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Abstract. This paper presents StereoNet, the first end-to-end deep ar-
chitecture for real-time stereo matching that runs at 60fps on an NVidia
Titan X, producing high-quality, edge-preserved, quantization-free dis-
parity maps. A key insight of this paper is that the network achieves a
sub-pixel matching precision than is a magnitude higher than those of
traditional stereo matching approaches. This allows us to achieve real-
time performance by using a very low resolution cost volume that en-
codes all the information needed to achieve high disparity precision. Spa-
tial precision is achieved by employing a learned edge-aware upsampling
function. Our model uses a Siamese network to extract features from
the left and right image. A first estimate of the disparity is computed
in a very low resolution cost volume, then hierarchically the model re-
introduces high-frequency details through a learned upsampling function
that uses compact pixel-to-pixel refinement networks. Leveraging color
input as a guide, this function is capable of producing high-quality edge-
aware output. We achieve compelling results on multiple benchmarks,
showing how the proposed method offers extreme flexibility at an ac-
ceptable computational budget.
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Cost volume filtering, Deep learning

1 Introduction

Stereo matching is a classical computer vision problem that is concerned with
estimating depth from two slightly displaced images. Depth estimation has re-
cently been projected to the center stage with the rising interest in virtual and
augmented reality [41]. It is at the heart of many tasks from 3D reconstruction to
localization and tracking [28]. Its applications span otherwise disparate research
and product areas including indoor mapping and architecture, autonomous cars,
and human body and face tracking.

Active depth sensors like the Microsoft Kinect provide high quality depth-
maps and have not only revolutionized computer vision research [12, 11, 41, 16,
55], but also play an important role in consumer level applications. These active
depth sensors have become very popular over the recent years with the release of
many other consumer devices, such as the Intel RealSense series, the structured
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light sensor on iPhone X, as well as time-of-flight cameras such as Kinect V2.
With the rise of Augmented Reality (AR) applications on mobile devices, there
is a growing need of algorithms capable of predicting precise depth under tight
computational budget. With the exception of the iPhone X, all smartphones on
the market can only rely on single or dual RGB streams. The release of sparse
tracking and mapping tools like ARKit and ARCore impressively demonstrate
coarse and sparse geometry estimation on mobile devices. However, they lack
dense depth estimation and therefore cannot enable exciting AR applications
such as occlusion handling or precise interaction of virtual objects with the
real world. Depth estimation using a single moving camera, akin to [46], or
dual cameras naturally became a requirement from the industry to scale AR to
millions of users.

The state of the art in passive depth relies on stereo triangulation between
two (rectified) RGB images. This has historically been dominated by CRF-based
approaches. These techniques obtain very good results but are computationally
slow. Inference in these models amounts to solving a generally NP-hard problem,
forcing practitioners in many cases to use solvers whose runtime is in the ranges
of seconds [33] or resort to approximated solutions [14, 15, 56, 54]. Additionally,
these techniques typically suffer in the presence of textureless regions, occlusions,
repetitive patterns, thin-structures, and reflective surfaces. The field is slowly
transitioning and since [61], it started to use deep features, mostly as unary
potentials, to further advance the state of the art.

Recently, deep-architectures demonstrated a high level of accuracy at pre-
dicting depth from passive stereo data [37, 26, 29, 42]. Despite these significant
advances, the proposed methods require vast amounts of processing power and
memory. For instance, [29] have 3.5 million parameters in their network and
reach a throughput of about 0.95 image per second on 960 × 540 images, and
[42] takes 0.5 sec to produce a single disparity on a high end GPU.

In this paper we present StereoNet, a novel deep architecture that generated
state of the art 720p depth maps at 60Hz on high end GPUs. Based on our
insight that deep architectures are very good to infer matches at extremely high
subpixel precision we demonstrate that a very low resolution cost volume is
sufficient to achieve a depth precision that is comparable to a traditional stereo
matching system that operates at full resolution. To achieve spatial precision we
apply edge-aware filtering stages in a multi-scale manner to deliver a high quality
output. In summary the main contributions of this work are the following:

1. We show that the subpixel matching precision of a deep architecture is an
order of magnitude higher than those of “traditional” stereo approaches.

2. We demonstrate that the high subpixel precision of the network allows to
achieve the depth precision of traditional stereo matching with a very low
resolution cost volume resulting in an extremely efficient algorithm.

3. We show that previous work that introduced cost-volume in deep architec-
tures was over-parameterized for the task and how this significantly help
reducing the run-time and memory footprint of the system at little cost in
accuracy.
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4. A new hierarchical depth-refinement layer that is capable of performing high-
quality up-sampling that preserves edges.

5. Finally, we demonstrate that the proposed system reaches compelling results
on several benchmarks while being real-time on high end GPU architectures.

2 Related Work

Depth from stereo has been studied for a long time and we refer the interested
reader to [49, 22] for a survey. Correspondence search for stereo is a challenging
problem and has been traditionally divided into global and local approaches.
Global approaches formulate a cost function over the image that is traditionally
optimized using approaches such as Belief Propagation or Graph Cuts [3, 17, 30,
31]. Instead, local stereo matching methods (e.g. [4]) center a support window
on a pixel in the reference frame and then displace this window in the second
image until the point of highest correlation is found. A major challenge for local
stereo matching is to define the optimal size for the support window. On the one
hand the window needs to be large to capture a sufficient amount of texture but
needs to be small at the same time to avoid aggregating wrong disparity values
that can lead to the well-known edge fattening effect at disparity discontinuities.
To avoid this trade-off, adaptive support approaches weigh the influence of each
pixel inside the support region based on e.g. its color similarity to the central
pixel.

Interestingly adaptive support weight approaches were cast as cost volume
filtering in [25]: a three-dimensional cost volume is constructed by computing the
per-pixel matching costs at all possible disparity levels. This cost volume is then
filtered with a weighted average filter. This filtering propagates local information
in the spatial and depth domains producing a depth map that preserves edges
across object discontinuities.

For triangulation based stereo matching system the accuracy of depth is
directly linked to the precision to which the corresponding pixel in the other
image can be located. Therefore, previous work strives to do matching with
sub-pixel precision. The complexity of most algorithms scale linearly with the
number of disparities evaluated so while one approach is to build a large cost
volume with very fine grained disparity steps this is computationally in-feasible.
Many algorithms therefore start with discrete matching and then refine these
matches by fitting a local curve such as a parabolic fit to the cost function
between the discrete disparity candidates (see e.g. [59, 39]). Other works are
based on continuous optimization strategies [47] or on phase correlation [48]. It
was shown in [45] that under realistic conditions the bound for subpixel precision
is 1/10th of a pixel while the theoretical limit under noise free conditions was
found to be 10 times lower [10]. We demonstrate that this traditional wisdom
does not hold true for learning-based approaches and we can achieve a subpixel
precision of 1/30th of a pixel.

Recent work has progressed to using end-to-end learning for stereo match-
ing. Various approaches combined a learned patch embedding or matching cost
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with global optimization approaches like semiglobal matching (SGM) for refine-
ment [60]. [9] learn a multi-scale embedding model followed by an MRF. [62,
61] learn to match image patches followed by SGM. [35] learn to match patches
using a Siamese feature network and optimize globally with SGM as well. [52]
uses a multi-stage approach where a highway network architecture is first used to
compute the matching costs and then another network is used in postprocessing
to aggregate and pool costs.

Other works attempted to solve the stereo matching problem end-to-end
without postprocessing. [37, 26] train end-to-end an encoder-decoder network
for disparity and flow estimation achieving state-of-the-art results on existing
and new benchmarks. Other end-to-end approaches used multiple refinement
stages that converge to the right disparity hypotheses. [21] proposed a generic
architecture for labeling problems, including depth estimation, that is trained
end-to-end to predict and refine the output. [42] proposed a cascaded approach to
refine predicted depth iteratively. Iterative refinement approaches, while showing
good performance on various benchmarks, tend to require a considerable amount
of computational resources.

More closely related to our work is [29] who used the concept of cost volume
filtering but trained both the features and the filters end-to-end achieving im-
pressive results. DeepStereo [18] used a plane-sweep volume to synthesize novel
views from multi-view stereo input. Contrary to prior work, we are interested
in an end-to-end learning stereo pipeline that can run in real-time, therefore
we start from a very low resolution cost volume, which is then upsampled with
learned, edge aware filters.

3 StereoNet algorithm

3.1 Preliminaries

Given pairs of input images we aim to train an end-to-end disparity prediction
pipeline. One approach to train such pipeline is to leverage a generic encoder-
decoder network. An encoder distills the input through a series of contracting
layers to a bottleneck that captures the details most relevant to the task in train-
ing, and the decoder reconstructs the output from the representation captured
in the bottleneck layer through a series of expanding layers. While this approach
is widely successful across various problems, including depth prediction[37, 26,
42], they lack several qualities we care about in stereo algorithm.

First of all, this approach does not capture any geometric intuition about
the stereo matching problem. Stereo prediction is first-and-foremost a corre-
spondence matching problem, so we aimed to design an algorithm that can be
adapted without retraining to different stereo cameras with varying resolutions
and baselines. Secondly, we note that similar approaches are evidently overpa-
rameterized for problems where the prediction is a pixel-to-pixel mapping that
does not involve any warping of the input, and thus likely to overfit.

Our approach to stereo matching incorporates a design that leverages the
problem structure and classical approaches to tackle it, akin to [29], while pro-
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Fig. 1. Model architecture. A two stage approach is proposed: first we extract image
features at a lower resolution using a Siamese network. We then build a cost volume
at that resolution by matching the features along the scanlines, giving us a coarse
disparity estimate. We finally refine the results hierarchically to recover small details
and thin structures.

ducing edge-preserving output using compact context-aware pixel-to-pixel re-
finement networks. An overview of the architecture of our model is illustrated
in Figure 1 and detailed in the following sections.

3.2 Coarse Prediction: Cost Volume Filtering

Stereo system are in general solving a correspondence problem. The problem
classically boils down to forming a disparity map by finding a pixel-to-pixel
match between two rectified images along their scanlines. The desire for a smooth
and edge-preserving solution led to approaches like cost volume filtering [25],
which explicitly model the matching problem by forming and processing a 3D
volume that jointly solves across all candidate disparities at each pixel. While [25]
directly used color values for the matching, we compute a feature representation
at each pixel that is used for matching.

Feature Network The first step of the pipeline finds a meaningful represen-
tation of image patches that can be accurately matched in the later stages.
We recall that stereo suffer from textureless regions and traditional methods
solve this issue by aggregating the cost using large windows. We replicate the
same behavior in the network by making sure the features are extracted from a
big receptive field. In particular, we use a feature network with shared weights
between the two input images (also known as a Siamese network). We first ag-
gressively downsample the input images using K 5×5 convolutions with a stride
of 2, keeping the number of channels at 32 throughout the downsampling. In
our experiments we set K to 3 or 4. We then apply 6 residual blocks [23] that
employ 3×3 convolutions, batch-normalization [27], and leaky ReLu activations
(α = 0.2) [36]. Finally, this is processed using a final layer with a 3 × 3 con-
volution that does not use batch-normalization or activation. The output is a
32-dimensional feature vector at each pixel in the downsampled image. This low
resolution representation is important for two reasons: 1) it has a big receptive
field, useful for textureless regions. 2) It keeps the feature vectors compact.
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Cost Volume At this point, we form a cost volume at the coarse resolution
by taking the difference between the feature vector of a pixel and the feature
vectors of the matching candidates. We noted that asymmetric representations
in general performed well, and concatenating the two vectors achieved similar
results in our experiments.

At this stage, a traditional stereo method would use a winner-takes-all (WTA)
approach that picks the disparity with the lowest Euclidean distance between
the two feature vectors. Instead, here we let the network to learn the right metric
by running multiple convolutions followed by non-linearities.

In particular, to aggregate context across the spatial domain as well as the
disparity domain, we filter the cost volume with four 3D convolutions with a
filter size of 3× 3× 3, batch-normalization, and leaky ReLu activations. A final
3×3×3 convolutional layer that does not use batch-normalization or activation
is then applied, and the filtering layers produce a 1-dimensional output at each
pixel and candidate disparity.

For an input image of size W ×H and evaluating a maximum of D candidate
disparities, our cost volume is of size W/2K ×H/2K × (D+1)/2K for K down-
sampling layers. In our design of StereoNet we targeted a compact approach with
a small memory footprint that can be potentially deployed to mobile platforms.
Unlike [29] who form a feature representation at quarter resolution and aggregate
cost volumes across multiple levels, we note that most of the time and compute is
spent matching at higher resolutions, while most of the performance gain comes
from matching at lower resolutions. We validate this claim in our experiments
and show that the performance loss is not significant in light of the speed gain.
The reason for this is that the network achieves a magnitude higher sub-pixel
precision than traditional stereo matching approaches. Therefore, matching at
higher resolutions is not needed.

Differentiable argmin We typically would select the disparity with the min-
imum cost at each pixel in the filtered cost volume using argmin. For a pixel i
and a cost function over disparity values C(d), the selected disparity value di is
defined as:

di = argmin
d

Ci(d). (1)

This however fails to learn since argmin is a non-differentiable function. We
considered two differentiable variants in our approach. The first of which is soft
argmin, which was originally proposed in [6] and was used in [29]. Effectively, the
selected disparity is a softmax-weighted combination of all the disparity values:

di =
D∑

d=1

d ·
exp(−Ci(d))∑
d′ exp(−Ci(d′)

. (2)

The second differentiable variant is a probabilistic selection that samples from
the softmax distribution over the costs:
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di = d, where d ∼

exp(−Ci(d))∑
d′ exp(−Ci(d′)

. (3)

Differentiating through the sampling process uses gradient estimation techniques
to learn the distribution of disparities by minimizing the expected loss of the
stochastic process. While this technique has roots in policy gradient approaches
in reinforcement learning [57], it was recently formulated as stochastic compu-
tation graphs in [50] and applied to RANSAC-based camera localization in [5].
Additionally, the parallel between the two differentiable variants we discussed is
akin to that between soft and hard attention networks [58].

Unfortunately the probabilistic approach significantly underperformed in our
experiments, even with various variance reduction techniques [58]. We expect
that this is because it preserves hard selections. This trait is arguably critical
in many applications, but in our model it is superseded by the ability of soft
argmin to regress subpixel-accurate values. This conclusion is supported by the
literature on continuous action spaces in reinforcement learning [34]. The soft
argmin selection was consequently faster to converge and easier to optimize, and
it is what we chose to use in our experiments.

3.3 Hierarchical Refinement: Edge-Aware Upsampling

The downside to relying on coarse matching is that the resulting myopic output
lacks fine details. To maintain our compact design, we approach this problem
by learning an edge-preserving refinement network. We note that the network’s
job at this stage is to dilate or erode the disparity values to blend in high-
frequency details using the color input as guide, so a compact network that learns
a pixel-to-pixel mapping, similar to networks employed in recent computational
photography work [8, 7, 20], is an appropriate approach. Specifically, we task the
refinement network of only finding a residual (or a delta disparity) to add or
subtract from the coarse prediction.

Our refinement network takes as input the disparity bilinearly upsampled to
the output size as well as the color resized to the same dimensions. Recently
deconvolutions were shown to produce checkerboard artifacts, so we opted to
use bilinear upsampling and convolutions instead [40]. The concatenated color
and disparity first pass through a 3 × 3 convolutional layer that outputs a 32-
dimensional representation. This is then passed through 6 residual blocks that,
again, employ 3 × 3 convolutions, batch-normalization, and leaky ReLu activa-
tions (α = 0.2). We use atrous convolutions in these blocks to sample from a
larger context without increasing the network size [43]. We set the dilation fac-
tors for the residual blocks to 1, 2, 4, 8, 1, and 1 respectively. This output is then
processed using a 3×3 convolutional layer that does not use batch-normalization
or activation. The output of this network is a 1-dimensional disparity residual
that is then added to the previous prediction. We apply a ReLu to the sum to
constrain disparities to be positive.

In our experiments we evaluated hierarchically refining the output with a
cascade of the described network, as well as applying a single refinement that
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Fig. 2. Hierarchical refinement results. The result at each stage (top row), starting
with the cost volume output in the top left corner, is updated with the output of
the corresponding refinement network (bottom row). The refinement network output
expectedly dilates and erodes around the edges using the color input as guide. The
groundtruth is shown in the lower right corner. The average endpoint error at each
stage for this example is: 3.27, 2.34, 1.80, and 1.26 respectively. Zoom in for details.

upsamples the coarse output to the full resolution in one-shot. Figure 2 illustrates
the output of the refinement layer at each level of the hierarchy as well as the
residuals added at each level to recover the high-frequency details. The behavior
of this network is reminiscent of joint bilateral upsampling [32], and indeed we
believe this network is a learned edge-aware upsampling function that leverages
a guide image.

3.4 Loss Function

We train StereoNet in a fully supervised manner using groundtruth-labeled
stereo data. We minimize the hierarchical loss function:

L =
∑

k

ρ(dki − d̂i), (4)

where dki is the predicted disparity at pixel i at the k-th refinement level, with

k = 0 denoting the output pre-refinement, and d̂i is the groundtruth disparity
at the same pixel. The predicted disparity map is always bilinearly upsampled
to match the groundtruth resolution. Finally, ρ(.) is the two-parameter robust
function from [2] with its parameters set as α = 1 and c = 2, approximating a
smoothed L1 loss.

3.5 Implementation details

We implemented and trained StereoNet using Tensorflow [1]. All our experiments
were optimized using RMSProp [24] with an exponentially-decaying learning rate
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initially set to 1e−3. Input data is first normalized to the range [−1, 1]. We use a
batch size of 1 and we do not crop because of the smaller model size, unlike [29].

Our network needs around 150k iterations to reach convergence. We found
that, intuitively, training with the left and right disparity maps for an image pair
at the same time significantly sped up the training time. On smaller datasets
where training from scratch would be futile, we fine-tuned the pre-trained model
for an additional 50k iterations.

4 Experiments

Here, we evaluate our system on several datasets and demonstrate that we
achieve high quality results at a fraction of the computational cost required
by the state of the art.

4.1 Datasets and Setup

We evaluated StereoNet quantitatively and qualitatively on three datasets: Scene
Flow [37], KITTI 2012 [19] and KITTI 2015 [38]. Scene Flow is a large synthetic
stereo dataset suitable for deep learning models. However, the other two KITTI
datasets, while more comparable to a real-world setting, are too small for full
end-to-end training. We followed previous end-to-end approaches by initially
training on Scene Flow and then individually fine-tuning the resulting model on
the KITTI datasets [29, 42]. Finally, we compare against prominent state-of-the-
art methods in terms of both accuracy and runtime to show the viability of our
approach in real-time scenarios.

Additionally, we performed an ablation study on the Scene Flow dataset using
four variants of our model. We evaluated setting the number of downsampling
convolutionsK (detailed in Section 3.2) to 3 and 4. This controls the resolution at
which the cost volume is formed. The cost volume filtering is exponentially faster
with more aggressive downsampling, but comes at the expense of increasingly
losing details around thin structures and small objects. The refinement layer
can bring in a lot of the fine details, but if the signal is completely missing
from the cost volume, it is unlikely to recover them. Additionally we evaluated
using K refinement layers to hierarchically recover the details at the different
scales versus using a single refinement layer to upsample the cost volume output
directly to the desired final resolution.

4.2 Subpixel Precision

The precision of a depth system is usually a crucial variable when choosing the
right technology for a given application. A triangulation system with a baseline
b, a focal length f and a subpixel precision δ has an error ǫ which increases

quadratically with the distance Z: ǫ = δZ2

bf
[53]. Competitive technologies such as

Time-of-Flight do not suffer from this issue, which makes them appealing for long
range applications such as room scanning and reconstruction. Despite this it has
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Fig. 3. Subpixel precision in stereo matching. We demonstrate that StereoNet achieves
a subpixel precision of 0.03, which is one order of magnitude lower than traditional
stereo approaches. The lower bound of traditional approaches was found to be 1/10th
under realistic conditions (see [45]) which we indicate by the black line. Moreover, our
method can run in real-time on 720p images.

been demonstrated that multipath effects in ToF systems can distort geometry
even in close-up tasks such as object scanning [13]. Long range precision remains
as one of the main arguments against a stereo system and in favor of ToF.

Here we show that deep architectures are a breakthrough in terms of sub-
pixel precision and therefore they can compete with other technologies not only
for short distances but as well as in long ranges. Traditional stereo matching
methods perform a discrete search and then a parabola interpolation to retrieve
the accurate disparity. This methods usually leads to a subpixel precision ∼ 0.25
pixels, that roughly correspond to 4.5 cm error at 3m distance for a system with
a 55 cm baseline such as the Intel Realsense D415.

To assess the precision of our method, we used the evaluation set of Scene
Flow and we computed the average error only for those pixels that were correctly
matched at integer locations. Results correspond to the average of over a hundred
million pixels and are reported in Figure 3. From this figure, it is important to
note that: (1) the proposed method achieves a subpixel precision of 0.03 which is
one order of magnitude lower than traditional stereo matching approaches such
as [4, 14, 15]; (2) the refinement layers are performing very similarly irrespective
of the resolution of the cost volume; (3) without any refinement the downsampled
cost volume can still achieve a subpixel precision of 0.03 in the low resolution
output. However, the error increases, almost linearly, with the downsampling
factor.

Note that a subpixel precision of 0.03 means that the expected error is less
than 5mm at 3m distance from the camera (Intel Realsense D415). This result
makes triangulation systems very appealing and comparable with ToF technol-
ogy without suffering from multi-path effects.
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Fig. 4. Qualitative results on the FlyingThings3D test set. The proposed two-stage
architecture is able to recover very fine details despite the low resolution at which we
form the cost volume.

4.3 Quantitative Results

We now evaluate the model on standard benchmarks proving the effectiveness
of the proposed methods and the different trade-offs between the resolution of
the cost volume and the precision obtained.

SceneFlow. Although this data is synthetically generated, the evaluation se-
quences are very challenges due to the presence of occlusions, thin structures and
large disparities. We evaluated our model reporting the end point error (EPE)
in Table 1.

A single, unrefined model, i.e. using only the cost volume output at 1/8
of the resolution, achieves an EPE of 2.48 which is better than the full model
presented in [29], which reaches an EPE of 2.51. Notice that our unrefined model
is composed of 360k parameters and runs at 12 msec at the 960 × 540 input
resolution, whereas [29] uses 3.5 million parameter with a runtime of 950 msec
on the same resolution. Our best, multi-scale architecture achieves the state-
of-the-art error of 1.1, which is also lower than the one reported in very recent
methods such as [42]. Qualitative examples can be found in Figure 4. Notice how
the method recovers very challenging fine details.

One last consideration regards the resolution of the cost volume. On one hand
we proved that a coarse cost volume already carries all the information needed
to retrieve a very high subpixel precision, i.e. high disparity resolution. On the
other hand, downsampling the image may lead to a loss in spatial resolution,
therefore thin structures cannot be reconstructed if the output of the cost vol-
ume is very coarse. Here we demonstrate that a volume at 1/16 of the resolution
is powerful enough to recover very challenging small objects. Indeed in Figure
5, we compare the output of the three cost volumes at 1/4, 1/8, 1/16 resolutions
where we also applied the refinement layers. We can observe that the fine struc-
tures that are missed in the 1/16 resolution disparity map are correctly recovered
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Fig. 5. Cost volume comparisons. A cost volume at 1/16 resolution has already the
information required to produce high quality disparity maps. This is evident in that
post refinement we recover challenging thin structures and the overall end point error
(EPE) is below one pixel.

EPE all EPE nocc EPE all, unref EPE nocc, unref

8x, multi 1.101 0.768 2.512 1.795
8x, single 1.532 1.058 2.486 1.784
16x, multi 1.525 1.140 3.764 2.912
16x, single 1.974 1.476 3.558 2.773

CG-Net Fast [29] 7.27 - - -
CG-Net Full [29] 2.51 - - -
CRL [42] 1.32 - - -
Table 1. Quantitative evaluation on SceneFlow. We achieve state of the art results
compared to recent deep learning methods. We compare four variants of our model
which vary in the resolution at which the cost volume is formed (8x vs 16x) and the
number of refinement layers (multiple vs single).

by the upsampling strategy we propose. The cost volume at 1/4 is not neces-
sary to achieve a compelling results and this is an important finding for mobile
applications. As showed in the previous subsection, even at low resolution the
network achieves a subpixel precision of 1/30th pixel. However, we want to also
highlight that to achieve state of the art precision on multiple benchmarks, the
cost volume resolution becomes an important factor as demonstrated in Table 1.

Kitti. Kitti is a prominent stereo benchmark that was captured by driving a car
equipped with cameras and a laser scanner [19]. The dataset is very challenging
due to the huge variability, reflections, overexposed areas and more importantly,
the lack of a big training set. Despite this, we provide the results on Kitti 2012
in Table 2. Our model uses a downsampling factor of 8 for the cost volume and
3 refinement steps. Among the top-performing methods, we compare to three
significant ones. Current state of the art [29], achieves an EPE of 0.6, but it
has a running time of 0.9 seconds per image and uses a multi-scale cost volume
and several 3D deconvolutions. The earlier deep learning-based stereo matching
approach of [62] takes 67 seconds per image and has higher error (0.9) compared
to our method that runs at 0.015s per stereo pair. The SGM-net [51] has an error
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Fig. 6. Qualitative Results on Kitti 2012 and Kitti 2015. Notice how our method
preserves edge and recovers details compared to the fast [51]. State of the art methods
are one order of magnitude slower than the proposed approach.

Out-Noc Out-All Avg-Noc Avg-All Runtime

StereoNet 4.91 6.02 0.8 0.9 0.015s

CG-Net [29] 2.71 3.46 0.6 0.7 0.9s
MC-CNN [62] 3.9 5.45 0.7 0.9 67s
SGM-Net [51] 3.6 5.15 0.7 0.9 67s
Table 2. Quantitative evaluation on Kitti 2012. For StereoNet we used a model with
a downsampling factor of 8 and 3 refinement levels. We report the percentage of pixels
with error bigger than 2, as well as the overall EPE in both non occluded (Noc) and
all the pixels (All).

comparable to ours. Although we do not reach state of the art results, we believe
that the produced disparity maps are very compelling as shown in Figure 6,
bottom. We analyzed the source of errors in our model and we found that most
of the wrong estimates are around reflections, which result in a wrong disparity
prediction, as well as occluded regions, which do not have a correspondence in
the other view. These areas cannot be explained by the data and the problem
can then be formulated as an inpainting task, which our model is not trained for.
State of the art [42] uses a hour-glass like architecture in their refinement step,
that has been shown to be really effective for inpainting purposes [44]. This
is certainly a valid solution to handle those invalid areas, however it requires
significant additional computational resources. We believe that the simplicity of
the proposed architecture shows important insights and it can lead the way to
interesting directions to overcome the current limitations.

Similarly, we evaluated our algorithm on Kitti 2015 and report the results
in Tab. 3, where similar considerations can be made. In Figure 6 top, we show
some examples from the test data.
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D1-bg D1-fg D1-all Runtime

StereoNet 4.30 7.45 4.83 0.015s

CRL [42] 2.48 3.59 2.67 0.5s
CG-Net Full [29] 2.21 6.16 2.87 0.9s
MC-CNN [62] 2.89 8.88 3.89 67s
SGM-Net [51] 2.66 8.64 3.66 67s

Table 3. Quantitative evaluation on Kitti 2015. For StereoNet we used a model with
a downsampling factor of 8 and 3 refinement levels. We report the percentage of pixels
with error bigger than 1 in background regions (bg), foreground areas (fg), and all.

Fig. 7. Runtime analysis of StereoNet. Breakdown of the running time. Notice how
most of the time is spent at the last level of refinement.

4.4 Running Time Analysis

We conclude this section with a breakdown of the running time of our algorithm.
Readers interested in real-time applications would find useful to understand
where the bottlenecks are. The current algorithm runs at 60fps on an NVidia
Titan X and in Fig. 7 of the whole running time. Notice how feature extraction,
volume formation and filtering take less than half of the whole computation
(41%), and the most time consuming steps are the refinement stage: the last
level of refinement done at full resolution is using 38% of the computation.

5 Discussion

We presented StereoNet, the first real-time, high quality end-to-end architec-
ture for passive stereo matching. We started from the insight that a low reso-
lution cost volume contains most of the information to generate high-precision
disparity maps and to recover thin structures given enough training data. We
demonstrated a subpixel precision of 1/30th pixel, surpassing limits published
in the literature. Our refinement approach hierarchically recovers high-frequency
details using the color input as guide, drawing parallels to a data-driven joint
bilateral upsampling operator. The main limitation of our approach is due to
the lack of supervised training data: indeed we showed that when enough exam-
ples are available, our method reaches state of the art results. To mitigate this
effect, our future work involves a combination of supervised and self-supervised
learning [63] to augment the training set.
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