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Abstract. Video summarization is a challenging under-constrained prob-
lem because the underlying summary of a single video strongly depends
on users’ subjective understandings. Data-driven approaches, such as
deep neural networks, can deal with the ambiguity inherent in this task
to some extent, but it is extremely expensive to acquire the temporal
annotations of a large-scale video dataset. To leverage the plentiful web-
crawled videos to improve the performance of video summarization, we
present a generative modelling framework to learn the latent seman-
tic video representations to bridge the benchmark data and web data.
Specifically, our framework couples two important components: a vari-
ational autoencoder for learning the latent semantics from web videos,
and an encoder-attention-decoder for saliency estimation of raw video
and summary generation. A loss term to learn the semantic matching
between the generated summaries and web videos is presented, and the
overall framework is further formulated into a unified conditional vari-
ational encoder-decoder, called variational encoder-summarizer-decoder
(VESD). Experiments conducted on the challenging datasets CoSum and
TVSum demonstrate the superior performance of the proposed VESD to
existing state-of-the-art methods. The source code of this work can be
found at https://github.com/cssjcai/vesd.
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1 Introduction

Recently, it has been attracting much interest in extracting the representative
visual elements from a video for sharing on social media, which aims to effectively
express the semantics of the original lengthy video. However, this task, often
referred to as video summarization, is laborious, subjective and challenging since
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videos usually exhibit very complex semantic structures, including diverse scenes,
objects, actions and their complex interactions.

A noticeable trend appeared in recent years is to use the deep neural net-
works (DNNs) [10, 44] for video summarization since DNNs have made significant
progress in various video understanding tasks [12, 19, 2]. However, annotations
used in the video summarization task are in the form of frame-wise labels or im-
portance scores, collecting a large number of annotated videos demands tremen-
dous effort and cost. Consequently, the widely-used benchmark datasets [1, 31]
only cover dozens of well-annotated videos, which becomes a prominent stum-
bling block that hinders the further improvement of DNNs based summarization
techniques. Meanwhile, annotations for summarization task are subjective and
not consistent across different annotators, potentially leading to overfitting and
biased models. Therefore, the advanced studies toward taking advantage of aug-
mented data sources such as web images [13], GIFs [10] and texts [23], which
are complimentary for the summarization purpose.

To drive the techniques along with this direction, we consider an efficient
weakly-supervised setting of learning summarization models from a vast number
of web videos. Compared with other types of auxiliary source domain data for
video summarization, the temporal dynamics in these user-edited “templates”
offer rich information to locate the diverse but semantic-consistent visual con-
tents which can be used to alleviate the ambiguities in small-size summariza-
tion. These short-form videos are readily available from web repositories (e.g.,
YouTube) and can be easily collected using a set of topic labels as search key-
words. Additionally, these web videos have been edited by a large community of
users, the risk of building a biased summarization model is significantly reduced.
Several existing works [1, 21] have explored different strategies to exploit the se-
mantic relatedness between web videos and benchmark videos. So motivated,
we aim to effectively utilize the large collection of weakly-labelled web videos in
learning more accurate and informative video representations which: (i) preserve
essential information within the raw videos; (ii) contain discriminative informa-
tion regarding the semantic consistency with web videos. Therefore, the desired
deep generative models are necessitated to capture the underlying latent vari-
ables and make practical use of web data and benchmark data to learn abstract
and high-level representations.

To this end, we present a generative framework for summarizing videos in
this paper, which is illustrated in Fig. 1. The basic architecture consists of two
components: a variational autoencoder (VAE) [14] model for learning the latent
semantics from web videos; and a sequence encoder-decoder with attention mech-
anism for summarization. The role of VAE is to map the videos into a continuous
latent variable, via an inference network (encoder), and then use the generative
network (decoder) to reconstruct the input videos conditioned on samples from
the latent variable. For the summarization component, the association is tempo-
rally ambiguous since only a subset of fragments in the raw video is relevant to
its summary semantics. To filter out the irrelevant fragments and identify infor-
mative temporal regions for the better summary generation, we exploit the soft
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Fig. 1. An illustration of the proposed generative framework for video summarization.
A VAE model is pre-trained on web videos (purple dashed rectangle area); And the
summarization is implemented within an encoder-decoder paradigm by using both the
attention vector and the sampled latent variable from VAE (red dashed rectangle area).

attention mechanism where the attention vectors (i.e., context representations)
of raw videos are obtained by integrating the latent semantics trained from web
videos. Furthermore, we provide a weakly-supervised semantic matching loss
instead of reconstruction loss to learn the topic-associated summaries in our
generative framework. In this sense, we take advantage of potentially accurate
and flexible latent variable distribution from external data thus strengthen the
expressiveness of generated summary in the encoder-decoder based summariza-
tion model. To evaluate the effectiveness of the proposed method, we compre-
hensively conduct experiments using different training settings and demonstrate
that our method with web videos achieves significantly better performance than
competitive video summarization approaches.

2 Related Work

Video Summarization is a challenging task which has been explored for many
years [37, 18] and can be grouped into two broad categories: unsupervised and
supervised learning methods. Unsupervised summarization methods focus on
low-level visual cues to locate the important segments of a video. Various strate-
gies have been investigated, including clustering [7, 8], sparse optimizations [3,
22], and energy minimization [25, 4]. A majority of recent works mainly study
the summarization solutions based on the supervised learning from human anno-
tations. For instance, to make a large-margin structured prediction, submodular
functions are trained with human-annotated summaries [9]. Gygli et al. [8] pro-
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pose a linear regression model to estimate the interestingness score of shots.
Gong et al. [5] and Sharghi et al. [28] learn from user-created summaries for se-
lecting informative video subsets. Zhang et al. [43] show summary structures can
be transferred between videos that are semantically consistent. More recently,
DNNs based methods have been applied for video summarization with the help
of pairwise deep ranking model [42] or recurrent neural networks (RNNs) [44].
However, these approaches assume the availability of a large number of human-
created video-summary pairs or fine-grained temporal annotations, which are
in practice difficult and expensive to acquire. Alternatively, there have been at-
tempts to leverage information from other data sources such as web images, GIFs
and texts [13, 10, 23]. Chu et al. [1] propose to summarize shots that co-occur
among multiple videos of the same topic. Panda et al. [20] present an end-to-end
3D convolutional neural network (CNN) architecture to learn summarization
model with web videos. In this paper, we also consider to use the topic-specific
cues in web videos for better summarization, but adopt a generative summariza-
tion framework to exploit the complementary benefits in web videos.

Video Highlight Detection is highly related to video summarization and
many earlier approaches have primarily been focused on specific data scenarios
such as broadcast sport videos [27, 35]. Traditional methods usually adopt the
mid-level and high-level audio-visual features due to the well-defined structures.
For general highlight detection, Sun et al. [32] employ a latent SVM model detect
highlights by learning from pairs of raw and edited videos. The DNNs also have
achieved big performance improvement and shown great promise in highlight
detection [41]. However, most of these methods treat highlight detection as a
binary classification problem, while highlight labelling is usually ambiguous for
humans. This also imposes heavy burden for humans to collect a huge amount
of labelled data for training DNN based models.

Deep Generative Models are very powerful in learning complex data dis-
tribution and low-dimensional latent representations. Besides, the generative
modelling for video summarization might provide an effective way to bring scal-
ability and stability in training a large amount of web data. Two of the most
effective approaches are VAE [14] and generative adversarial network (GAN) [6].
VAE aims at maximizing the variational lower bound of the observation while
encouraging the variational posterior distribution of the latent variables to be
close to the prior distribution. A GAN is composed of a generative model and a
discriminative model and trained in a min-max game framework. Both VAE and
GAN have already shown promising results in image/frame generation tasks
[26, 17, 38]. To embrace the temporal structures into generative modelling, we
propose a new variational sequence-to-sequence encoder-decoder framework for
video summarization by capturing both the video-level topics and web semantic
prior. The attention mechanism embedded in our framework can be naturally
used as key shots selection for summarization. Most related to our generative
summarization is the work of Mahasseni et al. [16], who present an unsupervised
summarization in the framework of GAN. However, the attention mechanism in
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their approach depends solely on the raw video itself thus has the limitation in
delivering diverse contents in video-summary reconstruction.

3 The Proposed Framework

As an intermediate step to leverage abundant user-edited videos on the Web
to assist the training of our generative video summarization framework, in this
section, we first introduce the basic building blocks of the proposed framework,
called variational encoder-summarizer-decoder (VESD). The VESD consists of
three components: (i) an encoder RNN for raw video; (ii) an attention-based
summarizer for raw video; (iii) a decoder RNN for summary video.

Following the video summarization pipelines in previous methods [24, 44], we
first perform temporal segmentation and shot-level feature extraction for raw
videos using CNNs. Each video X is then treated as a sequential set of multi-
ple non-uniform shots, where xt is the feature vector of the t-th shot in video
representationX. Most supervised summarization approaches aim to predict la-
bels/scores which indicate whether the shots should be included in the summary,
however, suffering from the drawbacks of selection of redundant visual contents.
For this reason, we formulate video summarization as video generation task
which allows the summary representation Y does not necessarily be restricted
to a subset of X. In this manner, our method centres on the semantic essence
of a video and can exhibit the high tolerance for summaries with visual differ-
ences. Following the encoder-decoder paradigm [33], our summarization frame-
work is composed of two parts: the encoder-summarizer is an inference network
qφ(a|X, z) that takes both the video representationX and the latent variable z
(sampled from the VAE module pre-trained on web videos) as inputs. Moreover,
the encoder-summarizer is supposed to generate the video content representa-
tion a that captures all the information about Y . The summarizer-decoder is
a generative network pθ(Y |a, z) that outputs the summary representation Y
based on the attention vector a and the latent representation z.

3.1 Encoder-Summarizer

To date, modelling sequence data with RNNs has been proven successful in
video summarization [44]. Therefore, for the encoder-summarizer component, we
employ a pointer RNN, e.g., a bidirectional Long Short-Term Memory (LSTM),
as an encoder that processes the raw videos, and a summarizer aims to select the
shots of most probably containing salient information. The summarizer is exactly
the attention-based model that generates the video context representation by
attending to the encoded video features.

In time step t, we denote xt as the feature vector for the t-th shot and he
t as

the state output of the encoder. It is known that he
t is obtained by concatenating

the hidden states from each direction:

he
t = [RNN−−→enc(

−−→
ht−1,xt); RNN←−−enc(

←−−
ht+1,xt)]. (1)
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The attention mechanism is proposed to compute an attention vector a of input
sequence by summing the sequence information {he

t , t = 1, . . . , |X|} with the
location variable α as follows:

a =

|X|∑

t=1

αth
e
t , (2)

where αt denotes the t-th value of α and indicates whether the t-th shot is
included in summary or not. As mentioned in [40], when using the generative
modelling on the log-likelihood of the conditional distribution p(Y |X), one ap-
proach is to sample attention vector a by assigning the Bernoulli distribution
to α. However, the resultant Monte Carlo gradient estimator of the variational
lower-bound objective requires complicated variance reduction techniques and
may lead to unstable training. Instead, we adopt a deterministic approximation
to obtain a. That is, we produce an attentive probability distribution based on
X and z, which is defined as αt := p(αt|h

e
t , z) = softmax(ϕt([h

e
t ; z])), where ϕ

is a parameterized potential typically based on a neural network, e.g., multilayer
perceptron (MLP). Accordingly, the attention vector in Eqn. (2) turns to:

a =

N∑

t=1

p(αt|h
e
t , z)h

e
t , (3)

which is fed to the decoder RNN for summary generation. The attention mech-
anism extracts an attention vector a by iteratively attending to the raw video
features based on the latent variable z learned from web data. In doing so the
model is able to adapt to the ambiguity inherent in summaries and obtain salient
information of raw video through attention. Intuitively, the attention scores αts
are used to perform shot selection for summarization.

3.2 Summarizer-Decoder

We specify the summary generation process as pθ(Y |a, z) which is the condi-
tional likelihood of the summary given the attention vector a and the latent
variable z. Different with the standard Gaussian prior distribution adopted in
VAE, p(z) in our framework is pre-trained on web videos to regularize the latent
semantic representations of summaries. Therefore, the summaries generated via
pθ(Y |a, z) are likely to possess diverse contents. In this manner, pθ(Y |a, z) is
then reconstructed via a RNN decoder at each time step t: pθ(yt|a, [µz,σ

2
z]),

where µz and σz are nonlinear functions of the latent variables specified by two
learnable neural networks (detailed in Section 4).

3.3 Variational Inference

Given the proposed VESD model, the network parameters {φ,θ} need to be
updated during inference. We marginalize over the latent variables a and z by
maximizing the following variational lower-bound L(φ,θ)

L(φ,θ) = Eqφ(a,z|X,Y )[log pθ(Y |a, z)−KL(qφ(a, z|X,Y )|p(a, z))], (4)
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where KL(·) is the Kullback-Leibler divergence. We assume the joint distribution
of the latent variables a and z has a factorized form, i.e., qφ(a, z|X,Y ) =
qφ(z)(z|X,Y )qφ(a)(a|X,Y ), and notice that p(a) = qφ(a)(a|X,Y ) is defined
with a deterministic manner in Section 3.1. Therefore the variational objective
in Eqn. (4) can be derived as:

L(φ,θ) = Eq
φ(z) (z|X,Y )[Eq

φ(a) (a|X,Y ) log pθ(Y |a, z)

−KL(qφ(a)(a|X,Y )||p(a))] + KL(qφ(z)(z|X,Y )||p(z))

= Eqφ(z|X,Y )[log pθ(Y |a, z)] + KL(qφ(z|X,Y )||p(z)). (5)

The above variational lower-bound offers a new perspective for exploiting the
reciprocal nature of raw video and its summary. Maximizing Eqn. (5) strikes a
balance between minimizing generation error and minimizing the KL divergence
between the approximated posterior qφ(z)(z|X,Y ) and the prior p(z).

4 Weakly-supervised VESD

In practice, as only a few video-summary pairs are available, the latent variable
z cannot characterize the inherent semantic in video and summary accurately.
Motivated by the VAE/GANmodel [15], we explore a weakly-supervised learning
framework and endow our VESD the ability to make use of rich web videos for
the latent semantic inference. The VAE/GAN model extends VAE with the dis-
criminator network in GAN, which provides a method that constructs the latent
space from inference network of data rather than random noises and implicitly
learns a rich similarity metric for data. The similar idea has also been investi-
gated in [16] for unsupervised video summarization. Recall that the discriminator
in GAN tries to distinguish the generated examples from real examples; Follow-
ing the same spirit, we apply the discriminator in the proposed VESD which
naturally results in minimizing the following adversarial loss function:

L(φ,θ,ψ) = −EŶ [logDψ(Ŷ )]− EX,z[log(1−Dψ(Y ))], (6)

where Ŷ refers to the representation of web video. Unfortunately, the above loss
function suffers from the unstable training in standard GAN models and cannot
be directly extended into supervised scenario. To address these problems, we
propose to employ a semantic feature matching loss for the weakly-supervised
setting of VESD framework. The objective requires the representation of gen-
erated summary to match the representation of web videos under a similarity
function. For the prediction of the semantic similarity, we replace pθ(Y |a, z)
with the following sigmoid function:

pθ(c|a,h
d(Ŷ )) = σ(aTMhd(Ŷ )), (7)

where hd(Ŷ ) is the last output state of Ŷ in the decoder RNN andM is the sig-
moid parameter. We randomly pick Ŷ in web videos and c is the pair relatedness
label, i.e., c = 1 if Y and Ŷ are semantically matched. We can also generalize
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the above matching loss to multi-label case by replacing c with one-hot vector c
whose nonzero position corresponds the matched label. Therefore, the objective
(5) can be rewritten as:

L(φ,θ,ψ) = Eqφ(z)[log pθ(c|a,h
d(Ŷ ))] + KL(qφ(z)||p(z|Ŷ )). (8)

It is found that the above variational objective shares the similarity with con-
ditional VAE (CVAE) [30] which is able to produce diverse outputs for a single
input. For example, Walker et al. [39] use a fully convolutional CVAE for diverse
motion prediction from a static image. Zhou and Berg [45] generate diverse time-
lapse videos by incorporating conditional, twostack and recurrent architecture
modifications to standard generative models. Therefore, our weakly-supervised
VESD naturally embeds the diversity in video summary generation.

4.1 Learnable Prior and Posterior

In contrast to the standard VAE prior that assumes the latent variable z to be
drawn from latent Gaussian (e.g., p(z) = N (0, I)), we impose the prior distri-
bution learned from web videos which infers the topic-specific semantics more
accurately. Thus we impose z to be drawn from the Gaussian with p(z|Ŷ ) =

N (z|µ(Ŷ ),σ2(Ŷ )I) whose mean and variance are defined as:

µ(Ŷ ) = fµ(Ŷ ), logσ2(Ŷ ) = fσ(Ŷ ), (9)

where fµ(·) and fσ(·) denote any type of neural networks that are suitable
for the observed data. We adopt two-layer MLPs with ReLU activation in our
implementation.

Likewise, we model the posterior of qφ(z|·) := qφ(z|X, Ŷ , c) with the Gaus-

sian distributionN (z|µ(X, Ŷ , c),σ2(X, Ŷ , c) whose mean and variance are also
characterized by two-layer MLPs with ReLU activation:

µ = fµ([a;h
d(Ŷ ); c]), logσ2 = fσ([a;h

d(Ŷ ); c]). (10)

4.2 Mixed Training Objective Function

One potential issue of purely weakly-supervised VESD training objective (8) is
that the semantic matching loss usually results in summaries focusing on very
few shots in raw video. To ensure the diversity and fidelity of the generated
summaries, we can also make use of the importance scores on partially finely-
annotated benchmark datasets to consistently improves performance. For those
detailed annotations in benchmark datasets, we adopt the same keyframe regu-
larizer in [16] to measure the cross-entropy loss between the normalized ground-
truth importance scores αgt

X and the output attention scores αX as below:

Lscore = cross-entropy(αgt
X ,αX). (11)
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Fig. 2. The variational formulation of our weakly-supervised VESD framework.

Accordingly, we train the regularized VESD using the following objective func-
tion to utilize different levels of annotations:

Lmixed = L(φ,θ,ψ,ω) + λLscore. (12)

The overall objective can be trained using back-propagation efficiently and is
illustrated in Fig. 2. After training, we calculate the salience score α for each
new video by forward passing the summarization model in VESD.

5 Experimental Results

Datasets and Evaluation.We test our VESD framework on two publicly avail-
able video summarization benchmark datasets CoSum [1] and TVSum [31]. The
CoSum [1] dataset consists of 51 videos covering 10 topics including Base Jump-
ing (BJ), Bike Polo (BP), Eiffel Tower (ET), Excavators River Cross (ERC),
Kids Playing in leaves (KP), MLB, NFL, Notre Dame Cathedral (NDC), Statue
of Liberty (SL) and SurFing (SF). The TVSum [31] dataset contains 50 videos or-
ganized into 10 topics from the TRECVid Multimedia Event Detection task [29],
including changing Vehicle Tire (VT), getting Vehicle Unstuck (VU), Groom-
ing an Animal (GA), Making Sandwich (MS), ParKour (PK), PaRade (PR),
Flash Mob gathering (FM), BeeKeeping (BK), attempting Bike Tricks (BT),
and Dog Show (DS). Following the literature [9, 44], we randomly choose 80% of
the videos for training and use the remaining 20% for testing on both datasets.
As recommended by [1, 21, 20], we evaluate the quality of a generated summary
by comparing it to multiple user-annotated summaries provided in benchmarks.
Specifically, we compute the pairwise average precision (AP) for a proposed sum-
mary and all its corresponding human-annotated summaries, and then report the
mean value. Furthermore, we average over the number of videos to achieve the
overall performance on a dataset. For the CoSum dataset, we follow [21, 20] and
compare each generated summary with three human-created summaries. For the
TVSum dataset, we first average the frame-level importance scores to compute
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the shot-level scores, and then select the top 50% shots for each video as the
human-created summary. Finally, each generated summary is compared with
twenty human-created summaries. The top-5 and top-15 mAP performances on
both datasets are presented in evaluation.

Web Video Collection. This section describes the details of web video collec-
tion for our approach. We treat the topic labels in both datasets as the query
keywords and retrieve videos from YouTube for all the twenty topic categories.
We limit the videos by time duration (less than 4 minutes) and rank by relevance
to constructing a set of weakly-annotated videos. However, these downloaded
videos are still very lengthy and noisy in general since they contain a proportion
of frames that are irrelevant to search keywords. Therefore, we introduce a sim-
ple but efficient strategy to filter out the noisy parts of these web videos: (1) we
first adopt the existing temporal segmentation technique KTS [24] to segment
both the benchmark videos and web videos into non-overlapping shots, and uti-
lize CNNs to extract feature within each shot; (2) the corresponding features in
benchmark videos are then used to train a MLP with their topic labels (the shots
do not belong to any topic label are set with background label) and perform pre-
diction for the shots in web videos; (3) we further truncate web videos based on
the relevant shots whose topic-related probability is larger than a threshold. In
this way, we observe that the trimmed videos are sufficiently clean and informa-
tive for learning the latent semantics in our VAE module.

Architecture and Implementation Details. For the fair comparison with
state-of-the-art methods [44, 16], we choose to use the output of pool5 layer of
the GoogLeNet [34] for the frame-level feature. The shot-level feature is then ob-
tained by averaging all the frame features within a shot. We first use the features
of segmented shots on web videos to pre-train a VAE module whose dimension
of the latent variable is set to 256. To build encoder-summarizer-decoder, we use
a two-layer bidirectional LSTM with 1024 hidden units, a two-layer MLP with
[256, 256] hidden units and a two-layer LSTM with 1024 hidden units for the
encoder RNN, attention MLP and decoder RNNs, respectively. For the parame-
ter initialization, we train our framework from scratch using stochastic gradient
descent with a minibatch size of 20, a momentum of 0.9, and a weight decay
of 0.005. The learning rate is initialized to 0.01 and is reduced to its 1/10 after
every 20 epochs (100 epochs in total). The trade-off parameter λ is set to 0.2 in
the mixed training objective.

5.1 Quantitative Results

Exploration Study. To better understand the impact of using web videos and
different types of annotations in our method, we analyzed the performances
under the following six training settings: (1) benchmark datasets with weak su-
pervision (topic labels); (2) benchmark datasets with weak supervision and extra
30 downloaded videos per topic; (3) benchmark datasets with weak supervision
and extra 60 downloaded videos per topic; (4) benchmark datasets with strong
supervision (topic labels and importance scores); (5) benchmark datasets with
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Table 1. Exploration study on training settings. Numbers show top-5 mAP scores.

Training Settings CoSum TVSum

benchmark with weak supervision 0.616 0.352

benchmark with weak supervision + 30 web videos/topic 0.684 0.407

benchmark with weak supervision + 60 web videos/topic 0.701 0.423

benchmark with strong supervision 0.712 0.437

benchmark with strong supervision + 30 web videos/topic 0.755 0.481

benchmark with strong supervision + 60 web videos/topic 0.764 0.498

Table 2. Performance comparison using different types of features on CoSum dataset.
Numbers show top-5 mAP scores averaged over all the videos of the same topic.

Feature BJ BP ET ERC KP MLB NFL NDC SL SF Top-5

GoogLeNet 0.715 0.746 0.813 0.756 0.772 0.727 0.737 0.782 0.794 0.709 0.755

ResNet101 0.727 0.755 0.827 0.766 0.783 0.741 0.752 0.790 0.807 0.722 0.767

C3D 0.729 0.754 0.831 0.761 0.779 0.740 0.747 0.785 0.805 0.718 0.765

strong supervision and extra 30 downloaded videos per topic; and (6) benchmark
datasets with strong supervision and extra 60 downloaded videos per topic. We
have the following key observations from Table 1: (1) Training on the benchmark
data with only weak topic labels in our VESD framework performs much worse
than either that of training using extra web videos or that of training using
detailed importance scores, which demonstrates our generative summarization
model demands a larger amount of annotated data to perform well. (2) We notice
that the more web videos give better results, which clearly demonstrates the ben-
efits of using web videos and proves the scalability of our generative framework.
(3) This big improvements with strong supervision illustrate the positive impact
of incorporating available importance scores for mixed training of our VESD.
That is not surprising since the attention scores should be imposed to focus on
different fragments of raw videos in order to be consistent with ground-truths,
resulting in the summarizer with the diverse property which is an important
metric in generating good summaries. We use the training setting (5) in the
following experimental comparisons.

Effect of Deep Feature. We also investigate the effect of using different types
of deep features as shot representation in VESD framework, including 2D deep
features extracted from GoogLeNet [34] and ResNet101 [11], and 3D deep fea-
tures extracted from C3D [36]. In Table 2, we have following observations: (1)
ResNet produces better results than GoogLeNet, with a top-5 mAP score im-
provement of 0.012 on the CoSum dataset, which indicates more powerful visual
features still lead improvement for our method. We also compare 2D GoogLeNet
features with C3D features. Results show that the C3D features achieve better
performance over GoogLeNet features (0.765 vs 0.755) and comparable perfor-
mance with ResNet101 features. We believe this is because C3D features exploit
the temporal information of videos thus are also suitable for summarization.
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Table 3. Experimental results on CoSum dataset. Numbers show top-5/15 mAP scores
averaged over all the videos of the same topic.

Topic
Unsupervised Methods Supervised Methods

VESD
SMRS Quasi MBF CVS SG KVS DPP sLstm SM DSN

BJ 0.504 0.561 0.631 0.658 0.698 0.662 0.672 0.683 0.692 0.685 0.715

BP 0.492 0.625 0.592 0.675 0.713 0.674 0.682 0.701 0.722 0.714 0.746

ET 0.556 0.575 0.618 0.722 0.759 0.731 0.744 0.749 0.789 0.783 0.813

ERC 0.525 0.563 0.575 0.693 0.729 0.685 0.694 0.717 0.728 0.721 0.756

KP 0.521 0.557 0.594 0.707 0.729 0.701 0.705 0.714 0.745 0.742 0.772

MLB 0.543 0.563 0.624 0.679 0.721 0.668 0.677 0.714 0.693 0.687 0.727

NFL 0.558 0.587 0.603 0.674 0.693 0.671 0.681 0.681 0.727 0.724 0.737

NDC 0.496 0.617 0.595 0.702 0.738 0.698 0.704 0.722 0.759 0.751 0.782

SL 0.525 0.551 0.602 0.715 0.743 0.713 0.722 0.721 0.766 0.763 0.794

SF 0.533 0.562 0.594 0.647 0.681 0.642 0.648 0.653 0.683 0.674 0.709

Top-5 0.525 0.576 0.602 0.687 0.720 0.684 0.692 0.705 0.735 0.721 0.755

Top-15 0.547 0.591 0.617 0.699 0.731 0.702 0.711 0.717 0.746 0.736 0.764

Table 4. Experimental results on TVSum dataset. Numbers show top-5/15 mAP scores
averaged over all the videos of the same topic.

Topic
Unsupervised Methods Supervised Methods

VESD
SMRS Quasi MBF CVS SG KVS DPP sLstm SM DSN

VT 0.272 0.336 0.295 0.328 0.423 0.353 0.399 0.411 0.415 0.373 0.447

VU 0.324 0.369 0.357 0.413 0.472 0.441 0.453 0.462 0.467 0.441 0.493

GA 0.331 0.342 0.325 0.379 0.475 0.402 0.457 0.463 0.469 0.428 0.496

MS 0.362 0.375 0.412 0.398 0.489 0.417 0.462 0.477 0.478 0.436 0.503

PK 0.289 0.324 0.318 0.354 0.456 0.382 0.437 0.448 0.445 0.411 0.478

PR 0.276 0.301 0.334 0.381 0.473 0.403 0.446 0.461 0.458 0.417 0.485

FM 0.302 0.318 0.365 0.365 0.464 0.397 0.442 0.452 0.451 0.412 0.487

BK 0.297 0.295 0.313 0.326 0.417 0.342 0.395 0.406 0.407 0.368 0.441

BT 0.314 0.327 0.365 0.402 0.483 0.419 0.464 0.471 0.473 0.435 0.492

DS 0.295 0.309 0.357 0.378 0.466 0.394 0.449 0.455 0.453 0.416 0.488

Top-5 0.306 0.329 0.345 0.372 0.462 0.398 0.447 0.451 0.461 0.424 0.481

Top-15 0.328 0.347 0.361 0.385 0.475 0.412 0.462 0.464 0.483 0.438 0.503

Comparison with Unsupervised Methods. We first compare VESD with
several unsupervised methods including SMRS [3], Quasi [13], MBF [1], CVS [21]
and SG [16]. Table. 3 shows the mean AP on both top 5 and 15 shots included
in the summaries for the CoSum dataset, whereas Table 4 shows the results
on TVSum dataset. We can observe that: (1) Our weakly supervised approach
obtains the highest overall mAP and outperforms traditional non-DNN based
methods SMRS, Quasi, MBF and CVS by large margins. (2) The most competing
DNN based method, SG [16] gives top-5 mAP that is 3.5% and 1.9% less than
ours on the CoSum and TVSum dataset, respectively. Note that with web videos
only is better than training with multiple handcrafted regularizations proposed
in SG. This confirms the effectiveness of incorporating a large number of web



Variational Encoder-Summarizer-Decoder 13

videos in our framework and learning the topic-specific semantics using a weakly-
supervised matching loss function. (3) Since the CoSum dataset contains videos
that have visual concepts shared with other videos from different topics, our
approach using generative modelling naturally yields better results than that on
the TVSum dataset. (4) It’s worth noticing that TVSum is a quite challenging
summarization dataset because topics on this dataset are very ambiguous and
difficult to understand well with very few videos. By accessing the similar web
videos to eliminate ambiguity for a specific topic, our approach works much
better than all the unsupervised methods by achieving a top-5 mAP of 48.1%,
showing that the accurate and user-interested video contents can be directly
learned from more diverse data rather than complex summarization criteria.

Comparison with Supervised Methods. We then conduct comparison with
some supervised alternatives including KVS [24], DPP [5], sLstm [44], SM [9]
and DSN [20] (weakly-supervised), we have the following key observations from
Table. 3 and Table. 4: (1) VESD outperforms KVS on both datasets by a big
margin (maximum improvement of 7.1% in top-5 mAP on CoSum), showing the
advantage of our generative modelling and more powerful representation learning
with web videos. (2) On the Cosum dataset, VESD outperforms SM [9] and DSN
[20] by a margin of 2.0% and 3.4% in top-5 mAP, respectively. The results suggest
that our method is still better than the fully-supervised methods and the weakly-
supervised method. (3) On the TVSum dataset, a similar performance gain of
2.0% can be achieved compared with all other supervised methods.

5.2 Qualitative results

To get some intuition about the different training settings for VESD and their
effects on the temporal selection pattern, we visualize some selected frames on an
example video in Fig. 3. The cyan background shows the frame-level importance
scores. The coloured regions are the selected subset of frames using the specific
training setting. The visualized keyframes for different setting supports the re-
sults presented in Table 1. We notice that all four settings cover the temporal
regions with the high frame-level score. By leveraging both the web videos and
importance scores in datasets, VESD framework will shift towards the highly
topic-specific temporal regions.

6 Conclusion

One key problem in video summarization is how to model the latent semantic
representation, which has not been adequately resolved under the ”single video
understanding” framework in prior works. To address this issue, we introduced
a generative summarization framework called VESD to leverage the web videos
for better latent semantic modelling and to reduce the ambiguity of video sum-
marization in a principled way. We incorporated flexible web prior distribution
into a variational framework and presented a simple encoder-decoder with atten-
tion for summarization. The potentials of our VESD framework for large-scale
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(a) Sample frames from video 15 [31]

(b) Training on benchmark with weak supervision

(c) Training on benchmark with weak supervision and extra web videos

(d) Training on benchmark with strong supervision

(e) Training on benchmark with strong supervision and extra web videos

Fig. 3. Qualitative comparison of video summaries using different training settings,
along with the ground-truth importance scores (cyan background). In the last subfig-
ure, we can easily see that weakly-supervised VESD with web videos and available im-
portance scores produces more reliable summaries than training on benchmark videos
with only weak labels. (Best viewed in colors)

video summarization were validated, and extensive experiments on benchmarks
showed that VESD outperforms state-of-the-art video summarization methods
significantly.
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