D model, we gradually inflate 2D convolutions into 3D, from low-level to

high-level layers in the network, to create what we call the Bottom-Heavy-I3D model.

We also consider the opposite process, in which we inflate the top layers of the model

to 3D, but keep the lower layers 2D; we call such models Top-Heavy-I3D models.

We train and evaluate the Bottom-Heavy-I3D and Top-Heavy-I3D models on Mini-

Kinetics-200 and Something-something, and show the results in Figures 4. We see that

the solid blue lines (top heavy I3D) are much better than the dotted blue lines (bottom

heavy I3D) under the same FLOPS, which indicates that top heavy models are faster

and more accurate. The speed increase is expected, since in a top-heavy model, the

feature maps are reduced in size using spatial pooling before being convolved in 3D.

For fixed computation budget, Top-Heavy-I3D is often significantly more accurate than

Bottom-Heavy-I3D. This suggests that 3D convolutions are more capable and useful to

model temporal patterns amongst high level features that are rich in semantics.

4.3 Analysis of weight distribution of learned filters

To verify the above intuition, we examined the weights of an I3D model which was

trained on Kinetics-Full. Figure 5 shows the distribution of these weights across 4 lay-

ers of our model, from low-level to high-level. In particular, each boxplot shows the



8 Saining Xie et al.

(a) (b)

Fig. 4. Accuracy vs number of FLOPS needed to perform inference on 64 RGB frames. Left:

Mini-Kinetics-200 dataset. Right: Something-something dataset. Solid lines denote top-heavy

models, dotted lines denote bottom-heavy models. Orange denotes spatial and temporal separable

3D convolutions, blue denotes full 3D convolutions.

Fig. 5. Statistics of convolutional filter weights of an I3D model trained on Kinetics-Full. Each

boxplot shows the distribution of Wl(t, :, :, :) for temporal offset t, with t = 0 being in the

middle. Results for different layers l are shown in different panels, with lowest layers on the left.

All filters with different temporal offset are initialized with the same set of weights. Low-level

filters essentially ignore the temporal dimension, unlike higher level filters, where the weights

distributed nicely across different temporal offsets.

distribution of Wl(t, :, :, :) for temporal offset t and layer l. We use t = 0 to indicate

no offset in time, i.e., the center in the temporal kernel. At initialization, all the filters

started with the same set of (2D convolution) weights (derived from an Inception model

pre-trained on Imagenet) for each value of t ∈ {−1, 0, 1}. After training, we see that

the temporally offset filters (i.e., for t 6= 0) have a weight distribution that is still closely

centered on zero in the lower layers (see left panel), whereas the variance of the dis-

tribution increases in higher layers (see right panel). This suggests once again that the

higher level temporal patterns are more useful for the Kinetics action classification task.

4.4 Separating temporal convolution from spatial convolutions

In this section, we study the effect of replacing standard 3D convolution with a fac-

tored version which disentangles this operation into a temporal part and a spatial part.

In more detail, our method is to replace each 3D convolution with two consecutive con-

volution layers: one 2D convolution layer to learn spatial features, followed by a 1D

convolution layer purely on the temporal axis. This can be implemented by running two

3D convolutions, where the first (spatial) convolution has filter shape [1, k, k] and the



Rethinking Spatiotemporal Feature Learning 9

second (temporal) convolution has filter shape [k, 1, 1]. By applying this factorization

to I3D, we obtain a model which we refer to as S3D. For a detailed illustration of the

architecture, please refer to Figure 6.5

Sep-

Conv

3x3x3 Conv

1x3x3

Conv

3x1x1

=

Sep-

Conv

7x7x7

Stride 2

1x3x3

Max-Pool

Stride 1,2,2

1x1x1 

Conv 

1x1x1 

Conv

Sep-

Conv

3x3x3

1x3x3

Max-Pool

Stride 1,2,2

Sep-

Inc.

Sep-

Inc.

3x3x3

Max-Pool

Stride 2,2,2

Sep-

Inc.

Sep-

Inc.

Sep-

Inc.

Sep-

Inc.

Sep-

Inc.

Sep-

Inc.

Sep-

Inc.

2x2x2

Max-Pool

Stride 2,2,2

2x7x7

Avg-Pool

Sep-Conv

Video

Prediction

Fig. 6. An illustration of the S3D model. Dark red boxes are temporal separable convolutions

(sep-conv), and pink boxes are temporal separable inception blocks, shown in Figure 3(c).

Table 2 compares the results of S3D and I3D on Kinetics-Full. Table 3 shows

that S3D also outperforms I3D on the Something-something dataset. The results show

that, despite a substantial compression in model size (12.06M parameters for I3D re-

duced to 8.77M for S3D), and a large speed-up (107.9 GFLOPS for I3D reduced to

66.38 GFLOPS for S3D), the separable model is even more accurate (top-1 accu-

racy improved from 71.1% to 72.2% for Kinetics-Full, and from 45.8% to 47.3% for

Something-something). We believe the gain in accuracy is because the spatio-temporal

factorization reduces overfitting, in a way without sacrificing the expressiveness of the

representation, as we find that simply reducing the parameters of the network does not

help with the performance.

Note that we can apply this separable transformation to any place where 3D convo-

lution is used; thus this idea is orthogonal to the question of which layers should contain

3D convolution, which we discussed in Section 4.1. We denote the separable version

of the Bottom-Heavy-I3D models by Bottom-Heavy-S3D, and the separable version of

the Top-Heavy-I3D models by Top-Heavy-S3D, thus giving us 4 families of models.

We plot the speed vs accuracy of these models in Figure 4. We see that separable

top-heavy models offer the best speed-accuracy trade-off. In particular, the model in

which we keep the top 2 layers as separable 3D convolutions, and make the rest 2D

convolutions, seems to be a kind of “sweet spot”. We call this model “Fast-S3D”, since

it is is 2.5 times more efficient than I3D (43.47 vs 107.9 GFLOPS), and yet has compa-

rable accuracy (78.0% vs 78.4% on Mini-Kinetics-200).

5 There are 4 branches in an Inception block, but only two of them have 3x3 convolutions (the

other two being pointwise 1x1 convolutions), as shown in Figure 3. As such, when I3D inflates

the convolutions to 3D, only some of the features contain temporal information. However, by

using separable temporal convolution, we can add temporal information to all 4 branches.

This improves the performance from 78.4% to 78.9% on Mini-Kinetics-200. In the following

sections, whenever we refer to an S3D model, we mean S3D with such configuration.



10 Saining Xie et al.

Bottom-heavy S3D Top-heavy S3D

Max3a Max4b Max4d Max5a Max5c

S3D

I2D S3D

Max5a

Fig. 7. tSNE projection of activation maps derived from images in the Something-something

dataset. Colors and numbers represent the 10 action groups defined in [7]. The top row shows

increasing semantic separation as we move to higher layers of S3D. The bottom row shows ac-

tivations at level Max5a for 4 different models. We see that Top-Heavy-S3D has better semantic

separation than Bottom-Heavy-S3D, especially for visually similar categories inside the red box.

4.5 tSNE analysis of the features

Here we explore the spatiotemporal representations learned by different levels of the

S3D model on the Something-something dataset, using the tool of tSNE projection

[38]. The behavior of the I3D models is very similar. Instead of using samples from

all 174 categories, we use a smaller vocabulary, namely the “10 action groups” defined

in [7].6 We sample 2,200 data points from the validation set. In Figure 7, the top row

shows representations learned by a S3D model, at levels from Max3a to Max5c. The

class separation becomed increasingly clearer at higher levels.

The bottom row shows representations learned at a certain feature level (Max5a), but

across different models including I2D, Bottom-Heavy-S3D and Top-Heavy-S3D (both

have a 2D-3D transition point at Max4b layer), as well as a full S3D model. Comparing

the bottom-heavy and top-heavy models, for subtle actions such as “3: Picking”, “4:

Putting” and “5: Poking” something, representations learned with a top-heavy model

are more discriminative than that in a bottom-heavy model, thus leading to better class

separations with the tSNE projection (highlighted with the red box). A top-heavy model

can learn features that are as good as those learned with a full 3D model, and signifi-

cantly better than those from the 2D model, without much sacrifice in processing speed.

This observation further supports our hypothesis that temporal information modeling is

most effective at top levels in the feature hierarchy for action classification tasks.

6 The labels are as follows. 0: Dropping [something], 1: Moving [something] from right to left,

2: Moving [something] from left to right, 3: Picking [something], 4:Putting [something], 5:



Rethinking Spatiotemporal Feature Learning 11

Model Top-1 (%) Top-5 (%) Params (M) FLOPS (G)

I3D 71.1 89.3 12.06 107.89
S3D 72.2 90.6 8.77 66.38

S3D-G 74.7 93.4 11.56 71.38

Table 2. Effect of separable convolution and feature gating on the Kinetics-Full validation set

using RGB features.

Model Backbone Val Top-1 (%) Val Top-5 (%) Test Top-1 (%)

Pre-3D CNN + Avg [7] VGG-16 - - 11.5

Multi-scale TRN [39] Inception 34.4 63.2 33.6

I2D Inception 34.4 69.0 -

I3D Inception 45.8 76.5 -

S3D Inception 47.3 78.1 -

S3D-G Inception 48.2 78.7 42.0

Table 3. Effect of separable convolution and feature gating on the Something-something valida-

tion and test sets using RGB features.

4.6 Spatio-temporal feature gating

In this section we further improve the accuracy of our model by using feature gating.

We start by considering the context feature gating mechanism first used for video clas-

sification in [23]. They consider an unstructured input feature vector x ∈ Rn (usually

learned at final embedding layers close to the logit output), and produce an output fea-

ture vector y ∈ Rn as follows:

y = σ(Wx+ b)⊙ x

where ⊙ represents elementwise multiplication, W ∈ Rn×n is a weight matrix, and b ∈
Rn is the bias term. This mechanism allows the model to upweight certain dimensions

of x if the context model σ(Wx+b) predicts that they are important, and to downweight

irrelevant dimensions; this can be thought of as a “self-attention” mechanism.

We now extend this to feature tensors, with spatio-temporal structure. Let X ∈
RT×W×H×D be the input tensor, and let Y be an output tensor of the same shape. We

replace the matrix product Wx with Wpool(X), where the pooling operation averages

the dimensions of X across space and time. (We found that this worked better than just

averaging across space or just across time.) We then compute Y = σ(Wpool(X) +
b)⊙X , where ⊙ represents multiplication across the feature (channel) dimension, (i.e.,

we replicate the attention map σ(Wpool(X) + b) across space and time).

We can plug this gating module into any layer of the network. We experimented with

several options, and got the best results by applying it directly after each of the [k, 1, 1]
temporal convolutions in the S3D network. We call the final model (S3D with gating)

Poking [something], 6: Tearing [something], 7: Pouring [something], 8: Holding [something],

9: Showing [something].



12 Saining Xie et al.

S3D-G. We see from Table 2 that this results in a healthy gain in accuracy compared to

S3D on the Kinetics-Full dataset (72.2% top-1 to 74.7%) at a very modest cost increase

(66.38 GFLOPS to 71.38). Table 3 shows that S3D-G also outperforms S3D and I3D

on Something-something. We also significantly outperform the current state of the art

method, which is the Multi-scale TRN of [39], improving top-1 accuracy from 33.6%

to 42.0%.

5 Generalization to other modalities, data and tasks

In this section, we evaluate the generality and robustness of the proposed S3D-G archi-

tecture by conducting transfer learning experiments on different input modalities, video

datasets, and tasks.

5.1 Using optical flow features

We first verify if S3D-G also works with optical flow inputs. For these experiments, we

follow the standard setup as described in [10] and extract optical flow features with the

TV-L1 approach [40]. We truncate the flow magnitude at [−20, 20] and store them as

encoded JPEG files. Other experiment settings are the same as the RGB experiments.

From Table 4, we can see that the improvement of S3D-G over I3D is consistent with the

gain we saw with RGB inputs, bringing the performance up from 63.91% to 68.00%.

By ensembling the two streams of RGB and flow, we obtain a performance of 77.22%,

which is a 3% boost over the I3D network when trained on the same data. We note that

even though we focus on the speed-accuracy trade-offs in action classification network

design, the performance is competitive compared with recent Kinetics Challenge win-

ners and concurrent works; notably [41] and [42] use heavier backbone architectures

(e.g. ResNet 101 has 8.5x more FLOPS than our S3D-G architecture)

Model Inputs Backbone Pre-train Top-1 (%) Top-5 (%)

NL I3D [42] RGB ResNet-101 ImNet 77.7 93.3

SAN [41] RGB+Flow+Audio Inception-ResNet-v2 ImNet 77.7 93.2

TSN [36] RGB+Flow Inception ImNet 73.9 91.1

ARTNet [43] RGB+Flow ResNet-18 ImNet 72.4 90.4

R(2+1)D [11] RGB+Flow ResNet-34 Sports-1M 75.4 91.9

I3D Flow Inception ImNet 63.9 85.0

I3D RGB Inception ImNet 71.1 89.3

I3D RGB+Flow Inception ImNet 74.1 91.6

S3D-G Flow Inception ImNet 68.0 87.6

S3D-G RGB Inception ImNet 74.7 93.4

S3D-G RGB+Flow Inception ImNet 77.2 93.0

Table 4. Benefits of using optical flow. We report results on the Kinetics-Full validation set. We

report I3D performance based on our implementation, as [10] only report results on the held-out

test set (where they get a top-1 accuracy of 74.2% using RGB+flow and ImNet pretraining).



Rethinking Spatiotemporal Feature Learning 13

Model Inputs Pre-train UCF-101 HMDB-51

P3D [46] RGB Sports-1M 88.6 -

C3D [47] RGB Sports-1M 82.3 51.6

Res3D [48] RGB Sports-1M 85.8 54.9

ARTNet w/ TSN [43] RGB Kinetics 94.3 70.9

I3D [10] RGB ImNet+Kinetics 95.6 74.8

R(2+1)D [11] RGB Kinetics 96.8 74.5

S3D-G RGB ImNet+Kinetics 96.8 75.9

Table 5. Results of various methods on action classification on the UCF-101 and HMDB-51

datasets. All numbers are computed as the average accuracy across three splits.

5.2 Fine-tuning on other video classification datasets

Next we conduct transfer learning experiments from Kinetics to other video classifica-

tion datasets, namely HMDB-51 [44] and UCF-101 [45]. HMDB-51 contains around

7,000 videos spanning over 51 categories, while UCF-101 has 13,320 videos span-

ning over 101 categories. Both datasets consist of short video clips that are temporally

trimmed, and contain 3 training and validation splits. We follow the standard setup as

used in previous work and report average accuracy across all splits.

For our transfer learning experiments, we use the same setup as training on Kinetics,

but change the number of GPUs to 8 and lower the learning rate to 0.01 for 6K steps,

and 0.001 for another 2K steps. For simplicity, we only use RGB (no optical flow).

Table 5 shows the results of this experiment. On UCF-101, our proposed S3D-G

architecture, which only uses Kinetics for pretraining, outperforms I3D, and matches

R(2+1)D, both of which use largescale datasets (Kinetics and Sports-1M) for pretrain-

ing. On HMDB-51, we outperform all previous methods published to date.

5.3 Spatio-temporal action detection in video

Finally, we demonstrate the effectiveness of S3D-G on action detection tasks, where

the inputs are video frames, and the outputs are bounding boxes associated with action

labels on the frames. Similar to the framework proposed in [49], we use the Faster-

RCNN [50] object detection algorithm to jointly perform person localization and action

recognition. We use the same approach as described in [51] to incorporate temporal

context information via 3D networks. To be more specific, the model uses a 2D ResNet-

50 [4] network that takes the annotated keyframe (frame with box annotations) as input,

and extract features for region proposal generation on the keyframe. We then use a 3D

network (such as I3D or S3D-G) that takes the frames surrounding the keyframe as

input, and extract feature maps which are then pooled for bounding box classification.

The 2D region proposal network (RPN) and 3D action classification network are jointly

trained end-to-end. Note that we extend the ROIPooling operation to handle 3D feature

maps by simply pooling at the same spatial locations over all time steps.

We report performance on two widely adopted video action detection datasets:

JHDMB [52] and UCF-101-24 [45]. JHMDB dataset is a subset of HMDB-51, it con-

sists of 928 videos for 21 action categories, and each video clip contains 15 to 40 frames.



14 Saining Xie et al.

UCF-101-24 is a subset of UCF-101 with 24 labels and 3207 videos; we use the cleaned

bounding box annotations from [53]. We report performance using the standard frame-

AP metric defined in [54], which is computed as the average precision of action detec-

tion over all individual frames, at the intersection-over-union (IoU) threshold of 0.5. As

commonly used by previous work, we report average performance over three splits of

JHMDB and the first split for UCF-101-24.

Our implementation is based on the TensorFlow Object Detection API [55]. We

train Faster-RCNN with asynchronous SGD on 11 GPUs for 600K iterations. We fix

the input resolution to be 320 × 400 pixels. For both training and validation, we fix

the size of temporal context to 20 frames. All the other model parameters are set based

on the recommended values from [55]. The ResNet-50 networks are initialized with

ImageNet pre-trained models, and I3D and S3D-Gare pre-trained from Kinetics. We

extract 3D feature maps from the “Mixed 4e” layer which has a spatial stride of 16.

Table 6 shows the comparison between I3D, S3D-G, and other state-of-the-art meth-

ods. We can see that both 3D networks outperform previous architectures by large mar-

gins, while S3D-G is consistently better than I3D.

Model Inputs JHMDB UCF-101

Gkioxari and Malik [54] RGB+Flow 36.2 -

Weinzaepfel et al. [56] RGB+Flow 45.8 35.8

Peng and Schmid [49] RGB+Flow 58.5 65.7

Kalogeiton et al. [57] RGB+Flow 65.7 69.5

Faster RCNN + I3D [51] RGB+Flow 73.2 76.3

Faster RCNN + S3D-G RGB+Flow 75.2 78.8

Table 6. Results of various methods on action detection in JHMDB and UCF101. We report

frame-mAP at IoU threshold of 0.5 on JHMDB (all splits) and UCF-101-24 (split 1) datasets.

6 Conclusion

We show that we can significantly improve on the previous state of the art 3D CNN

video classification model, known as I3D, in terms of efficiency, by combining 3 key

ideas: a top-heavy model design, temporally separable convolution, and spatio-temporal

feature gating. Our modifications are simple and can be applied to other architectures.

We hope this will boost performance on a variety of video understanding tasks.

Acknowledgment

We would like to thank the authors of [6] for the help on the Kinetics dataset and

the baseline experiments, especially Joao Carreira for many constructive discussions.

We also want to thank Abhinav Shrivastava, Jitendra Malik, and Rahul Sukthankar for

valuable feedbacks. S.X. is supported by Google. Z.T. is supported by NSF IIS-1618477

and NSF IIS-1717431.



Rethinking Spatiotemporal Feature Learning 15

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. NIPS (2012)

2. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V., Rabinovich, A.: Going deeper with convolutions. CVPR (2015)

3. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-

nition. ICLR (2015)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CVPR

(2016)

5. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale

video classification with convolutional neural networks. CVPR (2014)

6. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., Viola, F.,

Green, T., Back, T., Natsev, P., et al.: The kinetics human action video dataset. CVPR (2017)

7. Goyal, R., Kahou, S.E., Michalski, V., Materzynska, J., Westphal, S., Kim, H., Haenel, V.,

Fruend, I., Yianilos, P., Mueller-Freitag, M., et al.: The something something video database

for learning and evaluating visual common sense. ICCV (2017)

8. Caba Heilbron, F., Escorcia, V., Ghanem, B., Niebles, J.C.: ActivityNet: A large-scale video

benchmark for human activity understanding. CVPR (2015)

9. Sigurdsson, G.A., Varol, G., Wang, X., Farhadi, A., Laptev, I., Gupta, A.: Hollywood in

homes: Crowdsourcing data collection for activity understanding. ECCV (2016)

10. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics

dataset. CVPR (2017)

11. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotem-

poral convolutions for action recognition. CVPR (2018)

12. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. CVPR (2017)

13. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,

Adam, H.: MobileNets: Efficient convolutional neural networks for mobile vision applica-

tions. arXiv:1704.04861 (2017)

14. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep

neural networks. CVPR (2017)

15. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual

networks. ICCV (2017)

16. Sun, L., Jia, K., Yeung, D.Y., Shi, B.E.: Human action recognition using factorized spatio-

temporal convolutional networks. ICCV (2015)

17. Girdhar, R., Ramanan, D.: Attentional pooling for action recognition. NIPS (2017)

18. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional

networks. ICML (2017)

19. Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.: Film: Visual reasoning with a

general conditioning layer. AAAI (2018)

20. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function

approximation in reinforcement learning. Neural Networks (2018)

21. Ramachandran, P., Zoph, B., Le, Q.V.: Swish: a self-gated activation function.

arXiv:1710.05941 (2017)

22. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. CVPR (2018)

23. Miech, A., Laptev, I., Sivic, J.: Learnable pooling with context gating for video classification.

arXiv:1706.06905 (2017)

24. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in

videos. NIPS (2014)



16 Saining Xie et al.

25. Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., Gould, S.: Dynamic image networks for

action recognition. CVPR (2016)

26. Bilen, H., Fernando, B., Gavves, E., Vedaldi, A.: Action recognition with dynamic image

networks. IEEE PAMI (2017)

27. Feichtenhofer, C., Pinz, A., Wildes, R.P.: Temporal residual networks for dynamic scene

recognition. CVPR (2017)

28. Wang, L., Xiong, Y., Wang, Z., Qiao, Y.: Towards good practices for very deep two-stream

convnets. arXiv:1507.02159 (2015)

29. Ng, J.Y., Hausknecht, M.J., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Be-

yond short snippets: Deep networks for video classification. CVPR (2015)

30. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for

video action recognition. CVPR (2016)

31. Feichtenhofer, C., Pinz, A., Wildes, R.: Spatiotemporal multiplier networks for video action

recognition. CVPR (2017)

32. Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spatiotemporal residual networks for video action

recognition. NIPS (2016)

33. Zolfaghari, M., Oliveira, G.L., Sedaghat, N., Brox, T.: Chained multi-stream networks ex-

ploiting pose, motion, and appearance for action classification and detection. ICCV (2017)

34. Donahue, J., Hendricks, L.A., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K.,

Darrell, T.: Long-term recurrent convolutional networks for visual recognition and descrip-

tion. CVPR (2015)

35. Wang, X., Farhadi, A., Gupta, A.: Actions ˜ transformations. CVPR (2016)

36. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Temporal segment

networks: Towards good practices for deep action recognition. ECCV (2016)

37. Pickup, L.C., Pan, Z., Wei, D., Shih, Y., Zhang, C., Zisserman, A., Scholkopf, B., Freeman,

W.T.: Seeing the arrow of time. CVPR (2014)

38. Maaten, L.v.d., Hinton, G.: Visualizing data using t-SNE. JMLR (2008)

39. Zhou, B., Andonian, A., Torralba, A.: Temporal relational reasoning in videos.

arXiv:1711.08496 (2017)

40. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime tv-l1 optical flow.

Pattern Recognition (2007)

41. Bian, Y., Gan, C., Liu, X., Li, F., Long, X., Li, Y., Qi, H., Zhou, J., Wen, S., Lin, Y.: Revis-

iting the effectiveness of off-the-shelf temporal modeling approaches for large-scale video

classification. arXiv:1708.03805 (2017)

42. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. CVPR (2018)

43. Wang, L., Li, W., Li, W., Gool, L.V.: Appearance-and-relation networks for video classifica-

tion. CVPR (2018)

44. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: A large video database

for human motion recognition. ICCV (2011)

45. Soomro, K., Zamir, A., Shah, M.: UCF101: A dataset of 101 human actions classes from

videos in the wild. Technical Report CRCV-TR-12-01 (2012)

46. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual

networks. ICCV (2017)

47. Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: C3D: Generic features for

video analysis. arXiv:1412.0767 (2014)

48. Tran, D., Ray, J., Shou, Z., Chang, S., Paluri, M.: Convnet architecture search for spatiotem-

poral feature learning. arXiv:1708.05038 (2017)

49. Peng, X., Schmid, C.: Multi-region two-stream r-cnn for action detection. ECCV (2016)

50. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection

with region proposal networks. NIPS (2015)



Rethinking Spatiotemporal Feature Learning 17

51. Gu, C., Sun, C., Ross, D.A., Vondrick, C., Pantofaru, C., Li, Y., Vijayanarasimhan, S.,

Toderici, G., Ricco, S., Sukthankar, R., Schmid, C., Malik, J.: AVA: A video dataset of

spatio-temporally localized atomic visual actions. CVPR (2018)

52. Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.: Towards understanding action recog-

nition. ICCV (2013)

53. Saha, S., G.Sing, Cuzzolin, F.: AMTnet: Action-micro-tube regression by end-to-end train-

able deep architecture. ICCV (2017)

54. Gkioxari, G., Malik, J.: Finding action tubes. CVPR (2015)

55. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z.,

Song, Y., Guadarrama, S., et al.: Speed/accuracy trade-offs for modern convolutional object

detectors. CVPR (2017)

56. Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Learning to track for spatio-temporal action

localization. ICCV (2015)

57. Kalogeiton, V., Weinzaepfel, P., Ferrari, V., Schmid, C.: Action Tubelet Detector for Spatio-

Temporal Action Localization. ICCV (2017)


