
Rethinking Spatiotemporal Feature Learning:

Speed-Accuracy Trade-offs in Video Classification

Saining Xie1,2, Chen Sun1, Jonathan Huang1, Zhuowen Tu1,2, and Kevin Murphy1

1 Google Research
2 University of California San Diego

Abstract. Despite the steady progress in video analysis led by the adoption of

convolutional neural networks (CNNs), the relative improvement has been less

drastic as that in 2D static image classification. Three main challenges exist in-

cluding spatial (image) feature representation, temporal information representa-

tion, and model/computation complexity. It was recently shown by Carreira and

Zisserman that 3D CNNs, inflated from 2D networks and pretrained on Ima-

geNet, could be a promising way for spatial and temporal representation learn-

ing. However, as for model/computation complexity, 3D CNNs are much more

expensive than 2D CNNs and prone to overfit. We seek a balance between speed

and accuracy by building an effective and efficient video classification system

through systematic exploration of critical network design choices. In particular,

we show that it is possible to replace many of the 3D convolutions by low-cost

2D convolutions. Rather surprisingly, best result (in both speed and accuracy) is

achieved when replacing the 3D convolutions at the bottom of the network, sug-

gesting that temporal representation learning on high-level “semantic” features

is more useful. Our conclusion generalizes to datasets with very different proper-

ties. When combined with several other cost-effective designs including separable

spatial/temporal convolution and feature gating, our system results in an effective

video classification system that that produces very competitive results on several

action classification benchmarks (Kinetics, Something-something, UCF101 and

HMDB), as well as two action detection (localization) benchmarks (JHMDB and

UCF101-24).

1 Introduction

The resurgence of convolutional neural networks (CNNs) has led to a wave of unprece-

dented advances for image classification using end-to-end hierarchical feature learning

architectures [1–4]. The task of video classification, however, has not enjoyed the same

level of performance jump as in image classification. In the past, one limitation was

the lack of large-scale labeled video datasets. However, the recent creation of Sports-

1M [5], Kinetics [6], Something-something [7], ActivityNet [8], Charades [9], etc. has

partially removed that impediment.

Now we face more fundamental challenges. In particular, we have three main bar-

riers to overcome: (1) how best to represent spatial information (i.e., recognizing the

appearances of objects); (2) how best to represent temporal information (i.e., recogniz-

ing context, correlation and causation through time); and (3) how best to tradeoff model

complexity with speed, both at training and testing time.



2 Saining Xie et al.

Fig. 1. Our goal is to classify videos into different categories, as shown in the top row. We focus on

two qualitatively different kinds of datasets: Something-something which requires recognizing

low-level physical interactions, and Kinetics, which requires recognizing high-level activities.

The main question we seek to answer is what kind of network architecture to use. We consider 4

main variants: I2D, which is a 2D CNN, operating on multiple frames; I3D, which is a 3D CNN,

convolving over space and time; Bottom-Heavy I3D, which uses 3D in the lower layers, and 2D

in the higher layers; and Top-Heavy I3D, which uses 2D in the lower (larger) layers, and 3D in

the upper layers.

In this paper, we study these three questions by considering various kinds of 3D

CNNs. Our starting point is the state of the art approach, due to Carreira and Zis-

serman [10], known as “I3D” (since it “inflates” the 2D convolutional filters of the

“Inception” network [2] to 3D). Despite giving good performance, this model is very

computationally expensive. This prompts several questions, which we seek to address

in this paper:

– Do we even need 3D convolution? If so, what layers should we make 3D, and what

layers can be 2D? Does this depend on the nature of the dataset and task?

– Is it important that we convolve jointly over time and space, or would it suffice to

convolve over these dimensions independently?

– How can we use answers to the above questions to improve on prior methods in

terms of accuracy, speed and memory footprint?

To answer the first question, we apply “network surgery” to obtain several variants

of the I3D architecture. In one family of variants, which we call Bottom-Heavy-I3D, we

retain 3D temporal convolutions at the lowest layers of the network (the ones closest to

the pixels), and use 2D convolutions for the higher layers. In the other family of variants,

which we call Top-Heavy-I3D, we do the opposite, and retain 3D temporal convolutions

at the top layers, and use 2D for the lower layers (see Figure 1). We then investigate

how to trade between accuracy and speed by varying the number of layers that are

“deflated” (converted to 2D) in this way. We find that the Top-Heavy-I3D models are

faster, which is not surprising, since they only apply 3D to the abstract feature maps,



Rethinking Spatiotemporal Feature Learning 3

which are smaller than the low level feature maps due to spatial pooling. However, we

also find that Top-Heavy-I3D models are often more accurate, which is surprising since

they ignore low-level motion cues.

To answer the second question (about separating space and time), we consider re-

placing 3D convolutions with spatial and temporal separable 3D convolutions, i.e., we

replace filters of the form kt × k × k by 1× k × k followed by kt × 1× 1, where kt is

the width of the filter in time, and k is the height/width of the filter in space. We call the

resulting model S3D, which stands for “separable 3D CNN”. S3D obviously has many

fewer parameters than models that use standard 3D convolution, and it is more compu-

tationally efficient. Surprisingly, we also show that it also has better accuracy than the

original I3D model.

Finally, to answer the third question (about putting things together for an efficient

and accurate video classification system), we combine what we have learned in answer-

ing the above two questions with a spatio-temporal gating mechanism to design a new

model architecture which we call S3D-G. We show that this model gives significant

gains in accuracy over baseline methods on a variety of challenging video classifica-

tion datasets, such as Kinetics, Something-something, UCF-101 and HMDB, and also

outperforms many other methods on other video recognition tasks, such as action local-

ization on JHMDB.

2 Related work

2D CNNs have achieved state of the art results for image classification, so, not surpris-

ingly, there have been many recent attempts to extend these successes to video classi-

fication. The Inception 3D (I3D) architecture [10] proposed by Carreira and Zisserman

is one of the current state-of-the-art models. There are three key ingredients for its

success: first, they “inflate” all the 2D convolution filters used by the Inception V1 ar-

chitecture [2] into 3D convolutions, and carefully choose the temporal kernel size in the

earlier layers. Second, they initialize the inflated model weights by duplicating weights

that were pre-trained on ImageNet classification over the temporal dimension. Finally,

they train the network on the large-scale Kinetics dataset [6].

Unfortunately, 3D CNNs are computationally expensive, so there has been recent

interest in more efficient variants. In concurrent work, [11] has recently proposed a

variety of models based on top of the ResNet architecture [4]. In particular, they con-

sider models that use 3D convolution in either the bottom or top layers, and 2D in the

rest; they call these “mixed convolutional” models. This is similar to our top-heavy and

bottom-heavy models. They conclude that bottom heavy networks are more accurate,

which contradicts our finding. However, the differences they find between top heavy and

bottom heavy are fairly small, and are conflated with changes in computational com-

plexity. By studying the entire speed-accuracy tradeoff curve (of Inception variants), we

show that there are clear benefits to using a top-heavy design for a given computational

budget (see Section 4.2).

Another way to save computation is to replace 3D convolutions with separable con-

volutions, in which we first convolve spatially in 2D, and then convolve temporally in

1D. We call the resulting model S3D. This factorization is similar in spirit to the depth-



4 Saining Xie et al.

wise separable convolutions used in [12–14], except that we apply the idea to the tem-

poral dimension instead of the feature dimension. This idea has been used in a variety

of recent papers, including [11] (who call it “R(2+1)D”), [15] (who call it “Pseudo-3D

network”), [16] (who call it “factorized spatio-temporal convolutional networks”), etc.

We use the same method, but combine it with both top-heavy and bottom-heavy de-

signs, which is a combination that leads to a very efficient video classification system.

We show that the gains from separable convolution are complementary to the gains

from using a top-heavy design (see Section 4.4).

An efficient way to improve accuracy is to use feature gating, which captures depen-

dencies between feature channels with a simple but effective multiplicative transforma-

tion. This can be viewed as an efficient approximation to second-order pooling as shown

in [17]. Feature gating has been used for many tasks, such as machine translation [18],

VQA [19], reinforcement learning [20], image classification [21, 22], and action recog-

nition [23]. We consider a variant of the above techniques in which we place the feature

gating module after each of the temporal convolutions in an S3D network, and show

that this results in substantial gains in accuracy (see Section 4.6).

Another way to improve accuracy (at somewhat higher cost) is to use precom-

puted optical flow features. This idea was successfully used in [24], who proposed a

two-stream architecture where one CNN stream handles raw RGB input, and the other

handles precomputed optical flow. Since then, many video classification methods fol-

low the same multi-stream 2D CNN design, and have made improvements in terms of

new representations [25, 26], different backbone architecture [27–29, 17], fusion of the

streams [30–33] and exploiting richer temporal structures [34–36]. We will study the

benefits of using optical flow in Section 5.1.

3 Experiment Setup

3.1 Datasets

In this paper, we consider two large video action classification datasets. The first one

is Kinetics [6], which is a large dataset collected from YouTube, containing 400 ac-

tion classes and 240K training examples. Each example is temporally trimmed to be

around 10 seconds. Since the full Kinetics dataset is quite large, we have created a

smaller dataset that we call Mini-Kinetics-200.3 Mini-Kinetics-200 consists of the 200

categories with most training examples; for each category, we randomly sample 400

examples from the training set, and 25 examples from the validation set, resulting in

80K training examples and 5K validation examples in total. The splits are publicly

released to enable future comparisons. We also report some results on the original Ki-

netics dataset, which we will call Kinetics-Full for clarity.

The second main dataset is Something-something [7]. It consists of 110k videos

of 174 different low-level actions, each lasting between 2 to 6 seconds. In contrast

to Kinetics, this dataset requires making fine-grained low-level distinctions, such as

between “Pushing something from left to right” and “Pushing something from right to

3 The original “Mini-Kinetics” dataset used in [6] contains videos that are no longer available.

We created the new Mini-Kinetics-200 dataset in collaboration with the original authors.



Rethinking Spatiotemporal Feature Learning 5

left”. It is therefore an interesting question whether the same principles will hold and

the same architectures will work well on both datasets.

We also consider two smaller action classification datasets to test the transferability

of our model, which we discuss in Section 5.2, as well as two action detection datasets,

which we discuss in Section 5.3.

3.2 Model training

Our training procedure largely follows [10]. During training, we densely sample 64

frames from a video and resize input frames to 256 × 256 and then take random crops

of size 224×224. During evaluation, we use all frames and take 224×224 center crops

from the resized frames. Our models are implemented with TensorFlow and optimized

with a vanilla synchronous SGD algorithm with momentum of 0.9 and on 56 GPUs,

batch size is set to 6 per GPU. For Mini-Kinetics-200, we train our model for 80k

steps with an initial learning rate of 0.1. We decay the learning rate at step 60k to 0.01,

and step 70k to 0.001. Since Something-something is a smaller dataset, we reduce the

number of GPUs to 16 and train at learning rate of 0.1 for 10k steps.

3.3 Measuring speed and accuracy

We report top-1 and top-5 accuracy. To measure the computational efficiency of our

models, we report theoretical FLOPS based on a single input video sequence of 64

frames and spatial size 224× 224. We pad the total number of frames to 250 for Mini-

Kinetics-200 and 64 for Something-something when evaluating.

4 Network surgery

In this section, we report the results of various “network surgery” experiments, where

we vary different aspects of the I3D model to study the effects on speed and accuracy.

4.1 Replacing all 3D convolutions with 2D

In this section, we seek to determine how much value 3D convolution brings, motivated

by the surprising success of 2D CNN approaches to video classification (see e.g., [36]).

We do this by replacing every 3D filter in the I3D model with a 2D filter. This yields

what we will refer to as the I2D model.4

Theoretically, the I2D network should be invariant to the temporal reversal of the in-

put frames, since it is not capable of incorporating global signals. To verify this, we train

I2D and the original I3D model on the Kinetics-Full and Something-something datasets

4 To reduce the memory and time requirements, and to keep the training protocol identical to

I3D (in terms of the number of clips we use for training in each batch, etc), we retain two max-

pooling layers with temporal stride 2 between Inception modules. Hence, strictly speaking,

I2D is not a pure 2D model. However, it is very similar to a single-frame 2D classification

model.



6 Saining Xie et al.

7,7,7 

Conv 

Stride 2

1x3x3

Max-Pool

Stride 

1,2,2

1x1x1 

Conv 

1x1x1 

Conv

3x3x3 

Conv

1x3x3

Max-Pool

Stride 

1,2,2

3D

Inc.

3D

Inc.

3x3x3

Max-Pool

Stride 2

3D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

2x2x2

Max-Pool

Stride 2

2x7x7

Avg-Pool

Video
(64 Frames)

Prediction
(400D)

(a) I3D

1,7,7 

Conv 

Stride 2

1x3x3

Max-Pool

Stride 

1,2,2

1x1x1 

Conv 

1x1x1 

Conv

1x3x3 

Conv

1x3x3

Max-Pool

Stride 

1,2,2

2D

Inc.

2D

Inc.

3x3x3

Max-Pool

Stride 

2,2,2

2D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2x2x2

Max-Pool

Stride 

2,2,2

1x7x7

Avg-Pool

Video

Prediction

(b) I2D

7,7,7 

Conv 

Stride 2

1x3x3

Max-Pool

Stride 

1,2,2

1x1x1 

Conv 

1x1x1 

Conv

3x3x3 

Conv

1x3x3

Max-Pool

Stride 

1,2,2

3D

Inc.

3D

Inc.

3x3x3

Max-Pool

Stride 

2,2,2

3D

Inc.

3D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2D

Inc.

2x2x2

Max-Pool

Stride 

2,2,2

2x7x7

Avg-Pool

Video

Prediction

K=0 K=1
K=2

K=3K=4K=5K=6K=7

K=8 K=9 K=10

(c) Bottom-heavy I3D

1,7,7 

Conv 

Stride 2

1x3x3

Max-Pool

Stride 

1,2,2

1x1x1 

Conv 

1x1x1 

Conv

1x3x3 

Conv

1x3x3

Max-Pool

Stride 

1,2,2

2D

Inc.

2D

Inc.

3x3x3

Max-Pool

Stride 

2,2,2

2D

Inc.

2D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

3D

Inc.

2x2x2

Max-Pool

Stride 

2,2,2

2x7x7

Avg-Pool Prediction

Video

K=0 K=1
K=2

K=3K=4K=5K=6K=7

K=8 K=9 K=10

(d) Top-heavy I3D

Fig. 2. Network architecture details for (a) I3D, (b) I2D, (c) Bottom-Heavy and (d) Top-Heavy

variants. K indexes the spatio-temporal convolutional layers. The “2D Inc.” and “3D Inc.” blocks

refer to 2D and 3D inception blocks, defined in Figure 3.

2D Inc.

Conv

1x3x3

Conv

1x1x1

1x3x3

Max-Pool

Conv

1x1x1

Previous Layer

Conv

1x1x1

Conv

1x1x1

Next Layer

Concat

Conv

1x3x3

(a)

3D Inc.

Conv

3x3x3

Conv

1x1x1

3x3x3

Max-Pool

Conv

1x1x1

Previous Layer

Conv

1x1x1

Conv

1x1x1

Next Layer

Concat

Conv

3x3x3

(b)

Sep-Inc.

Conv

1x3x3

Conv

3x1x1

Conv

3x1x1

Conv

1x1x1

3x3x3

Max-Pool

Conv

1x1x1

Previous Layer

Conv

1x1x1

Conv

1x1x1

Next Layer

Concat

Conv

1x3x3

(c)

Fig. 3. (a) 2D Inception block; (b) 3D Inception block; (c) 3D temporal separable Inception block

used in S3D networks.



Rethinking Spatiotemporal Feature Learning 7

with normal frame order, and apply the trained models on validation data in which the

frames are in normal order and reversed temporal order. The results of the experiment

are shown in Table 1. We see that I2D has the same performance on both versions dur-

ing testing, as is to be expected. However, we notice an interesting difference between

the Kinetics dataset and the Something-something dataset. In the former case, the per-

formance of I3D is indifferent to the “arrow of time” [37], whereas in the latter case,

reversing the order hurts performance. We believe this is because Something-something

dataset requires fine-grained distinctions between visually similar action categories.

Kinetics-Full Something-something

Model Normal (%) Reversed (%) Normal (%) Reversed (%)

I3D 71.1 71.1 45.8 15.2

I2D 67.0 67.2 34.4 35.2

Table 1. Top-1 accuracy on Kinetics-Full and Something-something datasets. We train on frames

in normal order, and then test on frames in normal order or reverse order. Not surprisingly, 2D

CNNs do not care about the order of the frames. For 3D CNNs on Kinetics-Full the results are the

same on normal and reverse order, indicating that capturing the “arrow of time” is not important

on this dataset. However, on Something-something the exact order does matter.

4.2 Replacing some 3D convolutions with 2D

Although we have seen that 3D convolution can boost accuracy compared to 2D con-

volution, it is computationally very expensive. In this section, we investigate the conse-

quences of only replacing some of the 3D convolutions with 2D. Specifically, starting

with an I2D model, we gradually inflate 2D convolutions into 3D, from low-level to

high-level layers in the network, to create what we call the Bottom-Heavy-I3D model.

We also consider the opposite process, in which we inflate the top layers of the model

to 3D, but keep the lower layers 2D; we call such models Top-Heavy-I3D models.

We train and evaluate the Bottom-Heavy-I3D and Top-Heavy-I3D models on Mini-

Kinetics-200 and Something-something, and show the results in Figures 4. We see that

the solid blue lines (top heavy I3D) are much better than the dotted blue lines (bottom

heavy I3D) under the same FLOPS, which indicates that top heavy models are faster

and more accurate. The speed increase is expected, since in a top-heavy model, the

feature maps are reduced in size using spatial pooling before being convolved in 3D.

For fixed computation budget, Top-Heavy-I3D is often significantly more accurate than

Bottom-Heavy-I3D. This suggests that 3D convolutions are more capable and useful to

model temporal patterns amongst high level features that are rich in semantics.

4.3 Analysis of weight distribution of learned filters

To verify the above intuition, we examined the weights of an I3D model which was

trained on Kinetics-Full. Figure 5 shows the distribution of these weights across 4 lay-

ers of our model, from low-level to high-level. In particular, each boxplot shows the



8 Saining Xieet al.

(a) (b)

Fig. 4. Accuracy vs number of FLOPS needed to perform inference on 64 RGB frames. Left:
Mini-Kinetics-200 dataset. Right: Something-something dataset. Solid lines denote top-heavy
models, dotted lines denote bottom-heavy models. Orange denotes spatial and temporal separable
3D convolutions, blue denotes full 3D convolutions.

Fig. 5. Statistics of convolutional �lter weights of an I3D model trained on Kinetics-Full. Each
boxplot shows the distribution ofWl (t; :; :; :) for temporal offsett , with t = 0 being in the
middle. Results for different layersl are shown in different panels, with lowest layers on the left.
All �lters with different temporal offset are initialized with the same set of weights. Low-level
�lters essentially ignore the temporal dimension, unlike higher level �lters, where the weights
distributed nicely across different temporal offsets.

distribution ofWl (t; :; :; :) for temporal offsett and layerl . We uset = 0 to indicate
no offset in time, i.e., the center in the temporal kernel. At initialization, all the �lters
started with the same set of (2D convolution) weights (derived from an Inception model
pre-trained on Imagenet) for each value oft 2 f� 1; 0; 1g: After training, we see that
the temporally offset �lters (i.e., fort 6= 0 ) have a weight distribution that is still closely
centered on zero in the lower layers (see left panel), whereas the variance of the dis-
tribution increases in higher layers (see right panel). This suggests once again that the
higher level temporal patterns are more useful for the Kinetics action classi�cation task.

4.4 Separating temporal convolution from spatial convolutions

In this section, we study the effect of replacing standard 3D convolution with a fac-
tored version which disentangles this operation into a temporal part and a spatial part.
In more detail, our method is to replace each 3D convolution with two consecutive con-
volution layers: one 2D convolution layer to learn spatial features, followed by a 1D
convolution layer purely on the temporal axis. This can be implemented by running two
3D convolutions, where the �rst (spatial) convolution has �lter shape[1; k; k] and the




















