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Abstract. Visual salience detection originated over 500 million years ago and

is one of nature’s most efficient mechanisms. In contrast, many state-of-the-art

computational saliency models are complex and inefficient. Most saliency models

process high-resolution color images; however, insights into the evolutionary ori-

gins of visual salience detection suggest that achromatic low-resolution vision is

essential to its speed and efficiency. Previous studies showed that low-resolution

color and high-resolution grayscale images preserve saliency information. How-

ever, to our knowledge, no one has investigated whether saliency is preserved in

low-resolution grayscale (LG) images. In this study, we explain the biological

and computational motivation for LG, and show, through a range of human eye-

tracking and computational modeling experiments, that saliency information is

preserved in LG images. Moreover, we show that using LG images leads to sig-

nificant speedups in model training and detection times and conclude by propos-

ing LG images for fast and efficient salience detection.
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1 Introduction

Visual scenes often contain more items than can be processed concurrently due to the

visual system’s limited processing capacity [1]. Visual salience (or attention) detection

is a cognitive mechanism that efficiently deals with this capacity limitation by select-

ing relevant or salient information, while ignoring irrelevant information [1]. Salience

detection is a fundamental vision mechanism present in many sighted organisms. Even

insects, despite having significantly smaller brains and dissimilar eyes to vertebrates,

can detect salient stimuli in their visual field [2, 3,4]. Salience detection can be crudely

divided into bottom-up and top-down mechanisms. Bottom-up salience is stimulus and

feature-driven, and responsible for automatic, involuntary rapid shifts in attention and

gaze. In contrast, top-down salience is task-driven, experience-based, and varies be-

tween individuals [5].

Recently, deep neural networks have achieved state-of-the-art performance on var-

ious saliency benchmarks [6, 7, 8, 9]. Nevertheless, this success comes at high com-

putational costs [10, 11]. Training and running these networks is time- and resource-

intensive, which is not easily scalable to resource-limited devices [10]. Processing high-

resolution or stacked multi-resolution color images contributes to these limitations [12].
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In contrast, natural visual salience detection proves to be much more efficient. A deeper

understanding of the evolutionary origins of visual salience detection suggests that

bottom-up saliency is computed from achromatic low-resolution information [13].

Previous studies have shown that low-resolution color (LC) [14, 15, 16] and high-

resolution grayscale (HG) [17, 18, 19, 20, 21, 22] images preserve saliency information,

yet are significantly more computationally attractive than high-resolution color (HC)

images. Low-resolution grayscale (LG) images are even more computationally attrac-

tive, compared to LC and HG images. Nevertheless, to our knowledge, no one has inves-

tigated whether saliency information is preserved in LG images. In this study, we there-

fore investigate saliency preservation in LG images, and present the following three

contributions: (1) linking low-resolution grayscale information with the bio-inspired

evolutionary origins of visual saliency, (2) assessing the preservation of saliency infor-

mation in low-resolution grayscale images, and (3) proposing low-resolution grayscale

images for fast and efficient saliency detection. Therefore, based on a deeper under-

standing of the evolutionary origins of visual saliency, together with knowledge gained

from studies investigating salience preservation in LC and HG images, we hypothesize

that saliency information is well-preserved in LG images.

2 Related Work

2.1 Fixations on Low-Resolution Images

Judd et al. [14] investigated how well fixations on LC images predict fixations on the

same images in HC. They found that fixations on LC images (76× 64 pixels) can pre-

dict fixations on HC images (610 × 512 pixels) quite well (AUC-Judd [14] > 0.85).

However, they did not investigate the HC fixation-predictability of LG images, nor did

they mention any biological plausibility for deciding to investigate fixations in LC im-

ages. Nevertheless, they concluded that working with fixations on LC instead of HC

images could be perceptually adequate and computationally attractive, which is part of

our motivation for pursuing this study.

2.2 Multi-Resolution Approaches

Deep artificial neural networks are not inherently scale-invariant [23]. Therefore, multi-

resolution models are often used to capture saliency at different scales. Advani et al.

[24] presented a multi-resolution framework for detecting visual salience where res-

olution degrades further away from the point of fixation represented as a three-level

architecture: a central high-resolution fovea (960 × 960 pixels), a mid-resolution filter

(640× 640 pixels), and a low-resolution region (480× 480 pixels). They found signif-

icant computational benefits using this model, but only investigated color images and

ignored the achromaticity of peripheral vision.

Shen et al. [15] went a step further and modeled the visual acuity of the parafovea

and periphery as a stack of multi-scale inputs. They extracted multi-resolution image

patches in multiple visual acuity on the same image from fixation targets and non-target

locations based on the sunflower model of retina [25, 26, 27]. However, despite finding
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comparable performance to higher-resolution models, they too only investigated color

images, and overlooked the fact that the parafovea and periphery predominantly pro-

cesses achromatic information [13]. Furthermore, multi-scale models need to process

and train on the same image multiples times at different resolutions, which is compu-

tationally unattractive. Therefore, the ideal input image has the lowest resolution and

smallest color space that preserves saliency.

2.3 Fixations in Grayscale

Colour processing in chromatic vision conveys processing advantages when combined

with brightness information and higher level cognitive influences (e.g. top-down task-

driven visual search [28]). Nevertheless, colour information alone is poor at object de-

tection tasks or enabling spatial resolution [29, 30, 31].

Hamel et al. [19] investigated the role of color in visual attention by comparing

eye movements across different participants viewing color and grayscale videos. They

found color to only have a modest effect in predicting salience. However, they only

investigated high-resolution images, leaving the influence of color in low-resolution

images a gap for us to fill.

Yang et al. [32] also investigated whether saliency information is preserved in

grayscale images using a novel minimization function. They showed that saliency is

well-preserved in grayscale images of the same resolution, but did not extend their in-

vestigation to lower resolutions, which our study aims to do.

3 Evolutionary Origin of Visual Saliency

a b c

d e f

Fig. 1. Hypothetical stages of the evolution of vertebrate vision. This figure panel shows a series

of photographic reconstructions of how the vertebrate eye is hypothesized to have evolved, and

what that vision hypothetically looked like from an animal’s point of view. Static images adapted

from Cosmos: A Spacetime Odyssey (Some of the Things that Molecules do) [33].
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In the beginning, life was blind. Then, around 600 million years ago, the first eyes

discriminated night and day (Figure 1(a)) [34]. Light-source localization followed a

few million years later (Figure 1(b)), heralding eyes capable of distinguishing light

from shadow, thus crudely making-out objects in their vicinity (Figure 1(c)), including

those to eat, and those that might eat it. This was likely the birth of stimulus-driven,

bottom-up visual salience detection – the mechanism thought to be primarily respon-

sible for the Cambrian explosion [13]. Later, things became a little clearer. The eye’s

opening contracted to a pinhole covered by a protective transparent membrane, allow-

ing just enough light to paint a dim image on the sensitive inner surface of the eye [35].

Then came focus-sharpening lenses (Figure 1(d)), foveated central vision (Figure 1(e)),

and finally, color (Figure 1(f)). However, despite the arrival of high-acuity chromatic

central vision, blurry achromatic peripheral vision dominates over 90% of our visual

field, and is still the primary information source for bottom-up salience detection – a

relic mechanism conserved through evolution in many species because of its apparent

speed and efficiency [13]. Furthermore, many sighted animals completely lack chro-

matic vision, yet are able to rapidly detect obstacles and avoid collisions in complex

environments [36].

The ability then of an organism’s pupil to rapidly shift foveal gaze to salient regions

suggests that it is peripheral vision that points the sharper, high-resolution foveated

(sometimes chromatic) vision to investigate objects and regions further. Eye movements

align objects with the high-acuity fovea of the retina, making it possible to gather de-

tailed information about the world [35]. Therefore, bottom-up visual salience detection

is predominantly a peripheral vision information processing task.

4 Peripheral Vision

A key to the speed and efficiency in bottom-up salience detection lies in the distribution

of rod and cone photoreceptor cells in the human retina (Figure 2(a)), and the infor-

mation processing pipeline of typical vertebrate peripheral vision (Figure 2(b)). Rods

primarily encode achromatic luminance (brightness) information, and have a higher

distribution outside the fovea. In contrast, cones encode chrominance (color), and are

concentrated in the fovea (center of the retina) [37]. Moreover, multiple rods converge to

and activate a single retinal ganglion neuron, which is why rod vision has lower spatial

resolution compared to information encoded by cones, despite having a high periph-

eral distribution. In contrast, each cone activates multiple ganglion neurons, resulting

in higher acuity vision [39]. Therefore, afferent ganglion neurons, not photoreceptors,

from the retina determine the perceived image resolution.

The sparse retinal output of peripheral vision (only 10% of all ganglion cells leaving

the eye) enters a structure called the optic tectum (or superior colliculus (SC) in higher-

order animals, Figure 2(b)). This structure has only recently emerged as a likely can-

didate for encoding the saliency map – a well-known precursor for bottom-up salience

detection [38, 40, 41]. Furthermore, the SC has direct control of eye muscles. In their

study, Veale et al. [38] explain that direct retinal input into the SC of a macaque brain

can trigger reflex-like saccades via brainstem oculomotor nuclei (red pathway in Fig-

ure 2(b)). This could explain why bottom-up saliency detection is rapid and reflex-like,
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Fig. 2. (a) The human retina’s distribution of rod and cone photoreceptors is shown in degrees

of visual angle relative to the position of the fovea for the left eye. Cones, concentrated in the

fovea, encode high-resolution color. Rod photoreceptors distributed outside the fovea encode

low-resolution grayscale information [37]. (b) Macaque brain information flow from retinal input

to eye movement output. Visual signals from the retina to the cerebral cortex are mediated through

the primary visual cortex (V1) and the superior colliculus (sSC and dSC). There is also a shortcut

from the superficial (sSC) to the deep (dSC) superior colliculus, which then sends outputs directly

to the brainstem oculomotor nuclei, resulting in rapid saccades (red pathway) [38].

which makes sense since it is processing predominantly achromatic information from

fewer afferent neurons, compared to foveated vision, which is processed downstream

of the SC and in larger complex brain regions, therefore taking longer. This means far

fewer neurons enter the SC, which is analogous to a low-resolution grayscale digital im-

age. Therefore, this sparse achromatic peripheral output could be approximated using

low-resolution grayscale images in the digital domain.

5 Approximating Peripheral Vision

Leveraging knowledge from Judd et al. [14] and Hamel et al. [19], we decided to ap-

proximate peripheral vision by first transforming the color space of HC images to 8-bit

grayscale (section 5.1), followed by down-sampling the original image height to 64

pixels and width proportionally (section 5.2).

5.1 Colorimetric Grayscale Conversion

Images were first converted from 24-bit sRGB to 8-bit grayscale since it is faster and

more efficient to consolidate the three channels before performing subsequent opera-

tions, which would otherwise need to be performed thrice (i.e. once per channel). Color

to grayscale conversion is a lossy operation, resulting in luminance degradation, which

may affect saliency [17]. To avoid such systematic errors, the grayscale conversion

must at least preserve the brightness features of the original stimuli (i.e. the luminosity



6 Yohanandan et al.

of grayscale pixels must be identical to the original color image). The HC images used

in this study are stored in the sRGB (standard Red Green Blue) color space, which also

defines a nonlinear transformation (gamma correction) between the luminosity of these

primaries and the actual number stored.

To convert the 24-bit sRGB gamma-compressed color model IHC to an 8-bit grayscale

representation of its luminance IHG, the gamma compression function must first be re-

moved via gamma expansion to transform the image to a linear RGB color space [42],

so that the appropriate weighted sum can be applied to the linear color components

Rlinear, Glinear, Blinear. For the sRGB color space, gamma expansion is defined as

Clinear =

{

CsRGB

12.92
CsRGB ≤ 0.04045

(CsRGB+0.055

1.055
)2.4 CsRGB > 0.04045

(1)

where CsRGB represents any of the three gamma-compressed sRGB primaries (RsRGB ,

GsRGB , and BsRGB , each in range [0, 1]) and Clinear is the corresponding linear-

intensity value (Rlinear, Glinear, and Blinear, also in range [0, 1]). Then, IHG is calcu-

lated as a weighted sum of the three linear-intensity values, which is given by

IHG = 0.2126×Rlinear + 0.7152×Glinear + 0.0722×Blinear. (2)

These three coefficients represent the intensity (luminance) perception of a standard

observer trichromat human to light of the precise Rec. 709 [43] additive primary colors

that are used in the definition of sRGB.

5.2 Down-Sampling Image Resolution

We chose 64 pixels as our low-resolution height since Judd et al. [14] found this to

be the resolution with the best resolution-saliency compromise compared to other res-

olutions. According to the Nyquist theorem, down-sampling from a higher-resolution

image can only be carried out after applying a suitable 2D anti-aliasing filter to prevent

aliasing artifacts. To reduce the height of each image down to 64 pixels, we used the

same method as Torralba et al. [44]: we first applied a low-pass 5× 5 binomial filter to

IHG and then down-sampled the resulting image using bicubic interpolation by a factor

of two, until the desired image height of 64 pixels was reached (corresponding width

was maintained based on the original aspect ratio), forming ILG. This also had the effect

of providing a clear upper bound on the amount of visual information available [44].

6 Experiments

This section assesses how well saliency information is preserved after transforming HC

images to LG images using methods outlined above. Furthermore, it investigates if there

are any computational benefits using LG over HC. A fixation map is a two-dimensional

spatial record of discrete image locations fixated by an observer, and is collected using

an eye-tracker [45]. Previous studies used fixation maps to compare saliency similarity

between images [14, 46]. Saliency similarity can also be quantified using fixation-map



Saliency Preservation in Low-Resolution Grayscale Images 7

inter-observer visual congruency (agreement) [46]. To that end, we designed and con-

ducted three separate experiments: section 6.1 assesses LG and HC fixation-map simi-

larity; section 6.2 assesses LG vs. HC fixation-map inter-observer congruency; and sec-

tion 6.3 compares accuracy, training and detection speed performance between saliency

models trained on HC and LG data.

6.1 HC and LG Fixation-Map Similarity

Dataset. A subset IHC of 20 HC images (1920 × 1080 pixels, sRGB) along with

the corresponding aggregated eye fixations FHC from 18 observers were randomly

sampled from the publicly-available CAT2000 benchmark dataset [47]. This dataset

contains 4000 images selected from a wide variety of categories such as art, cartoons,

indoor, jumbled, line drawings, random, satellite, and outdoor. Overall, this dataset

contains 20 different categories with 200 images from each category. Only 20 images

were evaluated since the sample size of observers was sufficient to determine the statisti-

cal significance of fixation-map similarity. Using methods outlined in section 5, images

from IHC were first converted to grayscale, then down-sampled to 120 × 64 pixels.

This resulted in a set of images ILG that were a mere 0.12% of the original size, thus

significantly reducing computational costs. For human visualization on the eye-tracker

screen, ILG images were up-sampled back to their original resolution using the same

bicubic interpolation rescaling method outlined in section 5.2.

Eye Tracking. Eye fixations FLG were collected using a Tobii T60 eye-tracker by

allowing a separate cohort of 18 consenting participants to free-view each ILG image

for 3 seconds from a viewing distance of 60 cm, consistent with the CAT2000 study.

Such a viewing duration typically elicits 4-6 fixations from each observer. This is suf-

ficient to highlight a few points of interest per image, and offers a reasonable testing

ground for saliency models [48]. Each observer underwent an initial five-point calibra-

tion procedure to minimize eye-tracking calibration errors. Every pair of LG/HC images

was displayed at least 2 images apart to minimize the effect of priming.

Evaluation Metrics. We compared FHC and FLG fixation map similarity as a

function of six recommended “gold standard” metrics: Normalized Scanpath Saliency

(NSS) [49], Kullback-Leibler divergence (KL) [50], Judd Area under ROC Curve (jAUC)

[51], Shuffled AUC (sAUC) [52], Pearsons Correlation Coefficient (CC) [53], and Sim-

ilarity or histogram intersection (SIM) [54]. NSS is computed as the average normal-

ized saliency at fixated locations. KL divergence measures the difference between two

probability distributions. jAUC measures the area under the Receiver Operating Char-

acteristic curve representing the trade-off between true and false positives at various

discrimination thresholds. The sAUC samples negatives from fixation locations from

other images, which has the effect of sampling negatives predominantly from the image

center. This is because averaging fixations over many images results in the natural emer-

gence of a central Gaussian distribution. Models only predicting the center achieve an

sAUC score ¡= 0:5 because at all thresholds they capture as many fixations on the target

image as on other images. CC measures statistical Pearsons correlation between two

saliency maps. Finally, SIM measures the similarity between two distributions, viewed

as histograms. These metrics have been used in the past to evaluate fixation map simi-
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Fig. 3. Twenty images from the CAT2000 dataset [46] in high-resolution color (HC) and low-

resolution grayscale (LG), and their corresponding fixation maps (from 18 observers each) as a

function of σ, where σ ∈ {3, 9, 27, 81}, from Experiment 1 analyses (section 6.1).
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larity because of their easy interpretability [48,52]. We skip explaining these metrics in

detail for brevity, and refer readers to the relevant publications.

Discrete fixations from FHC and FLG are converted into continuous distribution

maps MHC and MLG, respectively, by smoothing, which acts as regularization, allow-

ing for uncertainty in the ground truth measurements to be incorporated. A blur value σ
is required for the Gaussian low-pass filter in the Fourier domain. We follow common

practice [48], and blur each fixation location using a Gaussian with σ ranging from 1

to 100, resulting in 100 fixation maps for each HC and LG image per participant. For

highly similar fixation maps, all evaluation metrics rise (except KL, which falls) rapidly

towards a large maximum as σ → 100. Conversely, for highly dissimilar fixation maps,

evaluation metrics decrease with an increasing σ [55]. We calculated these metrics us-

ing MATLAB scripts from [48], and plot the median across all participants for each

metric (Figure 4).

Results. From visual inspection (Figure 3), we can see that increasing σ smooths

the fixation density map and has the effect of filtering out stray fixations with low inter-

observer congruency, leaving behind high-confidence fixations. These results suggest

that MHC and MLG are highly similar, attaining high jAUC (0.88), SIM (0.85) and

CC (0.92) as σ → 100 (Figure 4). Moreover, this result confirms saliency preservation

in LG images in terms of fixation map similarity.
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Fig. 4. Low-resolution grayscale and high-resolution color fixation-map similarity metrics as a

function of the Gaussian blur σ. Plots represent medians across all participants for all 20 images.

Note: NSS y–axis range is constrained to min/max and all plots share the x–axis.

6.2 HC vs. LG Inter-Observer Consistency

Dataset. To determine LG and HC inter-observer congruency (agreement), a subset

IHC of 10 HC (1280 × 1024 pixels, sRGB) images were randomly sampled from the

Internet (Google Images) and converted to 120 × 64 pixel LG images ILG using the

same methods described in section 5. As with the previous experiment (section 6.1),

10 images were deemed sufficient to determine statistical significance since the sample

size of observers was large. This resulted in images that were only 0.19% of the original

size; once again, significantly reducing computational costs.
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Fig. 5. Full set of 10 images in high-resolution color (HC) and low-resolution grayscale (LG),

and their corresponding fixation maps (from 35 observers each) as a function of σ = 30, from

Experiment 2 analyses (section 6.2).
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Fig. 6. Experiment 2 (section 6.2) boxplots showing high-resolution color (HC) vs. low-resolution

grayscale (LG) inter-observer congruency across 35 observers across 10 images (in HC and LG)

as a function of AUC-Judd, AUC-Shuffled, CC, NSS, SIM, and KL. A σ of 30 was chosen from

Experiment 1 to generate the fixation maps used in this analysis. ANOVA analysis revealed no

statistically significant difference between HC and LG across all 6 metrics. Note: y–axes have

been cropped and scaled for viewing convenience; boxplot key (from bottom): minimum, 25th

percentile, median, 75th percentile, and maximum.

Eye Tracking. To conduct this analysis, we required separate fixation data from

each observer, which was lacking from the CAT2000 dataset’s aggregated fixations. To

that end, we collected eye-tracking fixation data FHC and FLG using the same Tobii

eye-tracker from 35 consenting observers viewing both sets of IHC and ILG images,

respectively. Standard five-point eye-tracker calibration was performed at the start of

each trial for each participant as standard practice. Similar to the previous experiment

in 6.1, images were presented for 3 seconds each, and participants were instructed to

freely view images, while seated 60 cm in front of the screen.

Evaluation Metrics. We chose a Gaussian blur σ of 30, which corresponds to 1

degree of visual angle [48], generated continuous fixation maps, MHC and MLG, and

calculated inter-observer congruency as a function of the same previous set of 6 metrics

within the FHC and FLG sets using the leave-one-out (one-vs-all) method described

in [46]. We also performed an ANOVA analysis across all co-variates.

Results. Figure 6 show that the LG fixation data does not show a higher disper-

sion between observers’ eye tracking data compared to HG fixations. Furthermore, the

ANOVA analysis found no significant difference between HC and LG inter-observer

consistency (p > 0.05). This result suggests that LG fixation data is as accurate as

expected for substituting HC fixation data [46]. Moreover, this result further confirms

saliency preservation in LG images in terms of fixation map inter-observer congruency.

6.3 HC vs. LG Saliency Detection Models

Model Architecture. Conventional convolutional neural networks (CNNs) used for im-

age classification consists of convolutional layers followed by fully connected layers,
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Fig. 7. Fully convolutional neural network architecture. The network takes an HC or LG image

as input, adopts convolution layers (blue) with 3 × 3 kernels and a stride of 1 to transform the

image into multidimensional feature representations, then applies a stack of deconvolution layers

(orange) for upsampling the extracted coarse features. Finally, a fully convolution layer with a

1× 1 kernel and sigmoid activation function outputs a pixel-wise probability (saliency) map the

same size as the input, where larger values correspond to higher saliency. Numbers represent

convolutional filters.

which takes an image of fixed spatial size as input and produces a single-dimensional

vector indicating the class-probability or category of the input image. For tasks re-

quiring spatial labels, like generating pixel-wise saliency heatmaps, we consider fully

convolutional neural networks (FCNs) with deconvolutional layers. This architecture

has been previously used for saliency detection in video with enormous success [56],

which is why we used a slightly modified version in our study (Figure 7). It is capable

of generating saliency maps the same size as the input image, which was ideal for our

experiment since we needed to compare the same model on datasets comprising images

of different resolutions and color spaces without needing to change model hyperparam-

eters. To test if HC and LG models have similar accuracy, we kept all other parameters

constant and only varied the image resolution and color space during compression. We

were only interested in a HC saliency detection model with comparable accuracy and

performance to the state-of-the-art so we could show that an LG model can achieve the

same performance faster and more efficiently. The model generates a saliency heatmap

from a given input, which can then be compared with the ground-truth density map, just

as in the above experiments.

Dataset. The 2000 labeled images from the same CAT2000 saliency benchmark

dataset used previously was split into training (1800 images) and validation (200 im-

ages) sets. These sets were duplicated and preprocessed to produce four new sets: high-

resolution 24-bit color training and validation sets, THC and VHC , created by down-

sampling the original resolution to 512 × 512 pixels (typical resolution used by many

state-of-the-art saliency detection models) using methods described in section 5.2, and

low-resolution (64 × 64 pixels) 8-bit grayscale sets, TLG and VLG, generated using

methods outlined above.

Model Training. The Python Keras API with the TensorFlow framework back-

end was used to implement and train HC and LG FCN models, MHC and MLG,
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on the respective 1800 training images end-to-end and from scratch (i.e. randomized

initial weights). Network weights and parameters were initialized by seeding a pseudo-

random number generator with the same seed for all training sessions and models to en-

sure everything else remained constant. The training images were propagated through

the FCN in batches of 8 and 64 for MHC and MLG, respectively. Due to the FCN’s

large parameter space, MHC batch size was restricted to 8 so that the 512 × 512 im-

ages could be accommodated by the available memory (12 GB) and resources. Weights

were learned using slow gradient decent (RMSProp) over 100 epochs totaling 180,000

iterations. The base learning rate was set to 0.05, and decreased by a factor of 10 af-

ter 2000 iterations. A mean-squared error loss function was implemented to compute

loss for gradient descent. An NVIDIA Tesla K80 GPU was used for training and in-

ference. Training time (i.e. the time taken to complete all iterations to completion) for

each model was recorded.

Evaluation Metrics. MHC and MLG were tested on their respective held-out

validation sets, VHC and VLG. The predicted labels from the models’ output were up-

sampled to match the original dimensions of the ground truth labels (1920×1080 pixels)

for a fair accuracy evaluation. Model accuracy was defined as a function of NSS, Judd-

AUC, SIM, and CC, described above, and computed using MATLAB code from the

MIT saliency benchmark GitHub repository [14]. Furthermore, detection time, defined

as the average time taken by the model to generate a predicted saliency map based

on each of the 200 test images, was also measured for MHC and MLG. Two-tailed

paired Students t-tests were performed between HC and LG result pairs to determine if

differences were statistically significant. Finally, to rule out centre bias [57] we applied

a 2D Gaussian located at the image centre and statistically compared (using paired

Students t-tests) its sAUC with our LG and HC models on 200 test images.

Results. Figures 8(a) and 8(b) show no statistically significant difference between

MHC and MLG accuracy across all evaluation metrics (p > 0.05). Furthermore, these

accuracies are comparable to state-of-the-art models. The centre-bias sAUC results (2D

Gaussian HC = 0.45 and LG = 0.44; our FCN HC = 0.58 and LG = 0.57; p-value

< 0.05) discard the hypothesis that our models only predict central saliency. Moreover,

an sAUC of 0.58 is highly comparable to state-of-the-art models [58]. Therefore, this

is further evidence suggesting saliency is well-preserved in LG images. Figures 8(c)

and 8(d) show a significant difference between MHC and MLG training and detection

times (p < 0.05). MLG trained more than 14× faster than its HC counterpart, MHC .

Furthermore, MLG is capable of generating a predicted saliency map almost 10× faster

than MHC (12 vs. 114 milliseconds). Considering these significant speedups come at

negligible accuracy cost, the implications of using LG images over HC are substantial;

thus, the motivation to use LG images in saliency detection should now be more obvious

and appealing.

7 Conclusion

In this study, we explained and demonstrated the biological and computational moti-

vation for using LG images in salience detection. We learned, through evolutionary

insights, that bottom-up visual salience detection is predominantly a peripheral vision
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Fig. 8. (a) HC and LG model accuracy as a function of Judd-AUC, CC, SIM, and (b) NSS. (c)

HC vs. LG training time. (d) HC vs. LG detection time. Bar plots represent means and error bars

represent standard deviations across the 200 test results per model.

mechanism. We also learned that peripheral vision information is primarily achromatic

and low-resolution, and can be approximated in the digital domain using a simple LG

transformation. Through eye-tracking experiments, we found high similarity between

LG and HC fixations. The results of this study also showed no significant difference in

inter-observer congruency between LG and HC groups. Additionally, we trained fully

convolutional neural networks for saliency detection using LG and HC data from a

benchmark dataset and found no significant difference between HC, LG and state-of-

the-art model accuracy. However, we found that the LG model required significantly

less (1/14) training time and is much faster (almost 10×) performing detection com-

pared to the same network trained and evaluated on HC images. Therefore, these re-

sults confirm our hypothesis that saliency information is preserved in LG images, and

we conclude by proposing LG images for fast and efficient saliency detection. Future

research will extend this work by investigating the use of LG images in other computer

vision tasks, such as object detection, pose tracking and background subtraction, since

we have reason to believe that many vision tasks could just as easily be done using

peripheral vision and hence, low-resolution grayscale information.
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