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Abstract. We present a novel regularization approach to train neural
networks that enjoys better generalization and test error than standard
stochastic gradient descent. Our approach is based on the principles of
cross-validation, where a validation set is used to limit the model over-
fitting. We formulate such principles as a bilevel optimization problem.
This formulation allows us to define the optimization of a cost on the
validation set subject to another optimization on the training set. The
overfitting is controlled by introducing weights on each mini-batch in
the training set and by choosing their values so that they minimize the
error on the validation set. In practice, these weights define mini-batch
learning rates in a gradient descent update equation that favor gradients
with better generalization capabilities. Because of its simplicity, this ap-
proach can be integrated with other regularization methods and training
schemes. We evaluate extensively our proposed algorithm on several neu-
ral network architectures and datasets, and find that it consistently im-
proves the generalization of the model, especially when labels are noisy.

Keywords: Bilevel Optimization · Regularization · Generalization · Neu-
ral Networks · Noisy Labels

1 Introduction

A core objective in machine learning is to build models that generalize well, i.e.,
that have the ability to perform well on new unseen data. A common strategy to
achieve generalization is to employ regularization, which is a way to incorporate
additional information about the space of suitable models. This, in principle,
prevents the estimated model from overfitting the training data. However, recent
work [36] shows that current regularization methods applied to neural networks
do not work according to conventional wisdom. In fact, it has been shown that
neural networks can learn to map data samples to arbitrary labels despite using
regularization techniques such as weight decay, dropout, and data augmentation.
While the lone model architecture of a neural network seems to have an implicit
regularizing effect [33], experiments show that it can overfit on any dataset, given
enough training time. This poses a limitation to the performance of any trained
neural network, especially when labels are partially noisy.

In this paper we introduce a novel learning framework that reduces overfit-
ting by formulating training as a bilevel optimization problem [5, 6]. Although
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Fig. 1. The training procedure of our bilevel formulation. At each iteration we sample
mini-batches from the data set, which we split into a validation and a training set.
The validation is used to define the weights of the loss gradient used in the stochastic
gradient descent to update the model parameters. If the gradients of the training set
and those of the validation set agree, then the weights are large and positive. Vice
versa, if they disagree the weights might be zero or negative.

the mathematical formulation of bilevel optimization is often involved, our fi-
nal algorithm is a quite straightforward modification of the current training
methods. Bilevel optimization differs from the conventional one in that one of
the constraints is also an optimization problem. The main objective function
is called the upper-level optimization task and the optimization problem in the
set of constraints is called the lower-level optimization task. In our formulation,
the lower-level problem is a model parameter optimization on samples from the
training set, while the upper-level problem works as a performance evaluation
on samples from a separate validation set. The optimal model is thus the one
that is trained on one dataset, but performs well on a different one, a property
that closely follows the definition of generalization.

In the optimization procedure we introduce a scalar weight for each sample
mini-batch. The purpose of these variables is to find the linear combination of
a subset of mini-batches from the training set that can best approximate the
validation set error. They can also be seen as a way to: 1) discard noisy samples
and 2) adjust the parameter optimization path. Finally, these weights can also
be interpreted as hyper-parameters. Hence, bilevel optimization can be seen as
an integrated way to continuously optimize for both the model parameters and
the hyper-parameters as done in cross-validation.

In its general form, bilevel optimization is known to present computational
challenges. To address these challenges, we propose to approximate the loss ob-
jectives at every iteration with quadratic functions. These approximations result
in closed-form solutions that resemble the well-known stochastic gradient de-
scent (SGD) update rules. Essentially, our bilevel optimization computes loss
gradients on the training set and then prescribes adjustments to the learning
rates of the SGD iteration so that the updated parameters perform well on the
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validation set. As we will show later, these adjustments depend on how well the
gradients computed on the training set “agree” with the gradients computed on
the validation set (see Fig. 1).

Our method can be easily integrated in current training procedures for neural
networks and our experiments show that it yields models with better general-
ization on several network architectures and datasets.

2 Prior Work

We give an overview of prior work relating to three main aspects of the paper:
1) Generalization properties of deep networks and how learning algorithms af-
fect them, 2) memorization of corrupt labels as a special case of overfitting and
3) bilevel optimization in the context of deep learning. Parts of the techniques
in our approach can be found also in other work, but with different uses and
purposes. Therefore, we do not discuss these cases. For instance, Lopez and Ran-
zato [20] also use the dot-product between training gradients, but apply it to
the context of continual learning with multiple tasks.
Understanding Generalization in Deep Learning. Although convolutional
neural networks trained using stochastic gradient descent generalize well in prac-
tice, Zhang et al. [36] experimentally demonstrate that these models are able to
fit random labelings of the training data. This is true even when using com-
mon explicit regularization techniques. Several recent works provide possible
explanations for the apparent paradox of good generalization despite the high
capacity of the models. The work of Kawaguchi et al. [16] provides an explana-
tion based on model-selection (e.g., network architecture) via cross-validation.
Their theoretical analysis also results in new generalization bounds and regu-
larization strategies. Zhang et al. [37] attribute the generalization properties of
convolutional neural networks (CNNs) to characteristics of the stochastic gradi-
ent descent optimizers. Their results show that SGD favors flat minima, which
in turn correspond to large (geometrical) margin classifiers. Smith and Le [29]
provide an explanation by evaluating the Bayesian evidence in favor of each
model, which penalizes sharp minima. In contrast, we argue that current train-
ing schemes for neural networks can avoid overfitting altogether by exploiting
cross-validation during the optimization.
Combating Memorization of Noisy Labels. The memorization of corrupted
labels is a form of overfitting that is of practical importance since labels are of-
ten unreliable. Several works have therefore addressed the problem of learning
with noisy labels. Rolnick et al. [28] show that neural networks can be robust to
even high levels of noise provided good hyper-parameter choices. They specifi-
cally demonstrate that larger batch sizes are beneficial in the case of label noise.
Patriani et al. [25] address label noise with a loss correction approach. Nataran-
jan et al. [22] provide a theoretical study of the binary classification problem
under the presence of label noise and provide approaches to modify the loss
accordingly. Jindal and Chen [15] use dropout and augment networks with a
softmax layer that models the label noise and is trained jointly with the net-
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work. Sukhabar et al. [31] introduce an extra noise layer into the network that
adapts the network output to match the noisy label distribution. Reed et al. [27]
tackle the problem by augmenting the classification objective with a notion of
consistency given similar percepts. Besides approaches that explicitly model the
noise distribution, several regularization techniques have proven effective in this
scenario. The recent work of Jiang et al. [14] introduce a regularization technique
to counter label noise. They train a network (MentorNet) to assign weights to
each training example. Another recent regularization technique was introduced
by Zhang et al. [38]. Their method is a form of data augmentation where two
training examples are mixed (both images and labels) in a convex combination.
Azadi et al. [2] propose a regularization technique based on overlapping group
norms. Their regularizer demonstrates good performance, but relies on features
trained on correctly labeled data. Our method differs from the above, because we
avoid memorization by encouraging only model parameter updates that reduce
errors on shared sample patterns, rather than example-specific details.
Bilevel Optimization. Bilevel optimization approaches have been proposed by
various authors to solve for hyper-parameters with respect to the performance
on a validation set [4, 3]. Domke [8] introduced a truncated bilevel optimization
method where the lower-level is approximated by running an iterative algorithm
for a given number of steps and subsequently computing the gradient on the val-
idation loss via algorithmic differentiation. Our method uses the limiting case of
using a single step in the lower-level problem. Ochs et al. [24] introduce a similar
technique to the case of non-smooth lower-level problems by differentiating the
iterations of a primal-dual algorithm. Maclaurin et al. [21] address the issue of
expensive caching required for this kind of optimization by deriving an algorithm
to exactly reverse SGD while storing only a minimal amount of information. Ku-
nish et al. [19] apply bilevel optimization to learn parameters of a variational
image denoising model. We do not use bilevel optimization to solve for existing
hyper-parameters, but rather introduce and solve for new hyper-parameters by
assigning weights to stochastic gradient samples at each iteration.
Meta Learning. Our proposed algorithm has some similarity to the meta-
learning literature [10, 23, 34]. Most notably, the MAML algorithm by Finn et

al. [10] also incorporates gradient information of two datasets, but does so in
different ways: Their method uses second order derivatives, whereas we only
use first-order derivatives. In general, the purpose and data of our approach
is quite different to the meta-learning setting: We have only one task while in
meta-learning there are multiple tasks.

3 Learning to Generalize

We are given m sample pairs (x(k), y(k))k=1,...,m, where x(k) ∈ X represents
input data and y(k) ∈ Y represents targets/labels. We denote with φθ : X 7→ Y a
model that depends on parameters θ ∈ R

d for some positive integer d. In all our
experiments this model is a neural network and θ collects all its parameters. To
measure the performance of the model, we introduce a loss function L : Y×Y 7→
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R per sample. Since we evaluate the loss L on b mini-batches Bi ⊂ {1, . . . ,m},
i = 1, . . . , b, where Bi ∩ Bj = Ø for i 6= j, we redefine the loss as

ℓi(θ) ,
∑

k∈Bi
L
(

φθ

(

x(k)
)

, y(k)
)

. (1)

At every iteration, we collect a subset of the mini-batches U t ⊂ {1, . . . , b}, which
we partition into two separate sets: one for training T t ⊂ U t and one for valida-
tion Vt ⊂ U t, where T t ∩ Vt = Ø and T t ∪ Vt = U t. Thus, mini-batches Bi in
the training set have i ∈ T t and those in the validation set have i ∈ Vt. In all
our experiments, the validation set Vt is always a singleton (one mini-batch).

3.1 Bilevel Learning

At the t-th iteration, Stochastic Gradient Descent (SGD) uses only one mini-
batch to update the parameters via

θt+1 = θt − ǫ̂∇ℓi(θ
t), (2)

where ǫ̂ > 0 is the SGD learning rate and i ∈ U t. Instead, we consider the subset
T t ⊂ U t of mini-batches and look for the linear combination of the losses that
best approximates the validation error. We introduce an additional coefficient
!i per mini-batch in T t, which we estimate during training. Our task is then to
find parameters θ of our model by using exclusively mini-batches in the training
set T t ⊂ U t, and to identify coefficients (hyper-parameters) !i so that the model
performs well on the validation set Vt ⊂ U t. We thus propose to optimize

θ̂, ω̂ = argminθ,ω
∑

j∈Vt ℓj(θ(ω)) + µ
2 |ω|

2

subj. to θ(ω) = argminθ̄
∑

i∈T t !iℓi(θ̄)
|ω|1 = 1,

(3)

where ω is the vector collecting all !i, i ∈ T
t and µ > 0 is a parameter to

regulate the distribution of the weights (large values would encourage a uniform
distribution across mini-batches and small values would allow more sparsity).
Notice that the solution of the lower-level problem does not change if we multiply
all the coefficients !i by the same strictly positive constant. Therefore, to fix the
magnitude of ω we introduced the L1 normalization constraint |ω|1 = 1.

A classical method to solve the above bilevel problem is to solve a linear
system in the second order derivatives of the lower-level problem, the so-called
implicit differentiation [8]. This step leads to solving a very high-dimensional
linear system. To avoid these computational challenges, in the next section we
introduce a proximal approximation. Notice that when we compare the bilevel
formulation (3) with SGD in the experiments, we equalize computational com-
plexity by using the same number of visits per sample.

3.2 A Proximal Formulation

To simplify the bilevel formulation (3) we propose to solve a sequence of approx-
imated problems. The parameters estimated at the t-th approximated problem
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are denoted θt+1. Both the upper-level and the lower-level problems are ap-
proximated via a first-order Taylor expansion of the loss function based on the
previous parameter estimate θt, i.e., we let

ℓi(θ) ≃ ℓi(θ
t) +∇ℓi(θ

t)⊤(θ − θt). (4)

Since the above Taylor expansion holds only in the proximity of the previous
parameter estimates θt, we also introduce proximal quadratic terms |θ − θt|

2
. By

plugging the linear approximation (4) and the proximal terms in Problem (3)
we obtain the following formulation

θt+1, ω̂ = argmin
θ,ω

∑

j∈Vt ℓj(θ
t) +∇ℓj(θ

t)⊤(θ(ω)− θt) +
|θ(ω)−θt|

2

2λ + µ
2 |ω|

2

s.t. θ(ω) = argminθ̄
∑

i∈T t !i

[

ℓi(θ
t) +∇ℓi(θ

t)⊤(θ̄ − θt)
]

+
|θ̄−θt|

2

2ǫ
|ω|1 = 1,

(5)
where the coefficients λ, ǫ > 0. The lower-level problem is now quadratic and
can be solved in closed-form. This yields an update rule identical to the SGD
step (2) when !i = 1

θ(ω) = θt − ǫ
∑

i∈T t !i∇ℓi(θ
t). (6)

Now we can plug this solution in the upper-level problem and obtain

ω̂ = argminθ,ω
∑

j∈Vt,i∈T t −!i∇ℓj(θ
t)⊤∇ℓi(θ

t) +
|
∑

i∈T t ωi∇ℓi(θ
t)|

2

2λ/ǫ + µ
2ǫ |ω|

2

s.t. |ω|1 = 1.
(7)

We simplify the notation by introducing λ̂ = λ/ǫ and µ̂ = µ/ǫ. To find the opti-
mal coefficients ω we temporarily ignore the normalization constraint |ω|1 = 1
and simply solve the unconstrained optimization. Afterwards, we enforce the L1

normalization to the solution. As a first step, we compute the derivative of the
cost functional with respect to wi and set it to zero, i.e., ∀i ∈ T t

0 =
∑

j∈Vt −∇ℓj(θ
t)⊤∇ℓi(θ

t) + 1
λ̂

∑

k∈T t !k∇ℓk(θ
t)⊤∇ℓi(θ

t) + µ̂!i. (8)

We now approximate the second sum by ignoring all terms such that k 6= i, i.e.,

0 =
∑

j∈Vt −∇ℓj(θ
t)⊤∇ℓi(θ

t) +
(

1
λ̂
|∇ℓi(θ

t)|2 + µ̂
)

!i (9)

so that we can obtain the weight update rule

∀i ∈ T t, !i ←
∑

j∈Vt

∇ℓj(θ
t)⊤∇ℓi(θ

t)

|∇ℓi(θt)|2/λ̂+µ̂
, ω̂ = ω/|ω|1. (10)

Since eq. (8) describes a linear system, it could be solved exactly via several iter-
ative methods, such as Gauss-Seidel or successive over-relaxations [12]. However,
we found that using this level of accuracy does not give a substantial improve-
ment in the model performance to justify the additional computational cost. We
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can then combine the update rule (10) with the update (6) of the parameters θ
and obtain a new gradient descent step

θ(ω) = θt − ǫ
∑

i∈T t !̂i∇ℓi(θ
t). (11)

Notice that ǫ!̂i can be seen as a learning rate specific to each mini-batch. The
update rule for the weights follows a very intuitive scheme: if the gradients of a
mini-batch in the training set ∇ℓi(θ

t) agree with the gradients of a mini-batch
in the validation set ∇ℓj(θ

t), then their inner product ∇ℓj(θ
t)⊤∇ℓi(θ

t) > 0
and their corresponding weights are also positive and large. This means that
we encourage updates of the parameters that also minimize the upper-level
problem. When these two gradients disagree, that is, if they are orthogonal
∇ℓj(θ

t)⊤∇ℓi(θ
t) = 0 or in the opposite directions ∇ℓj(θ

t)⊤∇ℓi(θ
t) < 0, then

the corresponding weights are also set to zero or a negative value, respectively
(see Fig. 1 for a general overview of the training procedure). Moreover, these
inner products are scaled by the gradient magnitude of mini-batches from the
training set and division by zero is avoided when µ > 0.

Remark 1. Attention must be paid to the sample composition in each mini-
batch, since we aim to approximate the validation error with a linear combination
of a few mini-batches. In fact, if samples in a mini-batch of the training set
are quite independent from samples in mini-batches of the validation set (for
example, they belong to very different categories in a classification problem),
then their inner product will tend to be very small on average. This would not
allow any progress in the estimation of the parameters θ. At each iteration we
ensure that samples in each mini-batch from the training set have overlapping
labels with samples in mini-batches from the validation set.

4 Implementation

To implement our method we modify SGD with momentum [26]. First, at each
iteration t we sample k mini-batches Bi in such a way that the distributions of
labels across the k mini-batches are identical (in the experiments, we consider
k ∈ {2, 4, 8, 16, 32}). Next, we compute the gradients ∇ℓi(θ

t) of the loss function
on each mini-batch Bi. V

t contains only the index of one mini-batch and T t

all the remaining indices. We then use ∇ℓj(θ
t), j ∈ Vt, as the single validation

gradient and compute the weights !i of ∇ℓi(θ
t), i ∈ T t, using eq. (10). The re-

weighted gradient
∑

i∈T t !i∇ℓi(θ
t) is then fed to the neural network optimizer.

5 Experiments

We perform extensive experiments on several common datasets used for training
image classifiers. Section 5.1 shows ablations to verify several design choices.
In Sections 5.2 and 5.3 we follow the experimental setup of Zhang et al. [36]
to demonstrate that our method reduces sample memorization and improves
performance on noisy labels at test time. In Section 5.4 we show improvements
on small datasets. The datasets considered in this section are the following:
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CIFAR-10 [17] : It contains 50K training and 10K test images of size 32× 32
pixels, equally distributed among 10 classes.

CIFAR-100 [17] : It contains 50K training and 10K test images of size 32×32
pixels, equally distributed among 100 classes.

Pascal VOC 2007 [9] : It contains 5,011 training and 4,952 test images (the
trainval set) of 20 object classes.

ImageNet [7] : It is a large dataset containing 1.28M training images of objects
from 1K classes. We test on the validation set, which has 50K images.

We evaluate our method on several network architectures. On Pascal VOC and
ImageNet we use AlexNet [18]. Following Zhang et al. [36] we use CifarNet
(an AlexNet-style network) and a small Inception architecture adapted to the
smaller image sizes of CIFAR-10 and CIFAR-100. We refer the reader to [36]
for a detailed description of those architectures. We also train variants of the
ResNet architecture [13] to compare to other methods.

5.1 Ablations

We perform extensive ablation experiments on CIFAR-10 using the CifarNet
and Inception network. The networks are trained on both clean labels and labels
with 50% random noise. We report classification accuracy on the training labels
(clean or noisy) and the accuracy on the clean test labels. The baseline in all
the ablation experiments compares 8 mini-batches and uses µ = 0.01 and λ = 1.
Both networks have a single dropout layer and the baseline configuration uses
the same dropping in all the compared mini-batches. The networks are trained
for 200 epochs on mini-batches of size 128. We do not use data augmentation
for CifarNet, but we use standard augmentations for the Inception network (i.e.,
random cropping and perturbation of brightness and contrast). The case of the
Inception network is therefore closer to the common setup for training neural
networks and the absence of augmentation in the case of CifarNet makes overfit-
ting more likely. We use SGD with momentum of 0.9 and an initial learning rate
of 0.01 in the case of CifarNet and 0.1 for Inception. The learning rate is reduced
by a factor of 0.95 after every epoch. Although in our formulation the validation
and training sets split the selected mini-batches into two separate sets, after one
epoch, mini-batches used in the validation set could be used in the training set
and vice versa. We test the case where we manually enforce that no examples (in
mini-batches) used in the validation set are ever used for training, and find no
benefit. We explore different sizes of the separate validation and training sets.
We define as validation ratio the fraction of samples from the dataset used for
validation only. Fig. 2 demonstrates the influence of the validation ratio (top
row), the number of compared mini-batches (second row), the size of the com-
pared mini-batches (third row) and the hyper-parameter µ (bottom row). We
can observe that the validation ratio has only a small influence on the perfor-
mance. We see an overall negative trend in the test accuracy with increasing size
of the validation set, probably due to the corresponding reduction of the training
set size. The number of mini-batches has a much more pronounced influence on
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Fig. 2. Ablation experiments on CIFAR-10 with CifarNet (a small AlexNet style net-
work) (left) and a small Inception network (right). We vary the size of the validation
set (1st row), the number of mini-batches being compared (2nd row), the mini-batch
size (3rd row) and the hyper-parameter µ (4th row). The networks were trained on
clean as well as 50% noisy labels. The amount of label noise during training is indi-
cated in parentheses. We show the accuracy on the clean or noisy training data, but
always evaluate it on clean data. Note that the baseline of using the full training data
as validation set is indicated with dashed lines on the top row.
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the networks performance, especially in the case of CifarNet, where overfitting is
more likely. Note that we keep the number of training steps constant in this ex-
periment. Hence, the case with more mini-batches corresponds to smaller batch
sizes. While the performance in case of noisy labels increases with the number of
compared mini-batches, we observe a decrease in performance on clean data. We
would like to mention that the case of 2 mini-batches is rather interesting, since
it amounts to flipping (or not) the sign of the single training gradient based on
the dot product with the single validation gradient. To test whether the perfor-
mance in the case of a growing number of batches is due to the batch sizes, we
perform experiments where we vary the batch size while keeping the number of
compared batches fixed at 8. Since this modification leads to more iterations we
adjust the learning rate schedule accordingly. Notice that all comparisons use
the same overall number of times each sample is used. We can observe a be-
havior similar to the case of the varying number of mini-batches. This suggests
that small mini-batch sizes lead to better generalization in the presence of label
noise. Notice also the special case where the batch size is 1, which corresponds
to per-example weights. Besides inferior performance we found this choice to be
computationally inefficient and interfering with batch norm. Interestingly, the
parameter µ does not seem to have a significant influence on the performance
of both networks. Overall the performance on clean labels is quite robust to
hyper-parameter choices except for the size of the mini-batches.

In Table 1, we also summarize the following set of ablation experiments:

a) No L1-Constraint on ω: We show that using the L1 constraint |ω|1 = 1
is beneficial for both clean and noisy labels. We set µ = 0.01 and λ = 1
for this experiment in order for the magnitude of the weights !i to resemble
the case with the L1 constraint. While tuning of µ and λ might lead to an
improvement, the use of the L1 constraint allows plugging our optimization
method without adjusting the learning rate schedule of existing models;

b) Weights per Layer: In this experiment we compute a separate !
(l)
i for the

gradients corresponding to each layer l. We then also apply L1 normalization

to the weights !
(l)
i per layer. While the results on noisy data with CifarNet

improve in this case, the performance of CifarNet on clean data and the
Inception network on both datasets clearly degrades;

c) Mini-Batch sampling: Here we do not force the distribution of (noisy)
labels in the compared mini-batches to be identical. The poor performance
in this case highlights the importance of identically distributed labels in the
compared mini-batches;

d) Dropout: We remove the restriction of equal dropping in all the compared
mini-batches. Somewhat surprisingly, this improves performance in most
cases. Note that unequal dropping lowers the influence of gradients in the
deep fully-connected layers, therefore giving more weight to gradients of early
convolutional layers in the dot-product. Also, dropout essentially amounts
to having a different classifier at each iteration. Our method could encourage
gradient updates that work well for different classifiers, possibly leading to
a more universal representation.
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Table 1. Results of ablation experiments on CIFAR-10 as described in sec. 5.1. Models
were trained on clean labels and labels with 50% random noise. We report classification
accuracy on the clean or noisy training labels and clean test labels. The generalization
gap (difference between training and test accuracy) on clean data is also included. We
also show results of the baseline model and of a model trained with standard SGD.

Experiment
CifarNet Inception

Clean 50% Random Clean 50% Random
Train Test Gap Train Test Train Test Gap Train Test

SGD 99.99 75.68 24.31 96.75 45.15 99.91 88.13 11.78 65.06 47.64
Baseline 97.60 75.52 22.08 89.28 47.62 96.13 87.78 8.35 45.43 73.08
a) L1 96.44 74.32 22.12 95.50 45.79 79.46 77.07 2.39 33.86 62.16
b) ω per Layer 97.43 74.36 23.07 81.60 49.62 90.38 85.25 5.13 81.60 49.62
c) Sampling 72.69 68.19 4.50 16.13 23.93 79.78 78.25 1.53 17.71 27.20
d) Dropout 95.92 74.76 21.16 82.22 49.23 95.58 87.86 7.72 44.61 75.71

Table 2. Results of the Inception network when trained on data with random pixel
permutations (fixed per image). We observe much less overfitting using our method
when compared to standard SGD

Model Train Test Gap

SGD 50.0 33.2 16.8
Bilevel 34.8 33.6 1.2

5.2 Fitting Random Pixel Permutations

Zhang et al. [36] demonstrated that CNNs are able to fit the training data
even when images undergo random permutations of the pixels. Since object
patterns are destroyed under such manipulations, learning should be very limited
(restricted to simple statistics of pixel colors). We test our method with the
Inception network trained for 200 epochs on images undergoing fixed random
permutations of the pixels and report a comparison to standard SGD in Table 2.
While the test accuracy of both variants is similar, the network trained using
our optimization shows a very small generalization gap.

5.3 Memorization of Partially Corrupted Labels

The problem of label noise is of practical importance since the labelling process
is in general unreliable and incorrect labels are often introduced in the process.
Providing methods that are robust to noise in the training labels is therefore of
interest. In this section we perform experiments on several datasets (CIFAR-10,
CIFAR-100, ImageNet) with different forms and levels of label corruption and
using different network architectures. We compare to other state-of-the-art reg-
ularization and label-noise methods on CIFAR-10 and CIFAR-100.
Random Label Corruptions on CIFAR-10 and CIFAR-100. We test our
method under different levels of synthetic label noise. For a noise level π ∈ [0, 1]
and a dataset with c classes, we randomly choose a fraction of π examples per
class and uniformly assign labels of the other c− 1 classes. Note that this leads
to a completely random labelling in the case of 90% label noise on CIFAR-10.
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Table 3. Comparison to state-of-the-art regularization techniques and methods for
dealing with label noise on 40% corrupted labels.

Method Ref. Network CIFAR-10 CIFAR-100

Reed et al. [27] [14] ResNet 62.3% 46.5%
Golderberger et al. [11] [14] ResNet 69.9% 45.8%
Azadi et al. [2] [2] AlexNet 75.0% -
Jilang et al. [14] [14] ResNet 76.6% 56.9%
Zhang et al. [38] - PreAct ResNet-18 88.3% 56.4%

Standard SGD - PreAct ResNet-18 69.6% 44.9%
Dropout (p = 0.3) [30] - PreAct ResNet-18 84.5% 50.1%
Label Smoothing (0.1) [32] - PreAct ResNet-18 69.3% 46.1%
Bilevel - PreAct ResNet-18 87.0% 59.8%
Bilevel + [38] - PreAct ResNet-18 89.0% 61.6%

Fig. 3. CifarNet is trained on data from CIFAR-10 and CIFAR-100 with varying
amounts of random label noise. We observe that our optimization leads to higher test
accuracy and less overfitting in all cases when compared to standard SGD.

Networks are trained on datasets with varying amounts of label noise. We train
the networks with our bilevel optimizer using 8 mini-batches and using the train-
ing set for validation. The networks are trained for 100 epochs on mini-batches
of size 64. Learning schedules, initial learning rates and data augmentation are
identical to those in sec. 5.1. The results using CifarNet are summarized in Fig. 3
and the results for Inception in Fig. 4. We observe a consistent improvement over
standard SGD on CifarNet and significant gains for Inception on CIFAR-10 up
to 70% noise. On CIFAR-100 our method leads to better results up to a noise
level of 50%. We compare to state-of-the-art regularization methods as well as
methods for dealing with label noise in Table 3. The networks used in the com-
parison are variants of the ResNet architecture [13] as specified in [14] and [38].
An exception is [2], which uses AlexNet, but relies on having a separate large
dataset with clean labels for their model. We use the same architecture as the
state-of-the-art method by Zhang et al. [38] for our results. We also explored the
combination of our bilevel optimization with the data augmentation introduced
by [38] in the last row. This results in the best performance on both CIFAR-10
and CIFAR-100. We also include results using Dropout [30] with a low keep-
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Fig. 4. The Inception network trained on data from CIFAR-10 and CIFAR-100 with
varying amounts of random label noise. On CIFAR-10 our optimization leads to sub-
stantially higher test accuracy in most cases when compared to standard SGD. Our
method also shows more robustness to noise levels up to 50% on CIFAR-100.

Table 4. Experiments with a realistic noise model on ImageNet

Method 44% Noise Clean

SGD 50.75% 57.4%
Bilevel 52.69% 58.2%

probability p as suggested by Arpit et al. [1] and results with label-smoothing
as suggested by Szegedy et al. [32] .
Modelling Realistic Label Noise on ImageNet. In order to test the method
on more realistic label noise we perform the following experiment: We use the
predicted labels of a pre-trained AlexNet to model realistic label noise. Our ra-
tionale here is that predictions of a neural network will make similar mistakes as
a human annotator would. To obtain a high noise level we leave dropout active
when making the predictions on the training set. This results in approximately
44% label noise. We then retrain an AlexNet from scratch on those labels using
standard SGD and our bilevel optimizer. The results of this experiment and a
comparison on clean data is given in Table 4. The bilevel optimization leads to
better performance in both cases, improving over standard SGD by nearly 2%
in case of noisy labels.

Experiments on Real-World Data with Noisy Labels.We test our method
on the Clothing1M dataset introduced by Xiao et al. [35]. The dataset consists of
fashion images belonging to 14 classes. It contains 1M images with noisy labels
and additional smaller sets with clean labels for training (50K), validation (14K)
and testing (10K). We follow the same setup as the state-of-the-art by Patrini et
al. [25] using an ImageNet pre-trained 50-layer ResNet. We achieve 69.9% after
training only on the noisy data and 79.9% after fine-tuning on the clean training
data. These results are comparable to [25] with 69.8% and 80.4% respectively.
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Fig. 5. We train an AlexNet for multi-label classification on varying fractions of the
Pascal VOC 2007 trainval set and report mAP on the test set as well as the complete
trainval set. Our optimization technique leads to higher test performance and smaller
generalization gap in all cases.

5.4 Generalization on Small Datasets

Small datasets pose a challenge since deep networks will easily overfit in this case.
We test our method under this scenario by training an AlexNet on the multi-label
classification task of Pascal VOC 2007. Training images are randomly cropped
to an area between 30% to 100% of the original and then resized to 227 × 227.
We linearly decay the learning rate from 0.01 to 0 and train for 1K epochs on
mini-batches of size 64. We use the bilevel optimization method with 4 mini-
batches and without a separate validation set. In Fig. 5 we report the mAP
obtained from the average prediction over 10 random crops on varying fractions
of the original dataset. We observe a small, but consistent, improvement over
the baseline in all cases.

6 Conclusions

Neural networks seem to benefit from additional regularization during train-
ing when compared to alternative models in machine learning. However, neural
networks still suffer from overfitting and current regularization methods have a
limited impact. We introduce a novel regularization approach that implements
the principles of cross-validation as a bilevel optimization problem. This formula-
tion is computationally efficient, can be incorporated with other regularizations
and is shown to consistently improve the generalization of several neural network
architectures on challenging datasets such as CIFAR10/100, Pascal VOC 2007,
and ImageNet. In particular, we show that the proposed method is effective in
avoiding overfitting with noisy labels.
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