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Abstract. Current top-performing object detectors depend on deep C-
NN backbones, such as ResNet-101 and Inception, benefiting from their
powerful feature representations but suffering from high computational
costs. Conversely, some lightweight model based detectors fulfil real time
processing, while their accuracies are often criticized. In this paper, we
explore an alternative to build a fast and accurate detector by strength-
ening lightweight features using a hand-crafted mechanism. Inspired by
the structure of Receptive Fields (RFs) in human visual systems, we
propose a novel RF Block (RFB) module, which takes the relationship
between the size and eccentricity of RFs into account, to enhance the fea-
ture discriminability and robustness. We further assemble RFB to the
top of SSD, constructing the RFB Net detector. To evaluate its effec-
tiveness, experiments are conducted on two major benchmarks and the
results show that RFB Net is able to reach the performance of advanced
very deep detectors while keeping the real-time speed. Code is available
at https://github.com/ruinmessi/RFBNet.
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1 Introduction

In recent years, Region-based Convolutional Neural Networks (R-CNN) [8], a-
long with its representative updated descendants, e.g. Fast R-CNN [7] and Faster
R-CNN [26], have persistently promoted the performance of object detection on
major challenges and benchmarks, such as Pascal VOC [5], MS COCO [21],
and ILSVRC [27]. They formulate this issue as a two-stage problem and build
a typical pipeline, where the first phase hypothesizes category-agnostic object
proposals within the given image and the second phase classifies each proposal
according to CNN based deep features. It is generally accepted that in these
methods, CNN representation plays a crucial role, and the learned feature is
expected to deliver a high discriminative power encoding object characteristics
and a good robustness especially to moderate positional shifts (usually incurred
by inaccurate boxes). A number of very recent efforts have confirmed such a
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Fig. 1. Regularities in human population Receptive Field (pRF) properties. (A) pRF
size as a function of eccentricity in some human retinotopic maps, where two trends are
evident: (1) the pRF size increases with eccentricity in each map and (2) the pRF size
differs between maps. (B) The spatial array of the pRFs based on the parameters in
(A). The radius of each circle is the apparent RF size at the appropriate eccentricity.
Reproduced from [36] with the permission from J. Winawer and H. Horiguchi (https:
//archive.nyu.edu/handle/2451/33887).

fact. For instance, [11] and [15] extract features from deeper CNN backbones,
like ResNet [11] and Inception [31]; [19] introduces a top-down architecture to
construct feature pyramids, integrating low-level and high-level information; and
the latest top-performing Mask R-CNN [9] produces an RoIAlign layer to gen-
erate more precise regional features. All these methods adopt improved features
to reach better results; however, such features basically come from deeper neu-
ral networks with heavy computational costs, making them suffer from a low
inference speed.

To accelerate detection, a single-stage framework is investigated, where the
phase of object proposal generation is discarded. Although the pioneering at-
tempts, namely You Look Only Once (YOLO) [24] and Single Shot Detector
(SSD) [22], illustrate the ability of real-time processing, they tend to sacrifice
accuracies, with a clear drop ranging from 10% to 40% relative to state-of-the-
art two-stage solutions [20]. More recently, Deconvolutional SSD (DSSD) [6] and
RetinaNet [20] substantially ameliorate the precision scores, which are compa-
rable to the top ones reported by the two-stage detectors. Unfortunately their
performance gains are credited to the very deep ResNet-101 [11] model as well,
which limits the efficiency.

https://archive.nyu.edu/handle/2451/33887
https://archive.nyu.edu/handle/2451/33887
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According to the discussion above, to build a fast yet powerful detector, a
reasonable alternative is to enhance feature representation of the lightweight
network by bringing in certain hand-crafted mechanisms rather than stubbornly
deepening the model. On the other side, several discoveries in neuroscience reveal
that in human visual cortex, the size of population Receptive Field (pRF) is a
function of eccentricity in their retinotopic maps, and although varying between
maps, it increases with eccentricity in each map [36], as illustrated in Fig. 1. It
helps to highlight the importance of the region nearer to the center and elevate
the insensitivity to small spatial shifts. A few shallow descriptors coincidentally
make use of this mechanism to design [34,14,37] or learn [1,38,29] their pooling
schemes, and show good performance in matching image patches.

Regarding current deep learning models, they commonly set RFs at the same
size with a regular sampling grid on a feature map, which probably induces some
loss in the feature discriminability as well as robustness. Inception [33] considers
RFs of multiple sizes, and it implements this concept by launching multi-branch
CNNs with different convolution kernels. Its variants [32,31,16] achieve compet-
itive results in object detection (in the two-stage framework) and classification
tasks. However, all kernels in Inception are sampled at the same center. A sim-
ilar idea appears in [3], where an Atrous Spatial Pyramid Pooling (ASPP) is
exploited to capture multi-scale information. It applies several parallel convolu-
tions with different atrous rates on the top feature map to vary the sampling
distance from the center, which proves effective in semantic segmentation. But
the features only have a uniform resolution from previous convolution layers of
the same kernel size, and compared to the daisy shaped ones, the resulting fea-
ture tends to be less distinctive. Deformable CNN [4] attempts to adaptively
adjust the spatial distribution of RFs according to the scale and shape of the
object. Although its sampling grid is flexible, the impact of eccentricity of RFs
is not taken into account, where all pixels in an RF contribute equally to the
output response and the most important information is not emphasized.

Inspired by the structure of RFs in the human visual system, this paper pro-
poses a novel module, namely Receptive Field Block (RFB), to strengthen the
deep features learned from lightweight CNN models so that they can contribute
to fast and accurate detectors. Specifically, RFB makes use of multi-branch pool-
ing with varying kernels corresponding to RFs of different sizes, applies dilated
convolution layers to control their eccentricities, and reshapes them to generate
final representation, as in Fig. 2. We then assemble the RFB module to the top
of SSD [22], a real-time approach with a lightweight backbone, and construct
an advanced one-stage detector (RFB Net). Thanks to such a simple module,
RFB Net delivers relatively decent scores that are comparable to the ones of
up-to-date deeper backbone network based detectors [19,18,20] and retains the
fast speed of the original lightweight detector. Additionally, the RFB module is
generic and imposes few constraints on the network architecture.

Our main contributions can be summarized as follows:
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Fig. 2. Construction of the RFB module by combining multiple branches with different
kernels and dilated convolution layers. Multiple kernels are analogous to the pRFs of
varying sizes, while dilated convolution layers assign each branch with an individual
eccentricity to simulate the ratio between the size and eccentricity of the pRF. With
a concatenation and 1×1 conv in all the branches, the final spatial array of RF is
produced, which is similar to that in human visual systems, as depicted in Fig. 1.

1. We propose the RFB module to simulate the configuration in terms of the
size and eccentricity of RFs in human visual systems, aiming to enhance
deep features of lightweight CNN networks.

2. We present the RFB Net based detector, and by simply replacing the top
convolution layers of SSD [22] with RFB, it shows significant performance
gain while still keeping the computational cost under control.

3. We show that RFB Net achieves state-of-the-art results on the Pascal VOC
and MS COCO at a real time processing speed, and demonstrate the gener-
alization ability of RFB by linking it to MobileNet [12].

2 Related Work

Two-stage detector: R-CNN [8] straightforwardly combines the steps of crop-
ping box proposals like Selective Search [35] and classifying them through a CN-
N model, yielding a significant accuracy gain compared to traditional methods,
which opens the deep learning era in object detection. Its descendants (e.g., Fast
R-CNN [7], Faster R-CNN [26]) update the two-stage framework and achieve
dominant performance. Besides, a number of effective extensions are proposed
to further improve the detection accuracy, such as R-FCN [17], FPN [19], Mask
R-CNN [9].

One-stage detector: The most representative one-stage detectors are Y-
OLO [24,25] and SSD [22]. They predict confidences and locations for multiple
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objects based on the whole feature map. Both the detectors adopt lightweight
backbones for acceleration, while their accuracies apparently trail those of top
two-stage methods.

Recent more advanced single-stage detectors (e.g., DSSD [6] and RetinaNet
[20]) update their original lightweight backbones by the deeper ResNet-101 and
apply certain techniques, such as deconvolution [6] or Focal Loss [20], whose
scores are comparable and even superior to the ones of state-of-the-art two-stage
methods. However, such performance gains largely consume their advantage in
speed.

Receptive field: Recall that in this study, we aim to improve the perfor-
mance of high-speed single-stage detectors without incurring too much com-
putational burden. Therefore, instead of applying very deep backbones, RFB,
imitating the mechanism of RFs in the human visual system, is used to enhance
lightweight model based feature representation. Actually, there exist several s-
tudies that discuss RFs in CNN, and the most related ones are the Inception
family [33,32,31], ASPP [3], and Deformable CNN [4].

The Inception block adopts multiple branches with different kernel sizes to
capture multi-scale information. However, all the kernels are sampled at the same
center, which requires much larger ones to reach the same sampling coverage and
thus loses some crucial details. For ASPP, dilated convolution varies the sam-
pling distance from the center, but the features have a uniform resolution from
the previous convolution layers of the same kernel size, which treats the clues
at all the positions equally, probably leading to confusion between object and
context. Deformable CNN [4] learns distinctive resolutions of individual objects,
unfortunately it holds the same downside as ASPP. RFB is indeed different from
them, and it highlights the relationship between RF size and eccentricity in a
daisy-shape configuration, where bigger weights are assigned to the positions
nearer to the center by smaller kernels, claiming that they are more important
than the farther ones. See Fig. 3 for differences of the four typical spatial RF
structures. On the other side, Inception and ASPP have not been successfully
adopted to improve one-stage detectors, while RFB shows an effective way to
make use of their advantages in this issue.

3 Method

In this section, we revisit the human visual cortex, introduce our RFB compo-
nents and the way to simulate such a mechanism, and describe the architecture
of the RFB Net detector as well as its training/testing schedule.

3.1 Visual Cortex Revisit

During the past few decades, it has come true that functional Magnetic Res-
onance Imaging (fMRI) non-invasively measures human brain activities at a
resolution in millimeter, and RF modeling has become an important sensory sci-
ence tool used to predict responses and clarify brain computations. Since human
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Fig. 3. Four typical structures of Spatial RFs. (a) shows the kernels of multiple sizes in
Inception. (b) demonstrates the daisy-like pooling configuration in ASPP. (c) adopts
deformable conv to produce an adaptive RF according to object characteristics. (d)
illustrates the mechanism of RFB. The color map of each structure is the effective
RF derived from one correspondent layer in the trained model, depicted by the same
gradient back-propagation method in [23]. In (a) and (b), we adjust the RF sizes in
original Inception and ASPP for fair comparison.

neuroscience instruments often observe the pooled responses of many neurons,
these models are thus commonly called pRF models [36]. Based on fMRI and
pRF modeling, it is possible to investigate the relation across many visual field
maps in the cortex. At each cortical map, researchers find a positive correlation
between pRF size and eccentricity [36], while the coefficient of correlation varies
in visual field maps, as shown in Fig. 1.

3.2 Receptive Field Block

The proposed RFB is a multi-branch convolutional block. Its inner structure
can be divided into two components: the multi-branch convolution layer with
different kernels and the trailing dilated pooling or convolution layers. The for-
mer part is identical to that of Inception, responsible for simulating the pRFs of
multiple sizes, and the latter part reproduces the relation between the pRF size
and eccentricity in the human visual system. Fig. 2 illustrates RFB along with
its corresponding spatial pooling region maps. We elaborate the two parts and
their functions in detail in the following.

Multi-branch convolution layer: According to the definition of RF in
CNNs, it is a simple and natural way to apply different kernels to achieve multi-
size RFs, which is supposed to be superior to the RFs that share a fixed size.

We adopt the latest changes in the updated versions, i.e., Inception V4 and
Inception-ResNet V2 [31] in the Inception family. To be specific, first, we employ
the bottleneck structure in each branch, consisting of a 1 × 1 conv-layer, to
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Fig. 4. The architectures of RFB and RFB-s. RFB-s is employed to mimic smaller
pRFs in shallow human retinotopic maps, using more branches with smaller kernels.
Following [32], we use two layers of 3 × 3 conv replacing 5 × 5 to reduce parameters,
which is not shown for better visualization.

decrease the number of channels in the feature map plus an n × n conv-layer.
Second, we replace the 5×5 conv-layer by two stacked 3×3 conv-layers to reduce
parameters and deeper non-linear layers. For the same reason, we use a 1 × n

plus an n×1 conv-layer to take place of the original n×n conv-layer. Ultimately,
we apply the shortcut design from ResNet [11] and Inception-ResNet V2 [31].

Dilated pooling or convolution layer: This concept is originally intro-
duced in Deeplab [2], which is also named the astrous convolution layer. The
basic intention of this structure is to generate feature maps of a higher reso-
lution, capturing information at a larger area with more context while keeping
the same number of parameters. This design has rapidly proved competent at
semantic segmentation [3], and has also been adopted in some reputable object
detectors, such as SSD [22] and R-FCN [17], to elevate speed or/and accuracy.

In this paper, we exploit dilated convolution to simulate the impact of the
eccentricities of pRFs in the human visual cortex. Fig. 4 illustrates two com-
binations of multi-branch convolution layer and dilated pooling or convolution
layer. At each branch, the convolution layer of a particular kernel size is followed
by a pooling or convolution layer with a corresponding dilation. The kernel size
and dilation have a similar positive functional relation as that of the size and
eccentricity of pRFs in the visual cortex. Eventually, the feature maps of all the
branches are concatenated, merging into a spatial pooling or convolution array
as in Fig. 1.

The specific parameters of RFB, e.g., kernel size, dilation of each branch, and
number of branches, are slightly different at each position within the detector,
which are clarified in the next section.

3.3 RFB Net Detection Architecture

The proposed RFB Net detector reuses the multi-scale and one-stage framework
of SSD [22], where the RFB module is embedded to ameliorate the feature ex-
tracted from the lightweight backbone so that the detector is more accurate and
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Fig. 5. The pipeline of RFB-Net300. The conv4 3 feature map is tailed by RFB-s which
has smaller RFs and an RFB module with stride 2 is produced by operating 2-stride
multi-kernel conv-layers in the original RFB.

still fast enough. Thanks to the property of RFB for easily being integrated into
CNNs, we can preserve the SSD architecture as much as possible. The main
modification lies in replacing the top convolution layers with RFB, and some
minor but active ones are given in Fig. 5.

Lightweight backbone: We use exactly the same backbone network as in
SSD [22]. In brief, it is a VGG16 [30] architecture pre-trained on the ILSVRC
CLS-LOC dataset [27], where its fc6 and fc7 layers are converted to convolutional
layers with sub-sampling parameters, and its pool5 layer is changed from 2×2-s2
to 3×3-s1. The dilated convolution layer is used to fill holes and all the dropout
layers and the fc8 layer are removed. Even though many accomplished lightweight
networks have recently been proposed (e.g. DarkNet [25], MobileNet [12], and
ShuffleNet [39]), we focus on this backbone to achieve direct comparison to the
original SSD [22].

RFB on multi-scale feature maps: In the original SSD [22], the base
network is followed by a cascade of convolutional layers to form a series of feature
maps with consecutively decreasing spatial resolutions and increasing fields of
view. In our implementation, we keep the same cascade structure of SSD, but the
front convolutional layers with feature maps of relatively large resolutions are
replaced by the RFB module. In the primary version of RFB, we use a a single
structure setting to imitate the impact of eccentricity. As the rate of the size
and eccentricity of pRF differs between visual maps, we correspondingly adjust
the parameters of RFB to form an RFB-s module, which mimics smaller pRFs
in shallow human retinotopic maps, and put it behind the conv4 3 features, as
illustrated in Fig. 4 and Fig. 5. The last few convolutional layers are preserved
since the resolutions of their feature maps are too small to apply filters with
large kernels like 5× 5.
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3.4 Training Settings

We implement our RFB Net detector based on the framework of Pytorch1, u-
tilizing several parts of open source infrastructures provided by the ssd.pytorch
repository2. Our training strategies mostly follow SSD, including data augmen-
tation, hard negative mining, scale and aspect ratios for default boxes, and loss
functions (e.g., smooth L1 loss for localization and softmax loss for classification),
while we slightly change our learning rate scheduling for better accommodation
of RFB. More details are given in the following section of experiments. All new
conv-layers are initialized with the MSRA method [10].

4 Experiments

We conduct experiments on the Pascal VOC 2007 [5] and MS COCO [21] dataset-
s, which have 20 and 80 object categories respectively. In VOC 2007, a predicted
bounding box is positive if its Intersection over Union (IoU) with the ground
truth is higher than 0.5, while in COCO, it uses various thresholds for more
comprehensive calculation. The metric to evaluate detection performance is the
mean Average Precision (mAP).

4.1 Pascal VOC 2007

In this experiment, we train our RFB Net on the union of 2007 trainval set and
2012 trainval set. We set the batch size at 32 and the initial learning rate at 10−3

as in the original SSD [22], but it makes the training process not so stable as the
loss drastically fluctuates. Instead, we use a “warmup” strategy that gradually
ramps up the learning rate from 10−6 to 4×10−3 at the first 5 epochs. After the
“warmup” phase, it goes back to the original learning rate schedule, divided by
10 at 150 and 200 epochs. The total number of training epochs is 250. Following
[22], we utilize a weight decay of 0.0005 and a momentum of 0.9.

Table 1 shows the comparison between our results and the state of the art
ones on the VOC2007 test set. SSD300* and SSD512* are the updated SSD
results with an expansion of data augmentation [22], which zooms out the images
to create more small examples. For fair comparison, we reimplement SSD with
Pytorch-0.3.0 and CUDNN V6, the same environment as that of RFB Net. By
integrating the RFB layers, our basic model, i.e. RFB Net300, outperforms SSD
and YOLO with an mAP of 80.5%, while keeping the real-time speed as SSD300.
It even reaches the same accuracy with R-FCN [17], the advanced model under
the two-stage framework. RFB Net512 achieves the mAP of 82.2% with a larger
input size, better than most one stage and two stage object detection systems
equipped with very deep base backbone networks, while still running at a high
speed.

1 https://pytorch.org/
2 https://github.com/amdegroot/ssd.pytorch
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Method Backbone Data mAP(%) FPS

Faster [26] VGG 07+12 73.2 7
Faster [11] ResNet-101 07+12 76.4 5
R-FCN [17] ResNet-101 07+12 80.5 9
YOLOv2 544 [25] Darknet 07+12 78.6 40

R-FCN w Deformable CNN [4] ResNet-101 07+12 82.6 8†

SSD300* [22] VGG 07+12 77.2 120‡

DSSD321 [6] ResNet-101 07+12 78.6 9.5
RFB Net300 VGG 07+12 80.5 83

SSD512* [22] VGG 07+12 79.8 50‡

DSSD513 [6] ResNet-101 07+12 81.5 5.5
RFB Net512 VGG 07+12 82.2 38
† Extrapolated time
‡ Tested in Pytorch-0.3.0 and CUDNN V6 for fair comparison

Table 1. Comparison of detection methods on the PASCAL VOC 2007 test set. All
runtime information is computed on a Graphics card of Geforce GTX Titan X (Maxwell
architecture).

4.2 Ablation Study

RFB module: For better understanding RFB, we investigate the impact of
each component in its design and compare RFB with some similar structures.
The results are summarized in Table 2 and Table 3. As displayed in Table 2, the
original SSD300 with new data augmentation achieves a 77.2% mAP. By simply
replacing the last convolution layer with the RFB-max pooling, we can see that
the result is improved to 79.1%, delivering a gain of 1.9%, which indicates that
the RFB module is effective in detection.

Cortex map simulation: As described in Sec.3.3, we tune our RFB param-
eters to simulate the ratio between the size and eccentricity of pRFs in cortex
maps. This adjustment boosts the performance by 0.5% (from 79.1% to 79.6%)
for RFB max pooling and 0.4% for RFB dilated conv (from 80.1% to 80.5%),
which validates the mechanism in human visual systems (Table 2).

More prior anchors: The original SSD associates only 4 default boxes at
conv4 3, conv10 2, and conv11 2 feature map locations and 6 default anchors
for all the other layers. Recent research [13] claims that low level features are
critical to detecting small objects. We thus suppose that performance, especially
that of small instances, tends to increase if more anchors are added in low level
feature maps like conv4 3. In the experiment, we put 6 default priors at conv4 3,
and it has no influence on the original SSD, while it further improves 0.2% (from
79.6% to 79.8%) for our RFB model (Table 2).

Dilated convolutional layer: In early experiments, we choose dilated pool-
ing layers for RFB to avoid incurring additional parameters, but these stationary
pooling strategies limit feature fusion of RFs of multiple sizes. When picking the
dilated convolutional layer, we find that it raises the accuracy by 0.7% (from
79.8% to 80.5%) without slowing down the inference speed (Table 2).
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SSD* RFB

RFB-max pooling? ! ! !

Add RFB-s? ! ! ! !

More Prior? ! ! ! !

RFB-avg pooling? !

RFB-dilated conv? ! !

77.2 79.1 79.6 79.8 79.8 80.1 80.5

Table 2. Effectiveness of various designs on the VOC 2007 test set (refer to Section 3.3
and Section 4.2 for more details).

Comparison with other architectures: We also compare our RFB with
Inception [33], ASPP [3] and Deformable CNN [4]. For Inception, besides the
original version, we change its parameters so that it has the same RF size as
RFB does (termed “Inception-L”). For ASPP, its primary parameters are tuned
in image segmentation [3] and the RFs are too large for detection, and in our
experiment, we set it at the same size as in RFB as well (termed “ASPP-S”).
Fig. 3 shows a visualized comparison in their structures. Simply, we individually
mount these structures on the top layer of the detector as in Fig. 5 and keep
the same training schedule and almost the same number of parameters. Their
evaluations on the Pascal VOC and MS COCO are recorded in Table 3, and
we can see that our RFB performs best. It points out that the dedicated RFB
structure indeed contributes to the detection precision, as it has a larger effective
RF than the counterparts (see an example in Fig. 3).

Architecture #parameters VOC 2007 mAP (%) COCO minival mAP (%)

RFB 34.5M 80.1 29.7

Inception [33] 32.9M 78.4 27.3
Inception-L 33.3M 79.5 28.5
ASPP-S 33.4M 79.7 28.1
Deformable CNN [4] 35.2M 79.5 27.6

Table 3. Comparison of different blocks on VOC 2007 test and MS COCOminival2014.

4.3 Microsoft COCO

To further validate the proposed RFB module, we carry out experiments on the
MS COCO dataset. Following [22,20], we use the trainval35k set (train set +
val 35k set) for training and set the batch size at 32. We keep the original SSD
strategy that decreases the size of default boxes, since objects in COCO are
smaller than those in PASCAL VOC. At the begin of training, we still apply the
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“warmup” technique that progressively increases the learning rate from 10−6 to
2 × 10−3 at the first 5 epochs, then decrease it after 80 and 100 epochs by the
factor of 10, and end up at 120.

From Table 4, it can be seen that RFB Net300 achieves 30.3%/49.3% on the
test-dev set, which surpasses the baseline score of SSD300* with a large margin,
and even equals to that of R-FCN [17] which employs ResNet-101 as the base
net with a larger input size (600×1000) under the two stage framework.

Regarding the bigger model, the result of RFB Net512 is slightly inferior to
but still comparable to the one of the recent advanced one-stage model Reti-
naNet500 (33.8% vs. 34.4%). However, it should be noted that RetinaNet makes
use of the deep ResNet-101-FPN backbone and a new loss to make learning focus
on hard examples, while our RFB Net is only built on a lightweight VGG model.
On the other hand, we can see that RFB Net500 averagely consumes 30 ms per
image, while RetinaNet needs 90 ms.

One may notice that RetinaNet800 [20] reports the top accuracy (39.1%)
based on a very high resolution up to 800 pixels. Although it is well known that
a larger input image size commonly yields higher performance, it is out of the
scope of this study, where an accurate and fast detector is pursued. Instead, we
consider two efficient updates: (1) to up-sample the conv7 fc feature maps and
concat it with the conv4 3 before applying the RFB-s module, sharing a similar
strategy as in FPN [19]; and (2) to add a branch with a 7× 7 kernel in all RFB
layers. As we can see in Table 4, they further increase the performance, making
the best score in this study at 34.4% (denoted as RFB Net512-E), while the
computational cost only marginally ascends.

Method Backbone Time
Avg. Precision, IoU: Avg. Precision, Area:
0.5:0.95 0.5 0.75 S M L

Faster [26] VGG 147 ms 24.2 45.3 23.5 7.7 26.4 37.1
Faster+++ [11] ResNet-101 3.36 s 34.9 55.7 37.4 15.6 38.7 50.9

Faster w FPN [19] ResNet-101-FPN 240 ms 36.2 59.1 39.0 18.2 39.0 48.2
Faster by G-RMI [15] Inception-Resnet-v2 [31] – 34.7 55.5 36.7 13.5 38.1 52.0

R-FCN [17] ResNet-101 110 ms 29.9 51.9 – 10.8 32.8 45.0

R-FCN w Deformable CNN [4] ResNet-101 125ms† 34.5 55.0 – 14.0 37.7 50.3
Mask R-CNN [9] ResNext-101-FPN 210 ms 37.1 60.0 39.4 16.9 39.9 53.5

YOLOv2 [25] darknet 25 ms 21.6 44.0 19.2 5.0 22.4 35.5

SSD300* [22] VGG 12 ms‡ 25.1 43.1 25.8 – – –

SSD512* [22] VGG 28 ms‡ 28.8 48.5 30.3 – – –
DSSD513 [6] ResNet-101 182 ms 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet500 [20] ResNet-101-FPN 90 ms 34.4 53.1 36.8 14.7 38.5 49.1
RetinaNet800 [20] ResNet-101-FPN 198 ms 39.1 59.1 42.3 21.8 42.7 50.2

RFB Net300 VGG 15 ms 30.3 49.3 31.8 11.8 31.9 45.9
RFB Net512 VGG 30 ms 33.8 54.2 35.9 16.2 37.1 47.4

RFB Net512-E VGG 33 ms 34.4 55.7 36.4 17.6 37.0 47.6
† Extrapolated time
‡ Tested in Pytorch-0.3.0 and CUDNN V6 for fair comparison

Table 4. Detection performance on the COCO test-dev 2015 dataset. Almost all the
methods are measured on the Nvidia Titan X (Maxwell architecture) GPU, except
RetinaNet, Mask R-CNN and FPN (Nvidia M40 GPU).
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[G] Retina-101-800 [20] 39.1 198

RFB-Net300 30.3 15
RFB-Net512 33.8 30
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Fig. 6. Speed (ms) vs. accuracy (mAP) on MS COCO test-dev. Enabled by the pro-
posed RFB module, our single one-stage detector surpasses all existing high frame rate
detectors, including the best reported one-stage system Retina-50-500 [20].

5 Discussion

Inference speed comparison: In Table 1 and Fig. 6, we show speed compar-
ison to other recent top-performing detectors. In our experiments, the inference
speeds in different datasets have slight variations, since MS COCO has 80 cat-
egories and average dense instances consume more time on the NMS process.
Table 1 shows that our RFB Net300 is the most accurate one (80.5% mAP) a-
mong the real-time detectors and runs at 83 fps in Pascal VOC, and RFB Net512
provides more accurate results still with a speed of 38 fps. In Fig. 6, we follow
[20] to plot the speed/accuracy trade-off curve for RFB Net, and compare it to
RetinaNet [20] and other recent methods on the MS COCO test-dev set. This
plot displays that our RFB Net forms an upper envelope among all the real-time
detectors. In particular, RFB Net300 keeps a high speed (66 fps) while outper-
forming all the high frame rate counterparts. Note that they are measured on
the same Titan X (Maxwell architecture) GPU, except RetinaNet (Nvidia M40
GPU).

Other lightweight backbone: Although the base backbone we use is a
reduced VGG16 version, it still has a large number of parameters compared
with those recent advanced lightweight networks, e.g., MobileNet [12], DarkNet
[25], and ShuffleNet [39]. To further test the generalization ability of the RFB
module, we link RFB to MobileNet-SSD [12]. Following [12], we train it on the
MS COCO train+val35k dataset with the same schedule and make evaluation
on minival. Table 5 shows that RFB still increases the accuracy of the MobileNet
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backbone with limited additional layers and parameters. This suggests its great
potential for applications on low-end devices.

Training from scratch: We also notice another interesting property of the
RFB module, i.e. efficiently training the object detector from scratch. Recently,
according to [28], training without using pre-trained backbones is discovered
to be a hard task, where all the structures of base nets fail to be trained from
scratch in the two-stage framework and the prevalent CNNs (ResNet or VGG) in
the one-stage framework successfully converge with much worse results. Deeply
Supervised Object Detectors (DSOD) [28] proposes a lightweight structure which
achieves a 77.7% mAP on the VOC 2007 test set without pre-training, but it
does not promote the performance when using pre-trained network. We train our
RFB Net300 on the VOC 07+12 trainval set from scratch and reach a 77.6%
mAP on the same test set, which is comparable to DSOD. It is worth noting
that our pre-trained version boosts the performance to 80.5%.

Framework Model mAP (%) #parameters

SSD 300 MobileNet [12] 19.3% 6.8M

SSD 300 MobileNet+RFB 20.7% 7.4M
Table 5. Accuracies on MS COCO minival2014 using MobileNet as the backbone.

6 Conclusion

In this paper, we propose a fast yet powerful object detector. In contrast to the
widely employed way that greatly deepens the backbone, we choose to enhance
feature representation of lightweight networks by bringing in a hand-crafted
mechanism, namely Receptive Field Block (RFB), which imitates the structure
of RF in human visual systems. RFB measures the relationship between the size
and eccentricity of RFs, and generates more discriminative and robust features.
RFB is equipped on the top of lightweight CNN based SSD, and the resulting
detector delivers a significant performance gain on the Pascal VOC and MS
COCO databases, where the final accuracies are even comparable to those of
existing top-performing deeper model based detectors. In addition, it retains the
advantage in processing speed of lightweight models.
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