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Abstract. In this paper, we propose a novel method to compress CNNs
by reconstructing the network from a small set of spatial convolution
kernels. Starting from a pre-trained model, we extract representative
2D kernel centroids using k-means clustering. Each centroid replaces the
corresponding kernels of the same cluster, and we use indexed repre-
sentations instead of saving whole kernels. Kernels in the same cluster
share their weights, and we fine-tune the model while keeping the com-
pressed state. Furthermore, we also suggest an efficient way of removing
redundant calculations in the compressed convolutional layers. We ex-
perimentally show that our technique works well without harming the
accuracy of widely-used CNNs. Also, our ResNet-18 even outperforms its
uncompressed counterpart at ILSVRC2012 classification task with over
10x compression ratio.

Keywords: CNNs, Compression, Quantization, Weight sharing, Clus-
tering

1 Introduction

The recent era of computer vision witnessed remarkable advances from deep
learning. The analysis presented in [35] shows that CNNs not only figure out the
scene types but also well recognizes spatial patterns. Therefore, state-of-the-art
convolutional neural networks [15, 16, 31] and their variants apply to a broad
range of problems such as image classification, object detection, segmentation,
image restoration, etc. However, most of the CNNs are designed to be executed
on high-end GPUs with substantial memory and computational power. In mobile
or embedded environments where computational resources are limited, those
networks need to be compressed for practical applications [12, 34].

Most of the studies on network compression have investigated to figure out
redundancies of weights [6] and unnecessary parameters [14, 24]. Then, those pa-
rameters can be removed while preserving the original performance of the model.
In [7, 20], the weight matrices and tensors were factorized and approximated to
low-rank for efficient computation. Pruning became popular in recent works [10,
13, 26, 27] since it directly saves storage and computations. On the other side,
the quantization based approaches have also become common. Extensive studies
on binary and ternary networks [4, 5, 12, 17, 25, 29, 39] proved that even 1 or 2
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bits parameters can make CNNs work. Other works tried to quantize adjacent
elements of a weight tensor as a form of vector quantization [9, 34]. Those meth-
ods utilize k-means clustering so that we can express the compressed model in
the form of codebook and indices. Especially, [34] extracted a sub-vector from
the weight tensor in channel dimension to exploit product quantization.

In this paper, we propose a more structured quantization method that is
built upon 2D convolution kernels. As the convolution itself is inherently spatial,
we opt to use a spatial slice of weight tensors as a unit to be compressed. Unless
mentioned otherwise, we denote these 2D slices as kernels. Under our expression,
a weight tensor of a single convolutional layer is composed of Cout×Cin number of
kernels where Cout and Cout denote the output and input channels, respectively.
For example, widely used VGG-16 [31] and ResNets [15] consist of more than a
million 3× 3 kernels.

Similarly to the vector quantization methods [9, 34], we perform clustering on
3× 3 kernels and replace the redundant kernels with their centroids. Therefore,
we represent the compressed model with a set of centroids and a corresponding
cluster index per each kernel. Thus, kernels that have the same index share their
weights. While maintaining the compressed state, we train our model through
the weight-sharing. We also present methods to accelerate the convolution when
the same centroid repeatedly appears in a single layer.

Our compression method brings following contributions and benefits. First,
we propose a new method to compress and accelerate the CNN by applying k-
means clustering to 2D kernels. To the best of our knowledge, this is the first
approach on network compression that considers the redundant spatial patterns
of kernels. Second, our transform invariant clustering method extends the valid
number of kernel centroids with geometric transforms. Our improved experimen-
tal results imply the transform invariance imposes regularization effect. Lastly,
our extensive experiments show that our method is generally applicable to vari-
ous CNN architectures and datasets. In particular, our compressed ResNet [15]
achieves higher accuracy on ILSVRC12 image classification than the original
model at over 10x compression ratio.

2 Related works

Network quantization is one of the typical approaches to compress deep neural
networks. It focuses on reducing the number of bits to represent each parame-
ter. Earlier works utilized the weight sharing and indexed representation of the
parameters to save the storage. Han, et al. [12] first demonstrated that 25 dis-
tinctive weights are enough for a single convolutional layer, and proposed 5-bit
quantization of CNN. To save more storages, HashedNets [1] utilized a hash
function to reduce the overhead from storing index terms. Those methods do
not restrict the precision, but the diversity of each parameter by sharing a full-
precision weight between similar values. Although their implementations can be
tricky, we can train those models with the traditional gradient descent.
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(a) (b)

Fig. 1: We compress convolutional layers (a) of given CNN as (b). We apply k-
means clustering to the kernels and use indexed representations with a codebook
M = {µi|i = 1, · · · , k}. We also accelerate the CNN by removing redundant
computations from overlapping kernels in red and blue boxes. Note that we
handle all convolutional layers simultaneously, rather than compress each layer
individually.

On the other side of network quantization, there have been attempts to limit
the precision of parameters. It is already proven that binary [4] and ternary [25,
39] weights work well on challenging ImageNet [30] classification task. These
methods can even accelerate the CNNs by redefining the convolution in more
efficient ways. Recently, [37] proposed a method to represent each weight as a
power of two that can utilize high-speed bit-shift operations. Since the major goal
of the quantization is resource-efficient neural networks, intermediate features [5,
29] and gradients [11, 17, 38] can also be quantized, too.

While the above methods mainly focus on reducing the bit-width of each
parameter, vector quantization directly quantizes a weight vector and maps it
to an index. Although intrinsic high-dimensionality makes it more challenging
than the scalar quantization, product quantization works well on compressing
fully-connected [9] and convolutional layers [34]. Our work is a particular case of
weight sharing and vector quantization, as we assign the same index to multiple
kernels and share their weights. However, unlike weight or sub-vector quantiza-
tion, we quantize 2D kernels which have geometrical meanings in the CNNs.

Network pruning [14, 24] aims to remove unnecessary connections from the
networks. Usually, small weights are removed from the network by iterative op-
timization steps [12, 13]. However, weight-wise pruning has several limitations
in practice due to their irregular structures. Therefore, structured pruning [26,
27] methods for the convolutional neural networks are getting popular. As they
prune unnecessary convolution kernels of CNNs, they would be much suitable
for the practical case. Our algorithm is not directly related to pruning itself.
However, we will show that the proposed method can benefit from the pruning
as [12] mentioned.
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There are several works which utilize the geometric shapes of convolution
kernels for efficient CNNs. By exploiting translational [36], reflectance [3], and
rotational [8] symmetries, the capacity of CNNs can be increased without any
additional parameters. There also have been attempts to manipulate the shapes
of convolution kernels intentionally. For example, [23] forced group-wise sparsity
to weights of the convolutional layers to accelerate the network. Also, [33] pro-
posed a method to train the arbitrary shape of filters for efficient pruning. In
this paper, we propose a compression method that focuses on redundant shapes
in a large number of convolution kernels. We also explore various transforms of
the kernels as [3, 8] did, to achieve higher degrees of weight sharing and regular-
ization.

3 K-means clustering of convolution kernels

Before going into the details, we define the terms to be used in the following
descriptions. We will assume that there are total N many kernels in our target
CNN and all of them have the same spatial sizes. Then, a weight tensor of m-th
convolution layer can be denoted as wm ∈ R

Cout×Cin×h×w whose input x and
output y have Cin and Cout channels, respectively. Here, we will omit the term
m when we describe the convolutional layer. xi refers to a i-th input channel of
x, and yj is a j-th output channel of y. A kernel wij is applied to xi and the
responses are accumulated to compute yj as Eq.(1).

yj =

Cin
∑

i=1

wij ∗ xi. (1)

In the following subsections, we explain our compression algorithm and its
computational benefits. In section 3.1, We formulate our algorithm with a con-
cept of k-means clustering. In section 3.2, we describe a method to train our
model. In section 3.3, we demonstrate that the proposed method can acceler-
ate the convolutions. Lastly, in section 3.4, we propose an advanced clustering
method that can act as a strong regularization.

3.1 Compact representation of the kernels

In general, a CNN is trained without any structural restrictions on the shapes
of its weight tensors. Therefore, there may exist N distinctive kernels in the
network. Our main strategy is to represent those kernels more compactly with
k-means clustering. After grouping the kernels into k many clusters, we re-
place each kernel wm

ij in a cluster Wn to its corresponding centroid µn =

Ew
m
ij
∈Wn

[

wm
ij

]

. Then, we apply weight-sharing to the all kernels that belong
to Wn and represent them with their cluster index n. Considering that a single-
precision 3 × 3 kernel requires 36-byte storage, the indexed representation can
reduce the model size a lot.
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One possible problem is that the distribution of kernel weights can vary across
different convolutional layers. In that case, our approach may not derive mean-
ingful representations as k-means clustering cannot find representative centroids.
Therefore, we utilize the basic concept of convolution and normalize all kernels
to handle this problem. To put it concretely, we handle the kernels that have
similar shapes but different norms together because they show similar behaviors
in filtering. Thus, rather than compute the distances between kernels directly
from their raw values, we use normalized kernels. Consequently, the k-means
clustering objective becomes

argmin
M

k
∑

n=1

∑

ŵ
m
ij
∈Wn

‖ŵm
ij − µn‖

2
, (2)

where ŵm
ij = wm

ij /s
m
ij and smij = sign(wm

ij∗)‖w
m
ij ‖

2
. Here, wm

ij∗ is a center
pixel of a kernel. By defining smij in this manner, we also cluster the kernels that
have similar structures but opposite signs together. A compressed representation
of each kernel includes a cluster index lmij such that ŵm

ij ∈ Wlm
ij
, and its scale

smij . From the viewpoint of compression, storing those scale parameters requires
additional storage and lowers the compression ratio. However, it enables our
method to learn fine-grained centroids and increases the representation power
as we disentangle the kernel shapes and norms. Also, we will demonstrate that
those scale parameters sometimes can be ignored in Sec. 4.6 and Sec. 4.7

3.2 Training method

After clustering, we fine-tune the compressed model while maintaining the clus-
ter assignment of each kernel. To do so, we replace a convolution in Eq.(1) with
Eq.(3). In other words, we use a centroid µlij with a scale instead of the original
kernel wij . Therefore, our method has two trainable parameter sets: centroids
and scales. We can use a standard back-propagation algorithm to train those
parameters because Eq.(3) is fully differentiable. Note that a centroid µlij ap-
pear at different layers through the network, and therefore a single centroid can
take gradients from various layers. We efficiently implemented this algorithm
with PyTorch [28] framework, which automatically differentiates the variables
through the computational graph.

yj =

Cin
∑

i=1

sijµlij ∗ xi. (3)

3.3 Accelerating convolution via shared kernel representations

Although our primary interest is network compression, we can also accelerate a
CNN by reducing the duplicated computations from shared kernel representa-
tions. To be specific, there can be two types of redundancy in a convolutional
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(a) Add-then-conv (b) Conv-then-add

Fig. 2: A compressed convolutional layer with Cin = 3 and Cout = 4 from
Fig. 1(b) can be accelerate by two ways. (a) We calculate x1 + x3 first and
then apply a shared kernel µ1. (b) We compute intermediate features zk first
and accumulate them to yj . For example, z3,1 is accumulated to y1 and y3.

layer. One is duplication among the kernels generating the same output channel
from different input channels. The other is a duplication of kernels generating
multiple output channels from a single input channel. In both cases, we can
compute the 2D convolution only once per each unique centroid.

In Fig. 2(a), we add the input channels before convolution to avoid the com-
putations between a single kernel and multiple input features. We provide a
detailed explanation of this procedure in Eq.(4). Since we do not need to cal-
culate the convolution when n 6= lij for ∀i, the proposed method requires less
computation than the traditional convolution. We call it ‘Add-then-conv’.

yj =

Cin
∑

i=1

µlij ∗ (sijxi)(associative law)

=

Cin
∑

i=1

(

k
∑

n=1

µnδ [n = lij ]

)

∗ (sijxi)(marginalization)

=

k
∑

n=1

µn ∗

(

Cin
∑

i=1

δ [n = lij ] sijxi

)

(associative law).

(4)

In Fig. 2(b), the responses of all output channels from a single input channel
are computed simultaneously. An input channel xi responds to multiple centroids
and generate Zi = {zi,lij = µlij ∗ xi|j = 1, 2, · · · , Cout}. Then, we can compute
yj as a weighted sum of z such that

yj =

Cin
∑

i=1

sijzi,lij . (5)

Similarly to above, we call it ‘Conv-then-add’. Once the clustering is done, we
choose and apply the faster method by comparing the number of computations.
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(a) (b)

Fig. 3: (a) We combine horizontal, vertical flips and 90◦ rotation to represent
various kernels using one centroid. Weights that are marked with same colors
(cyan, magenta) share their values. (b) We visualize how TIC actually works.
We mark the centroid with green, and the other kernels belong to the same
cluster even they have different orientations.

3.4 Transform invariant clustering

Since 3 × 3 kernels have relatively simple structures, many of them are flipped
and rotated version of each other. Inspired by this idea, we newly propose the
transform invariant clustering (TIC) for the convolutional kernels. The basic idea
of TIC is to allow a centroid to represent its transformed shapes, too. Therefore,
when m distinct transforms are allowed, k centroids can represent mk shapes. In
this paper, we use a maximum of eight different transforms as shown in Fig. 3(a).

With TIC, we use Eq.(6) and (7) instead of Eq.(2) and (3). Here, Φtm
ij
(·)

represents the transformations that are demonstrated in Fig. 3(a). Eq.(6) can be
optimized like traditional k-means clustering, where a centroid of Wn is defined

as µn = Ew
m
ij
∈Wn

[

Φ−1
tij

(

wm
ij

)

]

. TIC does not further compress and accelerate

our model since we require additional bits to store T which is a set of all tmij .
However, in Sec. 4.3, we will demonstrate that TIC allows very compact repre-
sentation of a CNN and acts as a strong regularization term.

argmin
M,T

k
∑

n=1

∑

ŵ
m
ij
∈Wn

‖ŵm
ij −Φtm

ij
(µn)‖

2

2
, (6)

yj =

Cin
∑

i=1

Φtij

(

sijµlij

)

∗ xi. (7)
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4 Experiments

We apply the proposed method to recent popular CNN architectures for im-
age classification task: VGG [31], ResNets [15], and DenseNets [16]. We use
CIFAR-10 [21] dataset to evaluate the performance of the compressed models.
Our training and test dataset contain 50,000 and 10,000 test images, respectively.
We normalize all images using channel-wise means and standard deviations of
the training set. During the training, we apply random flip and translation aug-
mentation to input images as previous works [15, 16, 31] did.

We first train those models for 300 epochs with an SGD optimizer and mo-
mentum 0.9. The initial learning rate is 0.1, and we reduce it by a factor of 10
after 150 and 225 epochs. For DenseNets [16], we apply the Nesterov momen-
tum [32]. Also, we use a weight decay of 5×10−4 when training VGG-16, and 10−4

for the others. Then, we apply our algorithm to those baselines and fine-tune
the models for an additional 300 epochs. The learning rate starts from 5× 10−3,
and other configurations kept same. Since k-means clustering with a million of
kernels is computationally very heavy, we implemented it on the multi-GPU en-
vironment. We found that random initialization is enough for the k-means seed.
Our PyTorch [28] code will be available on https://github.com/thstkdgus35.

4.1 Clustering kernels from various models

We apply our method to a VGG-16 [31] variant first. The original VGG-16 has
13 convolution layers, and three fully-connected layers follow. In our implemen-
tation, there is one fully-connected layer after the last pooling. Also, batch nor-
malizations [19] follow after all convolutions. The modified architecture contains
1,634,496 many 3× 3 kernels which account over 99.9% of the total parameters.
We also compress more recent architectures, ResNets [15] and DenseNets [16]. Al-
though some of their configurations contain the bottleneck structure that comes
with many 1 × 1 convolutions, we use the models without the bottleneck. The
baseline ResNet-56 and DenseNet-12-40 have 94,256 and 101,160 kernels, respec-
tively. Similar to VGG-16, 3× 3 kernels are also dominant in those models.

We demonstrate the results in Table 1 with varying the number of clusters
k. Since previous works on network compression do not provide unified com-
parisons, we only show our results here. As we expected, using more centroids
results in lower error rates. However, we found that the model performances are

Model C128 C256 C512 C1024 Baseline

VGG-16 [31] 6.24 6.23 6.16 6.01 5.98
ResNet-56 [15] 6.76 6.54 6.61 6.30 6.28
DenseNet-12-40 [16] 5.44 5.49 5.39 5.38 5.26

Table 1: We compress various CNN architectures on CIFAR10 and report the
classification error rates (%). C‘k’ denote the proposed method with k centroids.
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(a) (b)

Fig. 4: Compression(a) and acceleration(b) ratios of various architecture and
different k values. Those factors tend to decrease as the number of clusters
increases.

reasonable when we use only 128 centroids. Notably, the results from VGG-16 is
impressive because the original model contains more than 1.6 × 106 kernels. In
other words, over 10,000 kernels of the CNN are sharing their shapes together
while maintaining the classification accuracy.

4.2 Analyzing compression and acceleration ratio

In this section, we analyze how our method can compress and accelerate the
CNN. We only count the weights from 3× 3 kernels, as they compose the most
parts of our baselines. Also, we assume that the original CNNs requires bw =
32 bits to represent each weight. Our method store an index lmij and a scale
parameter smij per each kernel wm

ij . After clustering, our centroid representation
requires log2k and bs bits for each index and scale parameter, respectively. We
assign 16-bit for each si for simplicity. We also store a codebook with k centroids
which occupy total kbwhw bits. This codebook can be ignored in many cases as
N is much larger than k in usual. To sum up, we calculate the compression ratio
rcomp as Eq.(8). For the experiments in Table 1, we plot compression ratios with
respect to various k values in Fig. 4(a).

rcomp =
Nbwhw

N (log2 k + bs) + kbwhw
≃

bwhw

log2 k + bs
. (8)

We also analyze the way to accelerate the CNNs with our method. Here, we
ignore the scale parameters without losing generality since their computations
are negligible. For the ‘Add-then-conv,’ let us define λj as the number of distinc-
tive centroids that contribute to the computation of yj . In the case of Fig. 1(b),
λ1 is equal to 2 since only µ1 and µ3 are used to compute y1. As we explained
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in Sec. 3.3, we first add all input features that share the same kernels and then
compute convolutions. Therefore, we can reduce the number of convolutions from
Cin to λj for each output channels.

For the ‘Conv-then-add,’ we define another variable νi that indicates the
number of distinctive centroids that are convolved with xi. In Fig. 1(b), ν1 is
equal to 3 because the long blue box contains three centroids. Therefore, we only
compute νi many convolutions instead of Cout for each xi. Finally, we calculate
the theoretical acceleration factor raccel of each convolutional layer by simply
choosing the method which has the fewer FLOPs as illustrated in Eq.(9).

raccel ≃
CinCout

min
(

∑Cout

j=1 λj ,
∑Cin

i=1 νi

) (9)

We visualize how this factor changes in various models as the number of
clusters k varies. Here, we found that our method becomes more effective when
the number of intermediate channels is large. For example, VGG-16 achieved
the highest acceleration ratio because its largest convolutional layer has 512 in-
put and output channels. Therefore, there can exist many overlapping kernels
when k < 512. In contrast, ResNet-56 shows almost constant speed because the
number of its intermediate channels does not exceed 64. DenseNet has an impres-
sive property because each layer in DenseNet takes all the outputs of previous
layers [16]. Therefore, Cin is usually very large, and we can remove many convo-
lutions. Although the DenseNet-12-40 and ResNet-56 have the similar number
of kernels, the acceleration factor of DenseNet is much higher due to its unique
architecture.

In this paper, we only report the theoretical FLOPs because the proposed
method has some compatibility issues with cuDNN [2]. However, our algorithm
can be implemented using group convolution.

4.3 Transform invariant clustering for compact representation

We apply transform invariant clustering on VGG-16 to see how the proposed
method can benefit from higher degrees of weight sharing. We first allow vertical
flips, and then horizontal flips to take four types of transforms into account
during clustering. Finally, we also consider the rotational transform [3, 8] in
the clustering to acquire very compact centroid representation. Note that the
valid number of representative kernels are 256 in all three configurations in the
experimental results shown in Table 2.

Since transform indication bits are additionally required to include trans-
forms, the gains in compression ratio are trivial. For example, our ‘T’ models
in Table 2 consume similar amounts of storage with a VGG-16-C256 model in
Fig. 4, having compression ratio of 11.99. However, we observed that TIC has a
strong regularization effect on redundant kernel shapes. When we exploited the
vertical symmetry of the kernels, VGG-16-C128-TIC2 achieves lower classifica-
tion errors compared to the baseline. Note that the performance has dropped a
little bit when we include the horizontal transforms (TIC4) because the number
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Model Error (%) Sizes (MB) FLOPs (M)

VGG-16-baseline 5.98 58.8 313
VGG-16-C32 6.78 4.29 (13.7x) 42 (7.63x)
VGG-16-C64 6.44 4.49 (13.1x) 68 (4.60x)

VGG-16-C64-M2 6.27 4.50 (13.0x) 75 (4.17x)
VGG-16-C64-M13 6.21 4.51 (13.0x) 78 (4.01x)
VGG-16-C256-M2 6.16 4.91 (12.0x) 159 (1.97x)
VGG-16-C256-M13 6.10 4.96 (11.8x) 166 (1.89x)

VGG-16-C128-TIC2 5.92 4.91 (12.0x) 145 (2.16x)
VGG-16-C64-TIC4 6.25 4.91 (12.0x) 145 (2.16x)
VGG-16-C32-TIC8 6.51 4.91 (12.0x) 145 (2.16x)

Table 2: Our method allows various design choices. ‘M’ refers to the multi clus-
tering, and the number of groups follows. After TIC, the number of allowed
transformations follows. We report the error rates on CIFAR-10 dataset. We
also report the compression and acceleration ratios with respect to the baseline.

of centroids is limited to 64. However, it has a compatible performance compared
to VGG-16-C256 in Table 1, while having much more compact representations.
TIC8 suffers a slight performance drop, but it is surprising that only 32 centroids
are necessary to represent the VGG-16 with reasonable accuracy.

4.4 Multi clustering

The proposed method performs better as the number of clusters k increases.
However, it is not desirable to set k boundlessly large regarding compression
and acceleration ratio. Therefore, we handle this trade-off by dividing the given
kernels to n ≥ 2 sets and applying our method individually. By doing so, we
find M1, · · · ,Mn instead of computing a single set of centroids M. If we keep
k same for all sets, the number of effective centroids will be nk while we still
require log2k bits to represent each index. Therefore, we can efficiently increase
the network capacity without enlarging the model.

We evaluate the multi clustering method using our VGG-16 [31] variant. It
has 13 convolutional layers, so we try two simple dividing strategies because
finding an optimal partition is challenging. In the M2 configuration, we apply
k-means clustering to the first ten and the last three layers separately, so that
both groups contain the similar amount of kernels. Our M13 configuration treats
all layers individually. Because the first convolutional layer only contains 192
kernels, we allocate min(k, 192) clusters for this layer. Although we keep k the
same for the other layers, it is possible to assign different k to each group for
more elaborate tuning. We provide the results in Table 2. We first compressed
VGG-16 with only 64 clusters and observed a slight performance drop, since
25,000 kernels are sharing their weights on average. With the multi clustering,
however, the performances get better without any noticeable decrease in the
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Model Error (%) Size (MB) FLOPs (M)

VGG-16-P 6.08 28.7 (2.05x) 223 (1.41x)
VGG-16-Filter-pruning [26] 5.91 21.0 (2.80x) 206 (1.52x)

VGG-16-C512 6.16 5.11 (11.5x) 186 (1.68x)
VGG-16-PC512 6.13 3.19 (23.5x) 151 (2.07x)
VGG-16-Filter-pruning [26]-C512 5.99 2.35 (31.8x) 149 (2.10x)

Table 3: We combine our method with pruning and report the error rates on the
CIFAR-10 dataset. Here, ‘P’ denotes the simple pruning strategy we mentioned.

compression ratio. Although the acceleration factors slightly decrease with the
multi clustering, we observed meaningful performance gain as the number of
effective centroids increases.

4.5 Clustering with pruning

Prior works on network pruning [10, 12, 13, 26, 27] showed that it is possible to
remove a large number of unnecessary weights from CNNs without accuracy loss.
In this section, we analyze how our method can benefit from pruning. As [12]
mentioned, k centroids will provide a better approximation of the network if the
number of whole kernels decreases with pruning.

Here, we try two pruning strategies to VGG-16 before applying our method.
The first method is simple thresholding which removing 50% of the spatial ker-
nels from each layer based on their L1 norms. For the advanced method, we
focus on filter-level pruning [26, 27] instead of weight-wise pruning [10, 12, 13]
because we treat the individual kernel for a basic unit of CNNs. We adopt a
method from [26] that performs structured pruning [27] to reduce the number
of intermediate channels with kernels. Then, we apply the proposed method to
pruned models. We found that the pruning works as expected, regardless of the
specific strategies. We report the results in Table 3.

4.6 Bottleneck architectures and clustering

The bottleneck structure demonstrated its power in recent deep architectures [15,
16, 18]. It utilizes 1 × 1 convolutions before 3 × 3 convolutions to build more
efficient CNNs. Although our method is less efficient with 1×1 convolutions, we
demonstrate that kernels in the bottleneck architectures are heavily redundant.
We selected 100-layer DenseNet-BC (k = 12) [16] as our baseline. It contains
27,720 spatial kernels which comprise only 34% of the total parameters. All the
other parameters construct 1 × 1 convolutional layers. In this section, we only
compress the 3× 3 kernels and report the results in Table 4.

Interestingly, our method works well and even exceeds the baseline without si.
In other words, we do not normalize the kernels and share them across different
layers. When we consider dominant 1× 1 kernels, the compression ratio is quite
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Model Error (%)
Size (KB)

3× 3 / Total
FLOPs (M)
3× 3 / Total

DenseNet-BC [16] 4.50 998 / 2967 112 / 288
DenseNet-BC-C64 4.50 77 (13.0x) / 2046 (1.45x) 54 (2.09x) / 230 (1.25x)
DenseNet-BC-C128 4.51 82 (12.2x) / 2051 (1.45x) 66 (1.71x) / 242 (1.19x)

DenseNet-BC-C64N 4.60 22 (45.5x) / 1991 (1.49x) 43 (2.59x) / 219 (1.32x)
DenseNet-BC-C128N 4.44 27 (37.5x) / 1996 (1.49x) 57 (1.96x) / 233 (1.24x)

DenseNet-BC-PC128N 4.57 14 (61.7x) / 1983 (1.50x) 36 (3.11x) / 212 (1.36x)

Table 4: We apply the proposed method to DenseNet-BC and evaluate those
models on the CIFAR-10 dataset. ‘N’ denotes the model without any scale pa-
rameters (si ≡ 1).

Model
Top-1 / Top-5
Error (%)

Compression
ratio

Acceleration
ratio∗

ResNet-18 [15] from torchvision [28] 30.2 / 10.9 - -

BWN [29] 39.2 / 17.0 32.0x 2.00x
TWN [25] 34.7 / 13.8 16.0x 2.00x
TTQ [39] 33.4 / 12.8 16.0x 2.00x
INQ (3-bit) [37] 31.9 / 11.6 10.7x -
INQ (5-bit) [37] 31.0 / 10.9 6.40x -

C256 (Proposed) 30.5 / 11.0 11.1x 1.68x
C1024 (Proposed) 30.1 / 10.7 10.3x 1.27x
C1024N (Proposed) 32.3 / 12.2 23.6x 1.35x

Table 5: Error rates of compressed ResNet-18 on the ILSVRC12 validation set.
INQ [37] does not report the acceleration performance explicitly in the paper.

low. However, it is surprising that our method requires only 576 = 64×3×3 train-
able parameters for 3 × 3 convolutions in C64N configuration. We also applied
pruning to DenseNet-BC and successfully removed over 98% of the parameters
from 3× 3 convolutional layers.

4.7 Experients on ImageNet dataset

We also evaluate our method on more challenging ILSVRC12 dataset [30] using
ResNet-18 [15] in which 3×3 convolutions are dominant and 1×1 kernels are in
shortcut connections only. There exist 7 × 7 convolutions in the first layer, but
they are also negligible. To handle the various kernel sizes, we use multi clustering
method from Sec. 4.4. Kernels of equal sizes belong to the same group, and we
ignore 1×1 convolutions here. We use k = 64 clusters for 7×7 kernels to keep as
much information as possible from the inputs and preserve the variety of the large
kernels. Here, our primary interest is to compress 1,220,608 many 3× 3 kernels.
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Fig. 5: The 16 most(Top)/least(Bottom) frequent centroids from ResNet-18-
C256. They occupy 19% and 2% of the total kernels, respectively.

We compare the proposed method with extreme weight quantizations [25, 29, 39,
37] that perform well on challenging dataset. Results are reported in Table 5.

An impressive property of our method is that we allow various design choices.
For example, we can ignore the scale parameters and achieve 23.6x compression
ratio or enhance the model accuracy by sacrificing compactness. INQ [37] also
has a design parameter to control the size-performance trade-off, but our method
outperforms other methods at given accuracy or compression ratio. However,
it is difficult to compare the computational gain of the proposed method and
previous works directly since different compression methods take advantage of
the different hardware designs. For example, our method can utilize the fastest
convolution algorithm [22] since we do not modify the convolution itself. On the
other hand, INQ [37] redefines the convolution with shift operations, which can
be implemented very efficiently on the custom hardware. Although we report
the acceleration ratio of each method in Table 5, we cannot say which way is the
fastest in general. The more detailed analysis is beyond our scope.

5 Conclusion

In this paper, we compress CNNs by applying k-means clustering to their convo-
lution kernels. Our primary interest is to remove redundancies in convolutional
layers by sharing weights between similar kernels. We reduce the size and re-
quired computations of modern CNNs while keeping their performances. Vari-
ous experiments about TIC and multi clustering show that the proposed method
has multiple design choices for compression. Combined with pruning, our com-
pressed VGG-16 achieved over 30x compression ratio with only 0.01% accuracy
drop on the CIFAR-10 dataset. The proposed method also fits for the challeng-
ing ImageNet task and even enhances the accuracy of ResNet-18. Although our
method is not fully optimized for bottleneck architectures yet, we will handle
them in our future works. Also, we will further enhance our method based on
Fig. 5 as frequently appearing centroids are often low-frequency and low-rank.
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