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Abstract. This paper considers an architecture for multimodal video
categorization referred to as Pivot Correlational Neural Network (Pivot
CorrNN). The architecture consists of modal-specific streams dedicated
exclusively to one specific modal input as well as modal-agnostic pivot
stream that considers all modal inputs without distinction, and the archi-
tecture tries to refine the pivot prediction based on modal-specific predic-
tions. The Pivot CorrNN consists of three modules: (1) maximizing pivot-
correlation module that maximizes the correlation between the hidden
states as well as the predictions of the modal-agnostic pivot stream and
modal-specific streams in the network, (2) contextual Gated Recurrent
Unit (cGRU) module which extends the capability of a generic GRU to
take multimodal inputs in updating the pivot hidden-state, and (3) adap-
tive aggregation module that aggregates all modal-specific predictions as
well as the modal-agnostic pivot predictions into one final prediction. We
evaluate the Pivot CorrNN on two publicly available large-scale multi-
modal video categorization datasets, FCVID and YouTube-8M. From the
experimental results, Pivot CorrNN achieves the best performance on the
FCVID database and performance comparable to the state-of-the-art on
YouTube-8M database.

Keywords: Video categorization · Multimodal representation · Sequen-
tial modeling · Deep learning

1 Introduction

Multimodal video categorization is a task for predicting the categories of a
given video based on different modal inputs which may have been captured
using diverse mixture of sensors and softwares in securing different modalities
of the video. Fig. 1 shows four video examples from the FCVID dataset with
groundtruth and top 3 scores obtained from the proposed algorithm referred to
as Pivot CorrNN. Fortifying and supplementing among different modalities for
more accurate overall prediction is a key technology that can drive future inno-
vation in better understanding and recognizing the contents in a video. Emerg-
ing applications includes video surveillance, video recommendation, autonomous
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driving and sports video analysis system. The use of deep Convolutional Neural
Networks (CNNs) has lead to many dramatic progress across different tasks but
generally confined to a single modality- often in the form of an image, speech or
text- with an optional association with an auxiliary modality such as a text query.
Indeed, studies leveraging on synergistic relationship across multiple modalities
have been scarce so far.

Considerable studies have been dedicated to the topic of video categoriza-
tion, but these have mainly been visual. Auditory modality has very often been
ignored. Some notable past studies have focused on spatio-temporal visual rep-
resentation. Karpathy et al. [19] trained a deep CNN on large video dataset
while investigating the effectiveness of various temporal fusion. Tran et al. [29]
extended conventional two dimensional convolution operation to three dimen-
sional for considering spatio-temporal information in a video.

Other studies have focused on utilizing motion modality alongside with visual
appearance modality. Donahue et al. [9] studied and compared the behaviors
of various configurations of CNN-LSTM combination. Here, the outputs of two
CNN-LSTM combination- one taking RGB image as input while the other taking
flow image- are merged in making the final prediction. In the two stream networks
[10,11,25], two separate CNN streams- one taking static image as input while the
other taking optical flow- are considered, and intermediate features of the two
streams leading up to the final prediction are fused either by the summation [10]
or multiplicative operations [11].

Auditory modality has also been considered in a minor way. Jiang et al. [18]
proposed regularized DNN (rDNN) which jointly exploits the feature (including
audio features) and class relationship to model video semantics. Miech et al [23]
considered an architecture with two learnable pooling layers- one taking visual
input while the other taking audio input- that are merged by a fully connected
layer and gated for final prediction.

Although considerable advances have been made in video categorization,
there are still many unresolved issues to be investigated. First, it is often difficult
to determine the relationship among heterogeneous modalities especially when
the modalities involve different entities such it is difficult to determine the rela-
tionship between the modalities. For example, static image and its optical flow
which involve a common entity- in this case, the pixels- can be easily be fused in
the same spatial domain, while it is non-trvial to learn the relationship between
static images and audio signals of the video. Second, multimodal sequential mod-
eling should consider the complementary relationship between modalities with
their contextual information. Information relevant for categorization vary across
time due to various reasons such as occlusion and noise. It maybe more appropri-
ate to emphasize one modality over the other. Third, depending on the category,
one modality will provide far more significant information about the category
than the other, and this needs to be taken into account. Most categories are
defined well in the visual domain while there are categories better defined in the
auditory domain. As depicted by Wang et al. [31], in most of the misclassifica-
tion cases, there exists one modality that is failing while the other is correct. In
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Fig. 1: Four video examples from the FCVID dataset with groundtruth and top3
scores obtained from the proposed algorithm referred to as Pivot CorrNN.

this case, it is necessary to develop a model considering the level of confidence
for each modality prediction.

To overcome the above issues, this paper considers an architecture for mul-
timodal video categorization referred to as Pivot Correlational Neural Network
(Pivot CorrNN). It is trained to maximize the correlation between the hidden
states as well as the predictions of the modal-agnostic pivot stream and modal-
specific streams in the network, and to refine the pivot prediction based on
modal-specific predictions. Here, the modal-agnostic pivot hidden state consid-
ers all modal inputs without distinction while the modal-specific hidden state is
dedicated exclusively to one specific modal input. The Pivot CorrNN consists of
three modules: (1) maximizing pivot-correlation module that attempts to maxi-
mally correlate the hidden states as well as the predictions of the modal-agnostic
pivot stream and modal-specific streams in the network, (2) contextual Gated
Recurrent Unit (cGRU) module which extends the capability of a generic GRU
to take multimodal inputs in updating the pivot hidden-state, and (3) adaptive
aggregation module that aggregates all modal-specific predictions as well as the
modal-agnostic pivot predictions into one final prediction. The maximizing pivot
correlation module that provides guidance for co-occurrence between modal-
agnostic pivot and modal-specific hidden states as well as their predictions. The
contextual Gated Recurrent Unit (cGRU) module which models time-varying
contextual information among modalities. When making the final prediction,
the adaptive aggregation module considers the confidence of each modality.

The rest of the paper is organized as follows. Section 2 reviews previous
studies on video categorization and multimodal learning. Section 3 discusses
proposed architecture in detail. Section 4 presents experimental results, and
finally, Section 5 concludes the paper.
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2 Multimodal Learning

In this section, multimodal learning is briefly reviewed. Some related works on
multimodal representation learning are introduced.

Deep learning has been shown to have the capability to model multiple
modalities for useful representations [3, 24, 27]. Generally speaking, the main-
stream of multimodal representation learning falls into two methods: joint repre-
sentation learning and coordinated representation learning. Joint representation
learning. It learns a joint representation of input modalities can be obtained
by concatenation, element-wise summation, and element-wise multiplication, as
output of a neural network. The second method is based on similarity of sepa-
rate representations. It learns a separate representation of each input modalities
while each representation is constrained to be similiar with other modalities.

Research focus on the first method aims to make joint representation using
various first and second order interactions between features. Ngiam et al. [24]
propose a deep autoencoder based architecture for joint representation learning
of video and audio modality. Self-reconstruction and cross-reconstruction are uti-
lized to learn joint representation for audio-visual speech recognition. Srivastava
et al. [27] propose a Deep Boltzmann Machine (DBM) based architecture to learn
a joint density model over the space of multimodal inputs. Joint representation
can be obtained even though there exist some missing modalities through Gibbs
sampling. Antol et al. [4] propose deep neural network based architecture for
VQA. The element-wise multiplication is performed to fuse image features and
text features and obtain joint representation. Outer product is also used to fuse
input modalities [6, 13, 20]. Since the fully parameterized bilinear model (using
the outer product) becomes intractable due to the number of parameters, simpli-
fication or approximation of model complexity is needed. Fukui et al. [13] project
outer product to lower dimensional space using count-sketch projection, Kim et

al. [20] constrain the rank of resulting tensor and Ben-Younes et al. [6] utilize
tucker decomposition to reduce the number of parameters while preserving the
model complexity.

Research focus on the second method aims to make separate representation,
and a loss function is incorporated to reduce the distance between the represen-
tations. Similarity measure such as inner product or cosine similarity can be used
for coordinated representation. Weston et al. [32] propose WSABIE which uses
inner product to measure similarity. The inner product between image feature
and textual feature is calculated and maximized so that corresponding image and
annotation would have a high similarity between them. Frome et al. [12] propose
DeViSE for visual-semantic embedding. DeViSE uses a hinge ranking loss func-
tion and an inner product similar to WSABIE but utilizes deep architecture to
extract the image and textual feature. Huang et al. [16] utilize cosine similarity
to measure the similarity between query and document. The similarity is directly
used to predict posterior probability among documents. Research focus on co-
ordinated representation is based on canonical correlation analysis (CCA) [15].
The CCA is the methods that aim to learn separate representation for each
modality while the correlation between them is maximized simultaneously. An-
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drew et al. [3] propose Deep CCA (DCCA) which is a DNN extension of CCA.
The DCCA learns a nonlinear projection using deep networks such that the re-
sulting representations are highly linearly correlated with different view images.
Wang et al. [30] propose deep canonically correlated autoencoders (DCCAE)
which is a DNN-based model combining CCA and autoencoder-based terms.
The DCCAE jointly optimizes autoencoder (AE) objective (reconstruction er-
ror) and canonical correlation objective. Chandar et al. [7] propose correlational
neural networks (CorrNet) which is similar to the DCCAE in terms of jointly
using reconstruction objective and correlation maximization objective. However,
CorrNet only maximizes the empirical correlation within a mini-batch instead
of CCA constraints maximizing canonical correlation.

3 Pivot Correlational Neural Network

Fig. 2: Block diagram of the proposed Pivot CorrNN in a bi-modal scenario. The
Pivot CorrNN is composed of three modules: (a) Contextual Gated Recurrent
Unit, (b) Maximizing Pivot Correlations, and (c) Adaptive Aggregation

In this section, the Pivot CorrNN and its modules are described. The pro-
posed Pivot CorrNN is composed of three modules: contextual GRU (cGRU)
module, maximizing pivot correlation module and adaptive aggregation mod-
ule. The proposed Pivot CorrNN can be generalized for M modalities using M

modal-specific GRUs and one modal-agnostic cGRU with its classifiers.
Fig. 2 shows the overall block diagram of the Pivot CorrNN illustrating the

connections between modules for sequential bi-modal scenario. In the sequential
bi-modal case which involves two sequential modal inputs X1 = {xt

1}
T
t=1 and

X2 = {xt
2}

T
t=1, the Pivot CorrNN fuses the two inputs and then predicts a label

ŷ corresponding to the two inputs. Two GRUs and one cGRU are utilized for
obtaining two separate modal-specific hidden states (h1 and h2) and one pivot
hidden state hpivot. Each hidden state is fed to its classifier for predicting cor-
responding labels (ŷ1, ŷ2, and ŷpivot). During training proposed Pivot CorrNN,



6 S. Kang et al.

maximizing pivot correlation module measures the correlations on both hidden
state and label prediction between modal-specific and modal-agnostic pivot, and
maximizes them. To produce final prediction ŷ, adaptive aggregation module is
involved.

The details of proposed the cGRU, maximizing pivot correlation, and adap-
tive aggregation modules are introduced in Section. 3.1, 3.2, and 3.3, respectively.

3.1 Contextual Gated Recurrent Units (cGRU)

Fig. 3: Illustration of the cGRU. Gating masks α1, and α2 are introduced to
control contextual flow of each modality input based on previous hidden pivot
state and other modality input.

The proposed contextual GRU (cGRU) is an extension of the GRU [8] that
combines many modal inputs into one by concatenating the weighted inputs
before the usual process of GRU takes over. The weight place on a particular
modal input is determined by considering the hidden state of the cGRU and
other modal inputs excluding itself.

Fig. 3 illustrates a particular cGRU taking two modal inputs xt
1 and xt

2 at
time step t and updating its hidden state ht−1

pivot to ht
pivot. After going through

all the input sequence from t = 1 through t = T , the final modal-agnostic pivot
hidden-state hpivot is presented to the pivot classifier.

To model time-varying contextual information of each modality, two learnable
sub-neural networks within cGRU are introduced. Each input modality is gated
by considering the input of the other modality in the context of previous hidden
pivot state ht−1

pivot. The gated inputs are concatenated in constructing the update
gate masks as well as reset gate and the hidden pivot state. The hidden pivot
state are updated in the usual GRU manner.
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α1 = σ(Wα1hh
t−1
pivot +Wα1xx

t
2 + bα1

),

α2 = σ(Wα2hh
t−1
pivot +Wα2xx

t
1 + bα2

),

xt = [α1 ⊙ xt
1;α2 ⊙ xt

2],

zt = σ(Wzhh
t−1
pivot +Wzxx

t + bz),

rt = σ(Wrhh
t−1
pivot +Wrxx

t + br),

h̃t
pivot = ϕ(Whxx

t +Whh(r
t ⊙ ht−1

pivot) + bh),

ht
pivot = (1− zt)⊙ ht−1

pivot + zt ⊙ h̃t
pivot,

where σ, ϕ are logistic sigmoid and hyperbolic tangent function respectively.
Here, ⊙ denotes the Hadamard product. xt is the modulated input using gating
masks. zt, rt are the update and reset gates at time t, which are the same as
original GRU. hpivot and h̃pivot are modal-agnostic pivot hidden state and its
internal candidate hidden pivot state.

3.2 Maximizing Pivot Correlation Module

The maximizing pivot correlation module is proposed for capturing co-occurrence
among modalities in both hidden states and label predictions during training.
The co-occurrence expresses co-activation of neurons among modal-specific hid-
den states. The maximizing pivot-correlation module that attempts to maximally
correlate between the hidden states as well as the predictions of the modal-
agnostic pivot stream and modal-specific streams in the network The details of
maximizing pivot correlation module is followed as below.

The maximizing pivot correlation in hidden states utilizes modal-specific
states h1, and h2 and modal-agnostic pivot hidden state hT

pivot. The pivot cor-

relation objective on the m-th modality hidden state Lhm

corr is defined as follows:

Lhm

corr =

∑N

i=1(hm,i − h̄m)(hpivot,i − h̄pivot)
√

∑N

i=1(hm,i − h̄m)2
∑N

i=1(hpivot,i − h̄pivot)2
,

where the subscript i denotes the sample index. Here, h̄m = 1
N

∑N

i=1 hm,i and

h̄pivot = 1
N

∑N

i=1 hpivot,i are the averages of the modal-specific and modal-
agnostic hidden states, respectively. Here, hm,i denotes the hidden state of the
m-th modality of the i-th samples.

For maximizing pivot correlation objective in label predictions Lŷm

corr is de-
fined as follows:

Lŷm

corr =

∑N

i=1(ŷm,i − ȳm)(ŷpivot,i − ȳpivot)
√

∑N

i=1(ŷm,i − ȳm)2
∑N

i=1(ŷpivot,m − ȳpivot)2
,

where ȳm = 1
N

∑N

i=1 ŷm,i and ȳpivot =
1
N

∑N

i=1 ŷpivot,i denote respectively the
average of the modal-specific and modal-agnostic prediction.
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3.3 Adaptive Aggregation

We propose a soft-attention based late fusion algorithm referred as adaptive ag-
gregation. The adaptive aggregation is an extension of the attention mechanism
in the late fusion framework based on the confidence between modal-specific
predictions and modal-agnostic pivot prediction. For M multimodal case, all the
modal-specific predictions {ŷm}

M

m=1 and the modal-agnostic pivot prediction
ŷpivot are considered in making the final prediction ŷagg as follows:

ŷagg = σ

(

ŷpivot +

M
∑

m=1

αagg,m · ŷm

)

,

where αagg,m is the scalar multimodal attention weight corresponding to the
m-th modality. The multimodal attention weights are obtained using a neural
network analogous to the soft-attention mechanism:

αagg,m =
exp(sm)

∑M

i=1 exp(si)
, m = 1, · · · ,M,

where

sm = Ws [hm;hpivot] + bs, m = 1, · · · ,M.

Unlike widely used late fusion algorithm such as mean aggregation, the adap-
tive aggregation can regulate the ratio of each modality on final prediction. The
learned multimodal attention weights can be viewed as the reliability of each
modality. Consider a video with "surfing" label. Surfing board can be visually
observed but insteads of hearing the waves we hear some music. In this case,
the attention weight corresponds to visual modality label should be higher than
that corresponding to audio such that final prediction is made based on visual
modality rather than auditory modality.

3.4 Training

The objective loss function to train the proposed Pivot CorrNN is composed of
three terms. First, (M + 2) cross-entropy losses are included where M denotes
the number of input modalities. Additional two cross-entropy is dedicated to
the pivot prediction and the prediction after the adaptive aggregation module
which is responsible for the supervision in learning the confidence level of each
modality prediction.

Second, M number of correlations between the hidden states as well as the
predictions of each of the modal-specific and modal-agnostic subnetwork. Third,
for achieving better generalization performance, ℓ2-regularization is additionally
applied. Minimizing the overall objective loss function leads to minimizing the
M+2 classification errors, and at the same time, maximizes the pivot correlation
objectives. To handle this opposite direction, the final loss function L is designed
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to minimize cross-entropy, regularization and negative of correlations losses as
below:

L =

M
∑

m=1

(

C
∑

c=1

yc log(ŷm,c) + (1− yc) log(1− ŷm,c)

)

+
C
∑

c=1

(yc log(ŷpivot,c) + (1− yc) log(1− ŷpivot,c))

+

C
∑

c=1

(yc log(ŷagg,c) + (1− yc) log(1− ŷagg,c))

− λ1

(

M
∑

m=1

Lhm

corr + Lym

corr

)

+ λ2ℓ
2,

where, c and C indicate c-th category and the total number of categories, respec-
tively. yc is the groundtruth label for c-th category. λ1 and λ2 is the balancing
term for controlling effectiveness of Pivot correlation and ℓ2 regularization term.

To evaluate the pivot correlations, the entire N samples at the same time,
but in practice, the empirical correlation is calculated within a single mini-batch
as the same as Deep CCA [3]. Thus, the proposed maximizing pivot correlation
module can be optimized using any types of gradient descent based methods
including Adam [21]

4 Experiments

This section provides the experimental details of Pivot CorrNN. Initially, we
describe the datasets used to train and evaluate the proposed architecture in
Section. 4.1. The experimental details are described in Section. 4.2 and inves-
tigations of each proposed module are shown in Section. 4.3 as ablation study.
Finally, Section. 4.4, and 4.5 show the experimental results of Pivot CorrNN for
two datasets: FCVID, and YouTube-8M.

4.1 Datasets

FCVID [18] is a multi-label video categorization dataset containing 91,223
web videos manually annotated with 239 categories. The dataset represents over
4,232 hours of video with an average video duration of 167 seconds. The cat-
egories in FCVID cover a wide range of topics including objects (e.g., "car"),
scenes (e.g., "beach"), social events (e.g., "tailgate party") and procedural events
("making cake"). There exist some broken videos which cannot be played, we
filtered out broken videos that cannot be used for extracting features. After fil-
tering, the remaining number of videos are 44,544 for training and 44,511 for
testing. The partition of the training and testing are the same of previous pa-
per [18]. FCVID distributes raw video and 8 different precomputed video level
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features: SpectrogramSIFT, SIFT, IDT-Traj, CNN, IDT-HOG, IDT-HOF, IDT-
MBH and MFCC. In this paper, 7 types of pre-extracted features (except Spec-
trogramSIFT) are used for evaluating proposed Pivot CorrNN. For evaluation,
mean Average Precision (mAP) metric is used.

YouTube-8M [2] is the largest video categorization dataset composed of about
7 million YouTube videos. Each videos are annotated one or multiple positive
labels. The number of categories are 4,716, and the averaged positive labels per
videos is 3.4. The training, validation and testing split are pre-defined with 70%,
20%, and 10%, respectively. Also the dataset is released to hold competition
purpose, the groundtruth labels for test split is not provided. Due to its huge
size, YouTube-8M provides two types of pre-extracted feature which cover visual
and auditory modalities. The visual and auditory features are extracted using
pre-trained Inception-V3 [28] and VGGish [14], respectively. For measuring the
quality of predictions, Global Average Precision (GAP) at top 20 is used in
Kaggle competition thus the performance of test split is measured in GAP solely.

4.2 Experimental Details

The entire proposed model is implemented using Tensorflow [1] framework. All
the results reported in this paper were performed with Adam optimizer [21]
with a mini-batch size of 128. The hyper parameters that we used are as follows.
The learning rate is set to 0.001, and exponential decay rate for the 1st and
2nd moments are set to 0.9 and 0.999, respectively. For stable gradient descent
procedure in cGRU and GRU, gradient clipping is adopted with clipping norm of
1.0. For the loss functions, balancing term λ1 for maximizing pivot correlation
objective, and λ2 for ℓ2 regularization are set to 0.001 and 3 × 10−7. All the
experiments performed under CUDA acceleration with single NVIDIA Titan Xp
(12GB of memory) GPU.

4.3 Ablation Study on FCVID

To verify the effectiveness of each module of Pivot CorrNN, we conducted abla-
tion study on FCVID. Table. 1 presents the ablation study on FCVID. In this
ablation study, two modality inputs are used: C3D [29] visual and VGGish [14]
auditory features.

The performance of baseline model (without proposed module) is shown on
the first row of Table. 1. For the baseline model, C3D and VGGish features are
concatenated and fed into a standard GRU instead of cGRU to produce modal-
agnostic pivot hidden state. The baseline model shows 66.86% in mAP measure.
Then we applied proposed modules one by one. Replacing original GRU to cGRU
for modal-agnostic pivot hidden state boosts the performance about 0.7%, and
achieves 67.57% in mAP measure. With maximizing pivot correlations on hidden
state and prediction, the model achieves the performance of 66.68% and 68.02%,
respectively. Synergistic effect is observed when maximizing correlation on both
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cGRU
Max. Pivot Correlation

Adaptive Aggregation mAP(%)
Pivot Hidden State Pivot Prediction

66.86
✓ 67.57
✓ ✓ 67.68
✓ ✓ 68.02
✓ ✓ ✓ 68.45
✓ ✓ ✓ ✓ 69.54

Table 1: Ablation study for Pivot CorrNN on FCVID. As can be seen, each
module of Pivot CorrNN gracefully increases the performance with activating
each module. In this study, C3D visual and VGGish auditory features are used.

pivot hidden state and prediction. Finally, with all of the proposed modules, the
Pivot CorrNN shows the performance of 69.54%. The entire gain of proposed
modules is about 2.7% and each of the proposed modules gracefully increases
the performance.

4.4 Experimental Results on FCVID

The performances of Pivot CorrNN are shown in Table 2 for FCVID test par-
tition. In Table 2a the performances of proposed Pivot CorrNN with previous
state-of-the-art algorithms are listed. The performances of previous algorithms
on FCVID were not reported their original papers except for rDNN, we referred
the performance from [18]. The proposed Pivot CorrNN achieved 77.6% in mAP
metric on test partition of FCVID and shows absolute mAP gain of 1.6% com-
pared to the previous state-of-the-art results.

Model mAP (%)

DMF [26] 72.5
DASD [17] 72.8

M-DBM [27] 74.4
SVM-MKL [22] 75.2
rDNN-F [18] 75.4
rDNN [18] 76.0

Pivot CorrNN 77.6

(a) Performance comparison

Feature Names Feature Type mAP(%)

C3D, VGGish Frame level features 69.54
+CNN, SIFT Appearance feature 75.33

+IDT-HOF, IDT-HOG Motion feature 76.58

+IDT-MBH, IDT-Traj Motion feature 77.23

+MFCC Audio features 77.60

(b) Feature ablation experiments on Pivot CorrNN

Table 2: Experimental Results on test partition of FCVID. (a) shows perfor-
mance comparison on Pivot CorrNN and previous algorithms, and (b) shows
feature ablation results

For details of performance gains, ablation experiments on the number of
modalities are conducted and shown in Table 2b. With frame level features
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only, the Pivot CorrNN recorded 69.54 % mAP, and adding different types of
features the performance is gracefully increased. Adding appearance, motion,
and audio, 6%, 1.2%, 0.7% and 0.3% mAP gains are observed, respectively. The
gains explain that there is complementary information in each feature, but there
is also some redundant information.

In Table 3, the comparison for multimodal attention weights in the adap-
tive aggregation module is shown. In the tables, thirteen categories which are
selected by descending order for visual attention weight αagg,1, and auditory
attention weight αagg,2. In Table 3a, all the categories are related to actions
or objects. In videos belong to those categories, there is limited information in
auditory modalities to describe its context from auditory information that most
of the predictions are based on the visual modalities. On the other hands, all the
categories listed in Table 3b are related musical activities. Visual modality does
not provide much information related to its categories, but auditory modality
does.

Category αagg,1 αagg,2

taekwondo 0.981 0.019

rafting 0.958 0.042

surfing 0.94 0.06

kiteSurfing 0.937 0.063

swimmingProfessional 0.915 0.085

egyptianPyramids 0.901 0.099

horseRiding 0.895 0.105

bikeTricks 0.88 0.12

rhythmicGymnastics 0.867 0.133

mountain 0.863 0.137

VolcanoEruption 0.858 0.142

walkingWithDog 0.852 0.148

playingFrisbeeWithDog 0.846 0.154

(a) Ordered by visual modality

Category αagg,1 αagg,2

flutePerformance 0.091 0.909

pianoPerformance 0.126 0.874

trumpetPerformance 0.179 0.821

harmonicaPerformance 0.186 0.814

singingInKtv 0.205 0.795

celloPerformance 0.216 0.784

accordionPerformance 0.239 0.761

chorus 0.309 0.691

saxophonePerformance 0.315 0.685

beatbox 0.377 0.623

publicSpeech 0.413 0.587

violinPerformance 0.415 0.585

guitarPerformance 0.42 0.58

(b) Ordered by auditory modality

Table 3: Averaged attention weights of top thirteen categories in descending
order for each modality

Fig. 4 shows the qualitative results of Pivot CorrNN. For each video sam-
ple, four still frames are extracted. The corresponding groundtruth category
and the top three predictions of both pivot stream and adaptive aggregation
are presented. The first two videos are sampled from the categories from Table
3a, and the remaining two videos are sampled from the categories from Table
3b. The correct predictions are colored red with its probabilistic scores. The
rightmost bar graphs denote the multimodal attention weights of adaptive ag-
gregation module. In this experiments αagg,1, and αagg,2 are dedicated to visual
and auditory feature, respectively.
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Fig. 4: Qualitative results of Pivot CorrNN. We show the groundtruth category
of each video sample with top three pivot and final predictions of proposed
Pivot CorrNN. The multimodal attention weights in adaptive aggregation are
illustrated on the rightmost side.

Experimental results in Fig. 4 shows that the module reduces false posi-
tive errors effectively for above examples. The predictions of sampled videos are
finetuned by increasing the probability of the correct predictions, and decreas-
ing false positive predictions. Visual modality is considered more informative
than auditory modality in "surfing" and "horseRiding" categories relatively two
and ten times, while auditory modality is considered more informative in "cel-
loPerformance" and "violinPerformance" categories. For sampled video which
groundtruth category is "celloPerformance", the pivot prediction was 37.8% on
"celloPerformance", on the other hands "symphonyOrchestraFrom" has more
confidence. However, adaptive aggregation module finetuned the probability of
correct category "celloPerformance" to 95.21%. From these results, adaptive ag-
gregation module measures which modality prediction is more reliable, then it
refines the final prediction with both pivot and modal-specific predictions.

4.5 Experimental Results on YouTube-8M

For evaluating proposed Pivot CorrNN on YouTube-8M dataset, two types of
experiments are conducted from both video and frame level features. For the
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video level features, all the frame level features from each video are averaged
into a single feature vector. There is no sequential information in the video level
features that cGRU is not applied for experiments of video level features. For
the frame level features, all the three modules are applied for Pivot CorrNN.

Feature Level Model GAP (%)

Video Logistic Regression (Concat) 76.79
Video Pivot CorrNN (without cGRU) 77.40

Frame Two-layer LSTM (Concat) 80.11
Frame Pivot CorrNN (with cGRU) 81.61

Table 4: Multimodal video categorization performance of two baseline models
and Pivot CorrNNs on YouTube-8M dataset

The performance comparision of Pivot CorrNN with baseline models are pre-
sented in Table 4. Logistic regressions are used for all the classifiers within the
models. The performance gains are observed for the proposed Pivot CorrNN
0.7% and 1.5% in GAP metric, respectively. In these experiments, pre-extracted
Inception-V3 and VGGish features are used without any additional feature en-
coding algorithms, such as learnable pooling methods [23], NetVLAD [5], etc.
With advanced feature encoding algorithms as an additional feature, we believe
proposed Pivot CorrNN will achieve better performance on YouTube-8M.

5 Conclusion

This paper considers a Pivot Correlational Neural Network (Pivot CorrNN) for
multimodal video categorization by maximizing the correlation between the hid-
den states as well as the predictions of the modal-agnostic pivot stream and
modal-specific streams in the network. The Pivot CorrNN consists of three
modules: (1) maximizing pivot-correlation module that maximizes the corre-
lation between the hidden states as well as the predictions of the modal-agnostic
pivot stream and modal-specific streams in the network, (2) contextual Gated
Recurrent Unit (cGRU) module that models time-varying contextual informa-
tion among modalities, and (3) adaptive aggregation module that considers the
confidence of each modality before making one final prediction. We evaluate the
Pivot CorrNN on two publicly available large-scale multimodal video categoriza-
tion dataset: FCVID, and YouTube-8M. From the experimental results, Pivot
CorrNN achieves best performance on the FCVID database and the performance
comparable to the state-of-the-art on YouTube-8M database.
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