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Abstract. We propose a computational framework to jointly parse a
single RGB image and reconstruct a holistic 3D configuration composed
by a set of CAD models using a stochastic grammar model. Specifically,
we introduce a Holistic Scene Grammar (HSG) to represent the 3D scene
structure, which characterizes a joint distribution over the functional and
geometric space of indoor scenes. The proposed HSG captures three es-
sential and often latent dimensions of the indoor scenes: i) latent human
context, describing the affordance and the functionality of a room ar-
rangement, ii) geometric constraints over the scene configurations, and
iii) physical constraints that guarantee physically plausible parsing and
reconstruction. We solve this joint parsing and reconstruction problem
in an analysis-by-synthesis fashion, seeking to minimize the differences
between the input image and the rendered images generated by our 3D
representation, over the space of depth, surface normal, and object seg-
mentation map. The optimal configuration, represented by a parse graph,
is inferred using Markov chain Monte Carlo (MCMC), which efficiently
traverses through the non-differentiable solution space, jointly optimizing
object localization, 3D layout, and hidden human context. Experimental
results demonstrate that the proposed algorithm improves the general-
ization ability and significantly outperforms prior methods on 3D layout
estimation, 3D object detection, and holistic scene understanding.

Keywords: 3D Scene Parsing and Reconstruction · Analysis-by-Synthesis
· Holistic Scene Grammar · Markov chain Monte Carlo

1 Introduction

The complexity and richness of human vision are not only reflected by the abil-
ity to recognize visible objects, but also to reason about the latent actionable
information [1], including inferring latent human context as the functionality
of a scene [2, 3], reconstructing 3D hierarchical geometric structure [4, 5], and
complying with the physical constraints that guarantee the physically plausible
scene configurations [6]. Such rich understandings of an indoor scene are the
essence for building an intelligent computational system, which transcends the
prevailing appearance- and geometry-based recognition tasks to account also for
the deeper reasoning of observed images or patterns.
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Fig. 1: Illustration of the proposed holistic 3D indoor scene parsing and recon-
struction in an analysis-by synthesis fashion. A 3D representation is initialized
by individual vision modules (e.g., object detection, 2D layout estimation). A
joint inference algorithm compares the differences between the rendered normal,
depth, and segmentation map with the ones estimated directly from the input
RGB image, and adjust the 3D structure iteratively.

One promising direction is analysis-by-synthesis [7] or “vision as inverse
graphics” [8,9]. In this paradigm, computer vision is treated as an inverse prob-
lem as opposed to computer graphics, of which the goal is to reverse-engineer
hidden factors occurred in the physical process that produces observed images.

In this paper, we embrace the concept of vision as inverse graphics, and pro-
pose a holistic 3D indoor scene parsing and reconstruction algorithm that simul-
taneously reconstructs the functional hierarchy and the 3D geometric structure
of an indoor scene from a single RGB image. Figure 1 schematically illustrates
the analysis-by-synthesis inference process. The joint inference algorithm takes
proposals from various vision modules and infers the 3D structure by comparing
various projections (i.e., depth, normal, and segmentation) rendered from the
recovered 3D structure with the ones directly estimated from an input image.

Specifically, we introduce a Holistic Scene Grammar (HSG) to represent the
hierarchical structure of a scene. As illustrated in Figure 2, our HSG decomposes
a scene into latent groups in the functional space (i.e., hierarchical structure in-
cluding activity groups) and object instances in the geometric space (i.e., CAD
models). For the functional space, in contrast to the conventional method that
only models the object-object relations, we propose a novel method to model
human-object relations by imagining latent human in activity groups to further
help explain and parse the observed image. For the geometric space, the geo-
metric attributes (e.g., size, position, orientation) of individual objects are taken



Holistic 3D Scene Parsing and Reconstruction 3

into considerations, as well as the geometric relations (e.g., supporting relation)
among them. In addition, physical constraints (e.g., collision among the objects,
violations of the layout) are incorporated to generate a physically plausible 3D
parsing and reconstruction of the observed image.

Here, an indoor scene is represented by a parse graph (pg) of a grammar,
which consists of a hierarchical structure and a Markov random field (MRF)
over terminal nodes that captures the rich contextual relations between objects
and room layout (i.e., the room configuration of walls, floors, and ceilings).

A maximum a posteriori probability (MAP) estimate is designed to find the
optimal solution that parses and reconstructs the observed image. The likelihood
measures the similarity between the observed image and the rendered images
projected from the inferred pg onto various 2D image spaces. Thus, the pg can
be iteratively refined by sampling an MCMC with simulated annealing based on
posterior probability. We evaluate our method on a large-scale RGB-D dataset
by comparing the reconstructed 3D indoor rooms with the ground-truth.

1.1 Related Work

Scene Parsing: Existing scene parsing approaches fall into two streams. i) Dis-
criminative approaches [10–16] classify each pixel to a semantic label. Although
prior work has achieved high accuracy in labeling the pixels, these methods lack
a general representation of visual vocabulary and a principle approach to explor-
ing the semantic structure of a general scene. ii) Generative approaches [17–24]
can distill scene structure, making it closer to human-interpretable structure of
a scene, enabling potential applications in robotics, VQA, etc. In this paper, we
combine those two streams in an analysis-by-synthesis framework to infer the
hidden factors that generate the image.
Scene Reconstruction from a Single Image: Previous approaches [25–27]
of indoor scene reconstruction from a single RGB image can be categorized into
three streams. i) 2D or 3D room layout prediction by extracting geometric fea-
tures and ranking the 3D cuboids proposals [28–35]. ii) By representing objects
via geometric primitives or CAD models, previous approaches [36–44] utilize
3D object recognition or pose estimation to align object proposals to a RGB
or depth image. iii) Joint estimation of the room layout and 3D objects with
contexts [18,19,22–24,33,45,46]. In particular, Izadinia et al. [33] show promis-
ing results in inferring the layout and objects without the contextual relations
and physical constraints. In contrast, our method jointly models the hierarchi-
cal scene structure, hidden human context and physical constraints, providing a
semantic representation for holistic scene understanding. Furthermore, the pro-
posed method presents a joint inference algorithm using MCMC, which in theory
can achieve a global optimal.
Scene Grammar: Scene grammar models have been used to infer the 3D
structure and functionality from a RGB image [3, 17, 18, 47]. Our HSG differs
from [17, 18] in two aspects: i) Our model represents the 3D objects with CAD
models rather than geometric primitives, capable of modeling detail contextual
relations (e.g., supporting relation), which provides better realization of parsing
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Fig. 2: An indoor scene represented by a parse graph (pg) of the HSG that
spans across the functional space and the geometric space. The functional space
characterizes the hierarchical structure and the geometric space encodes the
spatial entities with contextual relations.

and reconstruction. ii) We infer hidden human and activity groups in the HSG,
which helps the explanation and parsing. Compared to [3, 47], we model and
parse the 3D structure of objects and layouts from a single RGB image, rather
than the labelled point-clouds using RGB-D images.

1.2 Contributions

This paper makes five major contributions:

1. We integrate geometry and physics to interpret and reconstruct indoor
scenes with CAD models. We jointly optimize 3D room layouts and object config-
urations, largely improving the performance of scene parsing and reconstruction
on SUN RGB-D dataset [45].

2. We incorporate hidden human context (i.e., functionality) into our gram-
mar, enabling to imagine latent human pose in each activity group by grouping
and sampling. In this way, we can optimize the joint distribution of both visible
and invisible [48] components of the scene.

3. We propose a complete computational framework to combine generative
model (i.e., a stochastic grammar), discriminative models (i.e., direct estima-
tions of depth, normal, and segmentation maps), and graphics engines (i.e.,
rendered images) in scene parsing and reconstruction.

4. To the best of our knowledge, ours is the first work to use the inferred
depth, surface normal and object segmentation map to assist parsing and re-
constructing 3D scenes (both room layout and multiple objects). Note that [49]
uses similar intermediate representation for a single object.

5. By learning the supporting relations among objects, the proposed method
eliminates the widely adopted assumption in previous work that all objects must
stand on the ground. Such flexibility of the model yields better parsing and
reconstruction of the real-world scenes with complex object relations.



Holistic 3D Scene Parsing and Reconstruction 5

2 Holistic Scene Grammar

We represent the hierarchical structure of indoor scenes by a Holistic Scene
Grammar (HSG). An HSG consists of a latent hierarchical structure in the
functional space F and terminal object entities in the geometric space G. The
intuition is that, for man-made environments, the object arrangement in the
geometric space should be a “projection” from the functional space (i.e., human
activities). The functional space as a probabilistic context free grammar (PCFG)
captures the hierarchy of the functional groups, and the geometric space captures
the spatial contexts among objects by defining an MRF on the terminal nodes.
The two spaces together form a stochastic context-sensitive grammar (SCSG).
The HSG starts from a root scene node and ends with a set of terminal nodes.
An indoor scene is represented by a parse graph pg as illustrated in Figure 2.

Definition: The stochastic context-sensitive grammar HSG is defined as a 5-
tuple 〈S, V,R,E, P 〉. S denotes the root node of the indoor scene. V is the
vertex set that includes both non-terminal nodes Vf ∈ F and terminal nodes
Vg ∈ G. R denotes the production rule, and E the contextual relations among
the terminal nodes, which are represented by the horizontal links in the pg. P
is the probability model defined on the pg.

Functional Space F: The non-terminal nodes Vf = {V c
f , V

a
f , V

o
f , V

l
f} ∈ F consist

of the scene category nodes V c
f , activity group nodes V a

f , objects nodes V
o
f , and

layout nodes V l
f .

Geometric Space G: The terminal nodes Vg = {V o
g , V

l
g} ∈ G are the CAD models

of object entities and room layouts. Each object v ∈ V o
g is represented as a CAD

model, and the object appearance is parameterized by its 3D size, location, and
orientation. The room layout v ∈ V l

g is represented as a cuboid which is further
decomposed into five planar surfaces of the room (left wall, right wall, middle
wall, floor, and ceiling with respect to the camera coordinate).

Production Rule R: The following production rules are defined for HSG:
• S → V c

f : scene → category 1 | category 2 | . . . (e.g., scene → office | kitchen)

• V c
f → V a

f ·V l
f : category → activity groups · layout (e.g., office → (walking,

reading) · layout)
• V a

f → V o
f : activity group→ functional objects (e.g., sitting→ (desk, chair))

where · denotes the deterministic decomposition, | alternative explanations, and
() combination. Contextual relations E capture relations among objects, includ-
ing their relative positions, relative orientations, grouping relations, and sup-
porting relations. The objects could be supported by either other objects or the
room layout; e.g., a lamp could be supported by a night stand or the floor.

Finally, a scene configuration is represented by a pg, whose terminals are
room layouts and objects with their attributes and relations. As shown in Fig-
ure 2, a pg can be decomposed as pg = (pgf , pgg), where pgf and pgg denote
the functional part and geometric part of the pg, respectively. E ∈ pgg denotes
the contextual relations in the terminal layer.
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3 Probabilistic Formulation

The objective of the holistic scene parsing is to find an optimal pg that represents
all the contents and relations observed in the scene. Given an input RGB image
I, the optimal pg could be derived by an MAP estimator,

p(pg|I) ∝ p(pg) · p(I|pg) (1)

∝ p(pgf ) · p(pgg|pgf ) · p(I|pgg) (2)

=
1

Z
exp

{

−E(pgf )− E(pgg|pgf )− E(I|pgg)
}

, (3)

where the prior probability p(pg) is decomposed into p(pgf )p(pgg|pgf ), and
p(I|pg) = p(I|pgg) since the image space is independent of the functional space
given the geometric space. We model the joint distribution with a Gibbs distri-
bution; E(pgf ), E(pgg|pgf ) and E(I|pgg) are the corresponding energy terms.

Functional Prior E(pgf ) characterizes the prior of the functional aspect in
a pg, which models the hierarchical structure and production rules in the func-
tional space. For production rules of alternative explanations | and combination
(), each rule selects child nodes and the probability of the selections is mod-
eled with a multinomial distribution. The production rule · is deterministically
expanded with probability 1. Given the production rules R, the energy can be
written as E(pgf ) =

∑

ri∈R − log p(ri).
Geometric Prior E(pgg|pgf ) is the prior of the geometric aspect in a pg.

Besides modeling the size, position and orientation distribution of each object,
we also consider two types of contextual relations E = {Es, Ea} among the
objects: i) relations Es between supported objects and their supporting objects;
ii) relations Ea between imagined human and objects in an activity group.

We define different potential functions for each type of contextual relations,
constructing an MRF in the geometric space including four terms:

E(pgg|pgf ) = Esc(pgg|pgf ) + Espt(pgg|pgf ) + Egrp(pgg|pgf ) + Ephy(pgg). (4)

• Size Consistency Esc constrains the size of an object. Esc(pgg|pgf ) =
∑

vi∈V o
g
− log p(si|V

o
f ), where si denotes the size of object vi. We model the

distribution of object scale in a non-parametric way, i.e., kernel density estima-
tion (KDE).

• Supporting Constraint Espt characterizes the contextual relations between
supported objects and supporting objects (including floors, walls and ceilings).
We model the distribution with their relative heights and overlapping areas:

Espt(pgg|pgf ) =
∑

(vi,vj)∈Es

Ko(vi, vj) +Kh(vi, vj)− λs log p
(

vi, vj | V
l
f , V

o
f

)

, (5)

where Ko(vi, vj) = 1 − area(vi ∪ vj)/area(vi) defines the overlapping ratio in
xy-plane, and Kh(vi, vj) defines the relative height between the lower surface of
vi and the upper surface of vj . Ko(·) and Kh(·) is 0 if supporting object is floor
and wall, respectively. p(vi, vj |V

l
f , V

o
f ) is the prior frequency of the supporting

relation modeled by multinoulli distributions. λs is a balancing constant.
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• Human-Centric Grouping Constraint Egrp. For each activity group, we
imagine the invisible and latent human poses to help parse and understand the
scene. The intuition is that the indoor scenes are designed to serve human daily
activities, thus the indoor images should be jointly interpreted by the observed
entities and the unobservable human activities. This is known as the Dark Mat-
ter [48] in computer vision that drives the visible components in the scene. Prior
methods on scene parsing often merely model the object-object relations. In
this paper, we go beyond passive observations to model the latent human-object
relations, thereby proposing a human-centric grouping relationship and a joint
inference algorithm over both the visible scene and the invisible latent human
context. Specifically, for each activity group v ∈ V a

f , we define correspondent
imagined human with a six tuple < y, µ, t, r, s, µ̃ >, where y is the activity type,
µ ∈ R

25×3 is the mean human pose (represented by 25 joints) of activity type y,
t denotes the translation, r denotes the rotation, s denotes the scale, and µ̃ is
the imagined human skeleton: µ̃ = µ · r · s+ t. The energy among the imagined
human and objects is defined as:

Egrp(pgg|pgf ) =
∑

vi∈V a
f

Egrp(µ̃i|vi)

=
∑

vi∈V a
f

∑

vj∈ch(vi)
Dd(µ̃i, νj ; d̄) +Dh(µ̃i, νj ; h̄) +Do(µ̃i, νj ; ō),

(6)

where ch(vi) denotes the set of child nodes of vi, νj denotes the 3D position of
vj . Dd(·), Dh(·) and Do(·) denote geometric distances, heights and orientation
differences, respectively, calculated by the center of the imagined human pose to
the object center subtracted by their mean (i.e., d̄, h̄ and ō).

• Physical Constraints: Additionally, in order to avoid violating the physical
laws during parsing, we define the physical constraints Ephy(pgg) to penalize
physical violations. Exceeding the room cuboid or overlapping among the objects
are defined as violations. This term is formulated as:

Ephy(pgg) =
∑

vi∈V o
g

(
∑

vj∈V o
g \vi

Oo(vi, vj) +
∑

vj∈V l
g

Ol(vi, vj)), (7)

where Oo(·) denotes the overlapping area between objects, and Ol(·) denotes the
area of objects exceeding the layout.

Likelihood E(I|pgg) characterizes the similarity between the observed im-
age and the rendered image generated by the parsing results. Due to various
lighting conditions, textures, and material properties, there will be an inevitable
difference between the rendered RGB images and the observed scenes. Here, in-
stead of using RGB images, we solve this problem in an analysis-by-synthesis

fashion by comparing the depth, surface normal, and object segmentation map.
By combining generative models and discriminative models, the proposed

approach tries to reverse-engineer the hidden factors that generate the observed
image. Specifically, we first use discriminative methods to project the observed
image I to various feature spaces. In this paper, we directly estimate three
intermediate images—depth map Φd(I), surface normal map Φn(I) and object
segmentation map Φm(I), as the feature representation of the observed image I.

Meanwhile, a pg inferred by our method represents the 3D structure of the
observed image, which is used to reconstruct image I ′ to recover the correspond-
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ing depth map Φd(I
′), surface normal map Φn(I

′), and object segmentation map
Φm(I ′) through a forward graphics rendering.

Finally, we compute the likelihood term by comparing these rendered results
from the generative model with the directly estimated results calculated by the
discriminative models. Specifically, the likelihood is computed by the pixel-wise
differences between the two sets of maps,

E(I|pgg) = Dp(Φd(I), Φd(I
′)) +Dp(Φn(I), Φn(I

′)) +Dp(Φm(I), Φm(I ′)), (8)

where Dp(·) is the sum of pixel-wise Euclidean distances between two maps. Note
a weight is associated with each energy term, which is learned by cross-validation
or set empirically.

4 Inference

Given a single RGB image as the input, the goal of inference is to find the optimal
pg that best explains the hidden factors that generate the observed image while
recovering the 3D scene structure. The inference includes three major steps:

• Room geometry estimation: estimate the room geometry by predicting the
2D room layout and the camera parameter, and by projecting the estimated 2D
layout to 3D. Details are provided in subsection 4.1.

• Objects initialization: detect objects and retrieve CAD models correspond-
ingly with the most similar appearance, then roughly estimate their 3D poses,
positions, sizes, and initialize the support relations. See subsection 4.2.

• Joint inference: optimize the objects, layout and hidden human context
in the 3D scene in an analysis-by-synthesis fashion by maximizing the posterior
probability of the pg. Details are provided in subsection 4.3.

4.1 Room Geometry Estimation

Although recent approaches [33–35] are capable of generating a relatively robust
prediction of the 2D room layout using CNN features, 3D room layout estima-
tions are still inaccurate due to its sensitivity to camera parameter estimation in
clusttered scenes. To address the inconsistency between the 2D layout estimation
and camera parameter estimation, we design a deep neural network to estimate
the 2D layout, and use the layout heatmap to estimate the camera parameter.

2D Layout Estimation: Similar to [34], we represent the 2D layout with
its room layout type and keypoint positions. The network structure is provided
in the supplementary material. The network optimizes the Euclidean loss for
layout heatmap regression and the cross-entropy loss for room type estimation.

Camera Parameter: Traditional geometry-based method [28] computes the
camera parameter by estimating the vanishing points from the observed image,
which is sensitive and unstable in cluttered indoor scenes with heavy occlusions.
Inspired by [43], we propose a learning-based method that uses the keypoints
heatmaps to predict the camera parameters, i.e., focal length, together with the
yaw, pitch, and roll angles of the camera. Since the yaw angle has already been
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incorporated into the evaluation of room layout, we estimate the remaining three
variables (focal length, pitch and roll) by stacking four FC layers (1024-128-16-3)
on the keypoint heatmaps.

3D Layout Initialization: Using the estimated 2D layout and camera pa-
rameters, we project the corners of the 2D layout to 3D in order to obtain a 3D
room cuboid. We assume the cameras and the ceilings are 1.2m and 3.0m high,
respectively. For simplicity, we translate and rotate the 3D rooms so that one of
the visible room corners is at the origin of the world coordinate system.

4.2 Objects Initialization

We fine-tune the Deformable Convolutional Networks [50] using Soft-NMS [51]
to detect 2D bounding boxes. To initialize the 3D objects, we retrieve the most
similar CAD models and initialize their 3D poses, sizes, and positions.

Model Retrieval: We consider all the models in the ShapeNetSem reposi-
tory [52, 53] and render each model from 48 viewpoints consisting of uniformly
sampled 16 azimuth and 3 elevation angles. We extract 7× 7 features from the
ROI-pooling layer of the fine-tuned detector of images in the detected bounding
boxes and candidate rendered images. By ranking the cosine distance between
each detected object feature and rendered image feature in the same object
category, we obtain the top-10 CAD models with corresponding poses.

Geometric Attributes Estimation: The geometric attributes of an object
are represented by a 9D vector of 3D pose, position, and size, where 3D poses are
initialized from the retrieval procedure. Prior work roughly projected 2D points
to 3D, and recovered the 3D position and size by assuming that all the objects
are on the floor. Such approach shows limitations in complex scenarios.

Without making the above assumption, we estimate the depth of each object
by computing the average depth value of the pixels that are in both the detection
bounding box and the segmentation map. We then compute its 3D position using
the depth value. Empirically, this approach is more robust since per-pixel depth
estimation error is small even in cluttered scenes. To avoid the alignment problem
of the 2D bounding boxes, we initialize the object size by sampling object sizes
from a learned distribution and choose the one with the largest probability.

Supporting Relation Estimation: For each object vi ∈ V o
f , we find its

supporting object v∗j of minimal supporting energy from objects or layout:

v∗j = argmin
vj

Ko(vi, vj)+Kh(vi, vj)−λs log p(vi, vj |V
l
f , V

o
f ), vj ∈ (V l

f , V
o
f ). (9)

4.3 Joint Inference

Given an image I, we first estimate the room geometry, object attributes and
relations as described in the above two subsections. As summarized in Alg.1,
the joint inference includes: (1) optimize the objects and layout (Figure 3); (2)
group objects, assign activity label and imagine human pose in each activity
group; and (3) optimize the objects, layout and human pose iteratively.
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Initialization Iteration 150Target Iteration 300 Iteration 500 Iteration 900 Iteration 1200

Fig. 3: The process of joint inference of objects and layout by MCMC with sim-
ulated annealing. Top: depth maps. Middle: normal maps. Bottom: object
segmentation maps. Objects and layout are optimized iteratively.

In each step, we use distinct MCMC processes. Specifically, to traverse non-
differentiable solution spaces, we design Markov chain dynamics {qo1, q

o
2, q

o
3} for

objects, {ql1, q
l
2} for layout, and {qh1 , q

h
2 , q

h
3 } for human pose. Specifically,

• Object Dynamics: Dynamics qo1 adjusts the position of a random object,
which translates the object center in one of the three Cartesian coordinate axes.
Instead of translating the object center and changing the object size directly,
Dynamics qo2 translates one of the six faces of the cuboid to generate a smoother
diffusion. Dynamics qo3 proposes rotation of the object with a specified angle.
Each dynamic can diffuse in two directions, e.g., each object can translate in
direction of ‘+x’ and ‘−x’, or rotate in direction of clockwise and counterclock-
wise. By computing the local gradient of P (pg|I), the dynamics propose to move
following the direction of the gradient with a proposal probability of 0.8, or the
inverse direction of the gradient with proposal probability of 0.2.

• Layout Dynamics: Dynamics ql1 translates the faces of the layout, which
also optimizes the camera height when translating the floor. Dynamics ql2 rotates
the layout.

• Human pose Dynamics qh1 , q
h
2 and qh3 are designed to translate, rotate and

scale the human pose, respectively.
Given the current pg, each dynamic will propose a new pg′ according to

a proposal probability p(pg′|pg, I). The proposal is accepted according to an
acceptance probability α(pg → pg′) defined by the Metropolis-Hasting algo-
rithm [54]:

α(pg → pg′) = min(1,
p(pg|pg′, I)p(pg′|I)

p(pg′|pg, I)p(pg|I)
). (10)

In step (2), we group objects and assign activity labels. For each type of
activity, there is a object category which has the highest occurrence frequency
(i.e., chair in activity ‘reading’). Intuitively, the correspondence between objects
and activities should be n-to-n but not n-to-one, which means each object can
belong to several activity groups. In order to find out all possible activity groups,
for each type of activity, we define an activity group around each major object
and incorporate nearby objects (within a distance threshold) with prior larger
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Algorithm 1 Joint inference algorithm

1: Given Image I, initialized parse graph pginit

2: procedure Step1(V o
g , V l

g ) ⊲ Inference without hidden human context

3: for different temperatures do ⊲ Different temperatures are adopted in simulated annealing
4: for γ1 iterations do

5: randomly choose layout, apply layout dynamics to optimize layout V l
g

6: for each object vi ∈ V o
g do

7: for γ2 iterations do

8: randomly apply object dynamics to optimize object vi

9: procedure Step2(V a
f , {µ̃}) ⊲ Inference of hidden human context

10: group objects and assign activity labels (see last paragraph in subsection 4.3)
11: for each activity group vi ∈ V a

f do

12: repeat

13: randomly apply human pose dynamics to optimize µ̃i

14: until E(µ̃i|vi) converges ⊲ Maximizing grouping energy in Equation 11

15: procedure Step3(V o
g , V l

g , {µ̃}) ⊲ Iterative inference of whole parse graph

16: for different temperatures do

17: for γ3 iterations do

18: randomly choose layout, objects or human pose
19: apply random dynamics to minimize P (pg|I)

20: Return pgoptimized

Fig. 4: Sampled human poses in various indoor scenes. Objects in multiple activ-
ity groups have multiple poses. We visualize the pose with the highest likelihood.

than 0. For each activity group vi ∈ V a
f , the pose of the imagined human is

estimated by maximizing the likelihood p(vi|µ̃i), which is equivalent to minimize
the grouping energy Egrp(µ̃i|vi) defined in Equation 6,

y∗i ,m
∗
i , t

∗
i , r

∗
i , s

∗
i = argmin

yi,mi,ti,ri,si

Egrp(µ̃i|vi), (11)

Figure 4 shows the results of sampled human poses in various indoor scenes.

5 Experiments

We use the SUN RGB-D dataset [45] to evaluate our approach on 3D scene
parsing, 3D reconstruction, as well as other 3D scene understanding tasks. The
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Table 1: 3D scene parsing and reconstruction results on SUN RGB-D dataset

Method # of image
3D Layout Estimation Holistic Scene Understanding

IoU Pg Rg Rr IoU

3DGP [19] 5050 19.2 2.1 0.7 0.6 13.9
Ours (init.) 5050 46.7 25.9 15.5 12.2 36.6
Ours (joint.) 5050 54.9 37.7 23.0 18.3 40.7

3DGP [19] 749 33.4 5.3 2.7 2.1 34.2
IM2CAD [33] 484 62.6 - - - 49.0
Ours (init.) 749 61.2 29.7 17.3 14.4 47.1
Ours (joint.) 749 66.4 40.5 26.8 21.7 52.1

Table 2: Comparisons of 3D object detection on SUN RGB-D dataset

Method bed chair sofa table desk toilet fridge sink bathtub bookshelf counter door dresser lamp tv mAP

[19] 5.62 2.31 3.24 1.23 - - - - - - - - - - - -
Ours (init.) 45.55 5.91 23.64 4.20 2.50 1.91 14.00 2.12 0.55 2.16 0.34 0.01 5.69 1.12 0.62 7.35
Ours (joint.) 58.29 13.56 28.37 12.12 4.79 16.50 15.18 2.18 2.84 7.04 1.6 1.56 13.71 2.41 1.04 12.07

dataset has 5050 testing images and 10,355 images in total. Although it provides
RGB-D data, we only use the RGB images as the input for training and testing.
Figure 5 shows some qualitative parsing results (top 20%).

We evaluate our method on three tasks: i) 3D layout estimation, ii) 3D object
detection, and iii) holistic scene understanding with all the 5050 testing images
of SUN RGB-D across all scene categories. The capability of generalization to
all the scene categories is difficult for most of the conventional methods due
to the inaccuracy of camera parameter estimation and severe sensitivity to the
occlusions in cluttered scenes. In this paper, we alleviate it by using the proposed
learning-based camera parameter estimation and a novel method to initialize
the geometric attributes. In addition, we also achieve the state-of-the-art results
in 2D layout estimation on LSUN dataset [55] and Hedau dataset [28]. The
implementation details, and additional results of camera parameter estimation
and 2D layout estimation are summarized in the supplementary material.

3D Layout Estimation: The 3D room layout is optimized using the pro-
posed joint inference. We compare the estimation by our method (with and
without joint inference) with 3DGP [19]. Following the evaluation protocol de-
fined in [45], we calculate the average Intersection over Union (IoU) between the
free space from the ground truth and the free space estimated by our method.
Table 1 shows our method outperforms 3DGP by a large margin. We also im-
prove the performance by 8.2% after jointly inferring the objects and layout,
demonstrating the usefulness of integrating the joint inference process.

Since IM2CAD [33] manually selected 484 images from living rooms and
bedrooms without releasing the image list, we compare our method with them
on the entire set of living rooms and bedrooms. Table 1 shows our method
surpasses IM2CAD, especially after incorporating the joint inference process.



Holistic 3D Scene Parsing and Reconstruction 13

Input RGB Image Initialization (2D) Initialization (3D) Result (2D) Result (3D) Result (Rendered)

Fig. 5: Qualitative results of the proposed method on SUN RGB-D dataset. The
joint inference significantly improves the performance over individual modules.

3D Object Detection: We evaluate our 3D object detection results using
the metrics defined in [45]. We compute the mean average precision (mAP) using
the 3D IoU between the predicted and ground truth 3D bounding boxes. In the
absence of depth, we adjust threshold IoU from 0.25 (evaluation setting with
depth as the input) to 0.15 and report our results in Table 2. 15 out of 30 object
categories are reported here due to the limited space; full table is reported in
the supplementary material. The results indicate our method not only exceeds
the detection score by a significant margin but also makes it possible to evaluate
the entire object categories. Note that although IM2CAD also evaluates the
detection, they use the metric related to a specified distance threshold. Here, we
also compare with IM2CAD on the subset with this special metric rather than
IoU threshold. We are able to obtain an mAP of 80.2%, higher than an mAP of
74.6% reported in the IM2CAD.

Holistic Scene Understanding: We estimate the detailed 3D scene in-
cluding both objects and room layout. Using the metrics proposed in [45], we
evaluate the geometric precision Pg, geometric recall Rg, and semantic recall Rr

with the IoU threshold set to 0.15. We also evaluate the IoU of the free space (3D
voxels inside the room polygon but outside any object bounding box) between
the ground truth and the estimation. Table 1 shows that the proposed method
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Table 3: Ablative analysis of our method on SUN RGB-D dataset. We evaluate on
holistic scene understanding under different settings. We denote support relation
as C1, physical constraint as C2 and human imagination as C3. Similarly, we
denote the setting of only optimizing the layout during inference as S4, only
optimizing the objects during inference as S5

Setting w/o C1 w/o C2 w/o C3 w/o (C1, C2, C3) S4 S5 All

IoU 42.3 41.3 43.8 38.4 39.4 36.3 44.7

Pg 29.3 23.5 32.1 19.4 14.9 28.4 34.4

Rg 17.4 15.6 20.4 12.4 11.2 19.7 24.1

Rr 14.1 10.5 16.5 8.7 8.6 13.3 19.2

demonstrates a significant improvement. Moreover, we improve the initializa-
tion result by 12.2% on geometric precision, 7.5% on geometric recall, 6.1% on
semantic recall, and 4.1% on free space estimation. The improvement of total
scene understanding indicates that the joint inference can largely improve the
performance of each task. Using the same setting with 3D layout estimation, we
compare with IM2CAD [33] and improve the free space IoU by 3.1%.

Ablative Analysis: The proposed HSG incorporates several key compo-
nents including supporting relations, physics constraints and latent human con-
textual relations. To analyze how each component would influence the final re-
sults, as well as how much the joint inference process would benefit each task,
we conduct the ablative analysis on holistic scene understanding under differ-
ent settings, through turning on and off certain components or skipping certain
steps during joint inference. The experiments are tested on the subset of offices
where we incorporate the latent human context. Table 3 summarizes the results.
Among all the energy terms we incorporate, physical constraints influence the
performance the most, which demonstrates the importance of the physical com-
mon sense during inference. It also reflects the efficiency of joint inference as the
performances would drop by a large margin without the iterative joint inference.

6 Conclusion

We present an analysis-by-synthesis framework to recover the 3D structure of
an indoor scene from a single RGB image using a stochastic grammar model
integrated with latent human context, geometry and physics. We demonstrate
the effectiveness of our algorithm from three perspectives: i) the joint inference
algorithm significantly improves results in various individual tasks and ii) out-
performs other methods; iii) ablative analysis shows each of module plays an
important role in the whole framework. In general, we believe this will be a step
towards a unifying framework for the holistic 3D scene understanding.
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