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Abstract. Modern deep learning systems successfully solve many per-
ception tasks such as object pose estimation when the input image is
of high quality. However, in challenging imaging conditions such as on
low resolution images or when the image is corrupted by imaging arti-
facts, current systems degrade considerably in accuracy. While a loss
in performance is unavoidable, we would like our models to quantify
their uncertainty to achieve robustness against images of varying quality.
Probabilistic deep learning models combine the expressive power of deep
learning with uncertainty quantification. In this paper we propose a novel
probabilistic deep learning model for the task of angular regression. Our
model uses von Mises distributions to predict a distribution over object
pose angle. Whereas a single von Mises distribution is making strong
assumptions about the shape of the distribution, we extend the basic
model to predict a mixture of von Mises distributions. We show how
to learn a mixture model using a finite and infinite number of mixture
components. Our model allows for likelihood-based training and efficient
inference at test time. We demonstrate on a number of challenging pose
estimation datasets that our model produces calibrated probability pre-
dictions and competitive or superior point estimates compared to the
current state-of-the-art.

Keywords: pose estimation, deep probabilistic models, uncertainty
quantification, directional statistics.

1 Introduction

Estimating object pose is an important building block in systems aiming to
understand complex scenes and has a long history in computer vision [1,2].
Whereas early systems achieved low accuracy, recent advances in deep learning
and the collection of extensive data sets have led to high performing systems
that can be deployed in useful applications [3,4,5].

⋆ This work has been done prior to Peter Gehler joining Amazon.
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Fig. 1: Our model predicts complex multimodal distributions on the circle (trun-
cated by the outer circle for better viewing). For difficult and ambiguous images
our model report high uncertainty (bottom row). Pose estimation predictions
(pan angle) on images from IDIAP, TownCentre and PASCAL3D+ datasets.

However, the reliability of object pose regression depends on the quality of the
image provided to the system. Key challenges are low-resolution due to distance
of an object to the camera, blur due to motion of the camera or the object, and
sensor noise in case of poorly lit scenes (see Figure 1).

We would like to predict object pose in a way that captures uncertainty.
Probability is the right way to capture the uncertainty [6] and in this paper we
therefore propose a novel model for object pose regression whose predictions are
fully probabilistic. Figure 1 depicts an output of the proposed system. Moreover,
instead of assuming a fixed form for the predictive density we allow for flexible
multimodal distributions, specified by a deep neural network.

The value of quantified uncertainty in the form of probabilistic predictions is
two-fold: first, a high prediction uncertainty is a robust way to diagnose poor
inputs to the system; second, given accurate probabilities we can summarize them
to improved point estimates using Bayesian decision theory.

More generally, accurate representation of uncertainty is especially important
in case a computer vision system becomes part of a larger system, such as when
providing an input signal for an autonomous control system. If uncertainty is
not well-calibrated, or—even worse—is not taken into account at all, then the
consequences of decisions made by the system cannot be accurately assessed,
resulting in poor decisions at best, and dangerous actions at worst.

In the following we present our method and make the following contributions:

• We demonstrate the importance of probabilistic regression on the application
of object pose estimation;

• We propose a novel efficient probabilistic deep learning model for the task of
circular regression;

• We show on a number of challenging pose estimation datasets (including
PASCAL 3D+ benchmark [7]) that the proposed probabilistic method outper-
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forms purely discriminative approaches in terms of predictive likelihood and
show competitive performance in terms of angular deviation losses classically
used for the tasks.

2 Related Work

Estimation of object orientation arises in different applications and in this paper
we focus on the two most prominent tasks: head pose estimation and object class
orientation estimation. Although those tasks are closely related, they have been
studied mostly in separation, with methods applied to exclusively one of them.
We will therefore discuss them separately, despite the fact that our model applies
to both tasks.

Head pose estimation has been a subject of extensive research in computer
vision for a long time [2,8] and the existing systems vary greatly in terms of
feature representation and proposed classifiers. The input to pose estimation
systems typically consists of 2D head images [9,10,11], and often one has to cope
with low resolution images [12,13,14,8]. Additional modalities such as depth [15]
and motion [14,16] information has been exploited and provides useful cues.
However, these are not always available. Also, information about the full body
image could be used for joint head and body pose prediction [17,18,19]. Notably
the work of [18] also promotes a probabilistic view and fuse body and head
orientation within a tracking framework. Finally, the output of facial landmarks
can be used as an intermediate step [20,21].

Existing head pose estimation models are diverse and include manifold learning
approaches [22,23,24,25], energy-based models [19], linear regression based on
HOG features [26], regression trees [15,27] and convolutional neural networks
[5]. A number of probabilistic methods for head pose analysis exist in the
literature [18,28,29], but none of them combine probabilistic framework with
learnable hierarchical feature representations from deep CNN architectures. At
the same time, deep probabilistic models have shown an advantage over purely
discriminative models in other computer vision tasks, e.g., depth estimation [30].
To the best of our knowledge, our work is the first to utilize deep probabilistic
approach to angular orientation regression task.

An early dataset for estimating the object rotation for general object classes
was proposed in [31] along with an early benchmark set. Over the years the
complexity of data increased, from object rotation [31] and images of cars in
different orientations [32] to Pascal3D [33]. The work of [33] then assigned a
separate Deformable Part Model (DPM) component to a discrete set of viewpoints.
The work of [34,35] then proposed different 3D DPM extensions which allowed
viewpoint estimation as integral part of the model. However, both [34] and [35]
and do not predict a continuous angular estimate but only a discrete number of
bins.

More recent versions make use of CNN models but still do not take a prob-
abilistic approach [3,4]. The work of [36] investigates the use of a synthetic
rendering pipeline to overcome the scarcity of detailed training data. The addi-



4 S. Prokudin et al.

tion of synthetic and real examples allows them to outperform previous results.
The model in [36] predicts angles, and constructs a loss function that penalizes
geodesic and ℓ1 distance. Closest to our approach, [37] also utilizes the von Mises
distribution to build the regression objective. However, similarly to [5], the shape
of the predicted distribution remains fixed with only mean value of single von
Mises density being predicted. In contrary, in this work we advocate the use of
complete likelihood estimation as a principled probabilistic training objective.

The recent work of [38] draws a connection between viewpoints and object
keypoints. The viewpoint estimation is however again framed as a classification
problem in terms of Euler angles to obtain a rotation matrix from a canonical
viewpoint. Another substitution of angular regression problem was proposed
in a series of work [39,40,41], where CNN is trained to predict the 2D image
locations of virtual 3D control points and the actual 3D pose is then computed
by solving a perspective-n-point (PnP) problem that recovers rotations from
2D-3D correspondences. Additionally, many works phrase angular prediction
as a classification problem [3,36,38] which always limits the granularity of the
prediction and also requires the design of a loss function and a means to select the
number of discrete labels. A benefit of a classification model is that components
like softmax loss can be re-used and also interpreted as an uncertainty estimate.
In contrast, our model mitigate this problem: the likelihood principle suggests
a direct way to train parameters, moreover ours is the only model in this class
that conveys an uncertainty estimate.

3 Review of Biternion Networks

We build on the Biternion networks method for pose estimation from [5] and
briefly review the basic ideas here. Biternion networks regress angular data and
currently define the state-of-the-art model for a number of challenging head pose
estimation datasets.

A key problem is to regress angular orientations which is periodic and prevents
a straight-forward application of standard regression methods, including CNN
models with common loss functions. Consider a ground truth value of 0◦, then
both predictions 1◦ and 359◦ should result in the same absolute loss. Applying the
mod operator is no simple fix to this problem, since it results in a discontinuous
loss function that complicates the optimization. A loss function needs to be
defined to cope with this discontinuity of the target value. Biternion networks
overcome this difficulty by using a different parameterization of angles and the
cosine loss function between angles.

3.1 Biternion Representation

Beyer et al. [5] propose an alternative representation of an angle φ using the
two-dimensional sine and cosine components y = (cosφ, sinφ).

This biternion representation is inspired by quaternions, which are popular
in computer graphics systems. It is easy to predict a (cos, sin) pair with a
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fully-connected layer followed by a normalization layer, that is,

fBT (x;W , b) =
Wx+ b

||Wx+ b||
= (cosφ, sinφ) = ypred, (1)

where x ∈ R
n is an input, W ∈ R

2×n, b ∈ R
2. A Biternion network is then a

convolutional neural network with a layer (1) as the final operation, outputting
a two-dimensional vector ypred. We use VGG-style network [42] and Inception-
ResNet [43] networks in our experiments and provide a detailed description of
the network architecture in Section 6.1. Given recent developments in network
architectures it is likely that different network topologies may perform better
than selected backbones. We leave this for future work, our contributions are
orthogonal to the choice of the basis model.

3.2 Cosine loss function

The cosine distance is chosen in [5] as a natural candidate to measure the
difference between the predicted and ground truth Biternion vectors. It reads

Lcos(ypred,ytrue) = 1−
ypred · ytrue

||ypred|| · ||ytrue||
= 1− ypred · ytrue, (2)

where the last equality is due to ||y|| = cos2 φ+ sin2 φ = 1.
The combination of a Biternion angle representation and a cosine loss solves

the problems of regressing angular values, allowing for a flexible deep network
with angular output. We take this state-of-the-art model and generalize it into a
family of probabilistic models of gradually more flexibility.

4 Probabilistic models of circular data.

We utilize the von Mises (vM) distribution as the basic building block of our
probabilistic framework, which is a canonical choice for a distribution on the
unit circle [44]. Compared to standard Gaussian, the benefit is that it have as a
support any interval of length 2π, which allow it to truthfully models the domain
of the data, that is angles on a circle.

We continue with a brief formal definition and in Section 4.1 describe a simple
way to convert the output of Biternion networks into a VM density, that does
not require any network architecture change or re-training as it requires only
selection of the model variance. We will then use this approach as a baseline
for more advanced probabilistic models. Section 4.2 slightly extends the original
Biternion network by introducing an additional network output unit that models
uncertainty of our angle estimation and allows optimization for the log-likelihood
of the VM distribution.

The von Mises distribution VM(µ, κ) is a close approximation of a normal
distribution on the unit circle. Its probability density function is

p(φ;µ, κ) =
exp (κ cos (φ− µ))

2πI0(κ)
, (3)



6 S. Prokudin et al.

Fig. 2: Left: examples of the von Mises probability density function for di�erent
concentration parameters� . Center, right: predicted VM distributions for two
images from the CAVIAR dataset. We plot the predicted density on the viewing
circle. For comparison we also include the 2D plot (better visible inzoomed pdf
version). The distribution on the center image is very certain, the one on the
right more uncertain about the viewing angle.

where � 2 [0; 2� ) is the mean value, � 2 R+ is a measure of concentration
(a reciprocal measure of dispersion, so 1/� is analogous to � 2 in a normal
distribution), and I 0(� ) is the modi�ed Bessel function of order 0. We show
examples ofVM -distributions with � = � and varying � values in Figure 2 (left).

4.1 Von Mises Biternion Networks

A conceptually simple way to turn the Biternion networks from Section 3 into a
probabilistic model is to take its predicted value as the center value of the VM
distribution,

p� (� jx ; � ) =
exp (� cos (� � � � (x )))

2�I 0(� )
; (4)

where x is an input image, � are parameters of the network, and� � (x ) is the
network output. To arrive at a probability distribution, we may regard � > 0 as a
hyper-parameter. For �xed network parameters � we can select� by maximizing
the log-likelihood of the observed data,

� � = argmax
�

NX

i =1

logp� (� ( i ) jx ( i ) ; � ); (5)

where N is the number of training samples. The model (4) with � � will serve as
the simplest probabilistic baseline in our comparisons, referred as�xed � model
in the experiments.

4.2 Maximizing the von Mises Log-likelihood

Using a single scalar� for every possible input in the model (4) is clearly a
restrictive assumption: model certainty should depend on factors such as image


























