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Abstract. Imagining a scene described in natural language with real-
istic layout and appearance of entities is the ultimate test of spatial,
visual, and semantic world knowledge. Towards this goal, we present
the Composition, Retrieval and Fusion Network (Craft), a model ca-
pable of learning this knowledge from video-caption data and applying it
while generating videos from novel captions. Craft explicitly predicts a
temporal-layout of mentioned entities (characters and objects), retrieves
spatio-temporal entity segments from a video database and fuses them
to generate scene videos. Our contributions include sequential training
of components of Craft while jointly modeling layout and appearances,
and losses that encourage learning compositional representations for re-
trieval. We evaluate Craft on semantic fidelity to caption, composition

consistency, and visual quality. Craft outperforms direct pixel gener-
ation approaches and generalizes well to unseen captions and to un-
seen video databases with no text annotations. We demonstrate Craft

on Flintstones
4, a new richly annotated video-caption dataset with

over 25000 videos. For a glimpse of videos generated by Craft, see
https://youtu.be/688Vv86n0z8.
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Fig. 1. Given a novel description, Craft sequentially composes a scene layout and
retrieves entities from a video database to create complex scene videos.
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1 Introduction

Consider the scene description: Fred is wearing a blue hat and talking to Wilma

in the living room. Wilma then sits down on a couch. Picturing the scene in our
mind requires the knowledge of plausible locations, appearances, actions, and
interactions of characters and objects being described, as well as an ability to
understand and translate the natural language description into a plausible visual
instantiation. In this work, we introduce Semantic Scene Generation (SSG), the
task of generating complex scene videos from rich natural language descriptions
which requires jointly modeling the layout and appearances of entities mentioned
in the description. SSG models are trained using a densely annotated video
dataset with scene descriptions and entity bounding boxes. During inference,
the models must generate videos for novel descriptions (unseen during training).

Modelling the layout and appearances of entities for descriptions like the one
above poses several challenges: (a) Entity Recall - the video must contain the
relevant characters (Fred, Wilma), objects (blue hat, couch) and background
(setting that resembles a living room); (b) Layout Feasibility - characters and
objects must be placed at plausible locations and scales (Fred, Wilma and the
couch should be placed on the ground plane, the hat must lie on top of Fred’s
head); (c) Appearance Fidelity - entity appearance, which may be affected by
identity, pose, action, attributes and layout, should respect the scene description;
(d) Interaction Consistency - appearance of characters and objects must be
consistent with each other given the described, sometimes implicit, interaction
(Fred and Wilma should face each other as do people when they talk to each
other); (f) Language Understanding - the system must be able to understand
and translate a natural language description into a plausible visual instantiation.

Currently, the dominant approaches to conditional generation of visual data
from text rely on directly learning distributions in a high dimensional pixel

space. While these approaches have shown impressive results for aligned im-
ages of objects (faces, birds, flowers, etc.), they are often inadequate for ad-
dressing the above challenges, due to the combinatorial explosion of the image
space arising from multiple characters and objects with significant appearance
variations arranged in a large number of possible layouts. In contrast, our pro-
posed Composition, Retrieval and Fusion Network (Craft) explicitly models
the spatio-temporal layout of characters and objects in the scene jointly with
entity appearances. Unlike pixel generation approaches, our appearance model is
based on text to entity segment retrieval from a video database. Spatio-temporal
segments are extracted from the retrieved videos and fused together to generate
the final video. The layout composition and entity retrieval work in a sequential
manner which is determined by the language input. Factorization of our model
into composition and retrieval stages alleviates the need to directly model pixel
spaces, results in an architecture that exploits location and appearance contex-
tual cues, and renders an interpretable output.

Towards the goal of SSG, we introduce Flintstones, a densely annotated
dataset based on The Flintstones animated series, consisting of over 25000
videos, each 75 frames long. Flintstones has several advantages over using
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a random sample of internet videos. First, in a closed world setting such as a
television series, the most frequent characters are present in a wide variety of
settings, which serves as a more manageable learning problem than a sparse set
obtained in an open world setting. Second, the flat textures in animations are
easier to model than real world videos. Third, in comparison to other animated
series, The Flintstones has a good balance between having fairly complex in-
teractions between characters and objects while not having overly complicated,
cluttered scenes. For these reasons, we believe that the Flintstones dataset is
semantically rich, preserves all the challenges of text to scene generation and is
a good stepping stone towards real videos. Flintstones consists of an 80-10-10
train-val-test split. The train and val sets are used for learning and model selec-
tion respectively. Test captions serve as novel descriptions to generate videos at
test time. To quantitatively evaluate our model, we use two sets of metrics. The
first measures semantic fidelity of the generated video to the desired description
using entity noun, adjective, and verb recalls. The second measures composition

consistency, i.e. the consistency of the appearances, poses and layouts of entities
with respect to other entities in the video and the background.

We use Flintstones to evaluate Craft and provide a detailed ablation
analysis. Craft outperforms baselines that generate pixels directly from cap-
tions as well as a whole video retrieval approach (as opposed to modeling en-
tities). It generalizes well to unseen captions as well as unseen videos in the
target database. Our quantitative and qualitative results show that for sim-
pler descriptions, Craft exploits location and appearance contextual cues and
outputs videos that have consistent layouts and appearances of described en-
tities. However, there is tremendous scope for improvement. Craft can fail
catastrophically for complex descriptions (containing large number of entities,
specially infrequent ones). The adjective and verb recalls are also fairly low. We
believe SSG on Flintstones presents a challenging problem for future research.

2 Related Work

Generative models Following pioneering work on Variational Autoencoders
[15] and Generative Adversarial Networks [9], there has been tremendous in-
terest in generative modelling of visual data in a high dimensional pixel space.
Early approaches focused on unconditional generation [2, 4, 10, 24], whereas re-
cent works have explored models conditioned on simple textual inputs describing
objects [20, 26, 27, 33, 34]. While the visual quality of images generated by these
models has been steadily improving [14,22], success stories have been limited to
generating images of aligned objects (e.g. faces, birds, flowers), often training
one model per object class. In contrast, our work deals with generating complex
scenes which requires modelling the layout and appearances of multiple entities
in the scene.

Of particular relevance is the work by Hong et al. [12] who first generate
a coarse semantic layout of bounding boxes, refine that to segmentation masks
and then generate an image using an image-to-image translation model [6,13]. A
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limitation of this approach is that it assumes a fixed number of object classes (80
in their experiments) and struggles with the usual challenge of modeling high
dimensional pixel spaces such as generating coherent entities. Formulating ap-
pearance generation in terms of entity retrieval from a database allows our model
to scale to a large number of entity categories, guarantee intra-entity coherence
and allows us to focus on the semantic aspects of scene generation and inter-
entity consistency. The retrieval approach also lends itself to generating videos
without significant modification. There have been attempts at extending GANs
for unconditional [30, 31] as well as text conditional [18, 21] video generation,
but quality of generated videos is usually worse than that of GAN generated
images unless used in very restrictive settings. A relevant generative modelling
approach is by Kwak et al. [17] who proposed a model in which parts of the
image are generated sequentially and combined using alpha blending. However,
this work does not condition on text and has not been demonstrated on complex
scenes. Another relevant body of work is by Zitnick et al. [35–37] who compose
static images from descriptions with clipart images using a Conditional Random
Field formulation.

To control the structure of the output image, a growing body of literature con-
ditions image generation on a wide variety of inputs ranging from keypoints [25]
and sketches [19] to semantic segmentation maps [13]. In contrast to these ap-
proaches which condition on provided location, our model generates a plausible
scene layout and then conditions entity retrieval on this layout.
Phrase Grounding and Caption-Image Retrieval. The entity retriever in
Craft is related to caption based image retrieval models. The caption-image
embedding space is typically learned by minimizing a ranking loss such as a
triplet loss [7, 8, 8, 16, 32]. Phrase grounding [23] is another closely related task
where the goal is to localize a region in an image described by a phrase.

One of our contributions is enriching the semantics of embeddings learned
through triplet loss by simultaneously minimizing an auxiliary classification loss
based on noun, adjective and verb words associated with an entity in the text
description. This is similar in principle to [29] where auxiliary autoencoding
losses were used in addition to a primary binary prediction loss to learn robust
visual semantic embeddings. Learning shared representations across multiple
related tasks is a key concept in multitask learning [5, 11].

3 Model

Figure 2 presents an overview of Composition, Retrieval and Fusion Network
which consists of three parts: Layout Composer, Entity Retriever, and Back-

ground Retriever. Each is a neural network that is trained independently using
ground truth supervision. During inference, Craft begins with an empty video
and adds entities in the scene sequentially based on the order of appearance in
the description. At each step, the Layout Composer predicts a location and scale
for an entity given the text and the video constructed so far. Then, conditioned
on the predicted location, text, and the partially constructed video, the Entity
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Fig. 2. Overview of Composition, Retrieval and Fusion Network (Craft), consist-
ing of three parts: Layout Composer, Entity Retriever and Background Retriever.
Craft begins with an empty video and sequentially adds entities mentioned in the
input description at locations and scales predicted by the Layout Composer.

Retriever produces a query embedding that is looked up against the embeddings
of entities in the target video database. The entity is cropped from the retrieved
video and placed at the predicted location and scale in the video being gen-
erated. Alternating between the Layout Composer and Entity Retriever allows
the model to condition the layout of entities on the appearance and vice versa.
Similar to Entity Retriever, the Background Retriever produces a query embed-
ding for the desired scene from text and retrieves the closest background video
from the target database. The retrieved spatio-temporal entity segments and
background are fused to generate the final video. We now present the notation
used in the rest of the paper, followed by architecture and training details for
the three components.

Caption
T Caption with length |T |
{Ei}

n
i=1 n entities in T in order of appearance

{ei}
n
i=1 entity noun positions in T

Video
F number of frames in a video
{(li, si)}

n
i=1 position of entities in the video

li entity bounding box at each frame ({(xif , yif , wif , hif )}
F
f=1)

si entity pixel segmentation mask at each frame
Vi−1 partially constructed video with entities {Ej}

i−1
j=1

V (= Vn) full video containing all entities

{(V [m], T [m])}Mm=1 training data points, where M = number of data points

3.1 Layout Composer

The layout composer is responsible for generating a plausible layout of the scene
consisting of the locations and scales of each character and object mentioned in
the scene description. Jointly modeling the locations of all entities in a scene
presents fundamentally unique challenges for spatial knowledge representation



6 T. Gupta et al.

Fred talks to Wilma in a kitchen

Entity Embeddings

Bi-LSTM

Fully Conv. Location MLP

CNN

Weighted Average Pooling 

(Attention)

Scale MLP

128x128x3F

3x3

Stride=2

Dilation=1

3x3

Stride=2

Dilation=1

3x3

Stride=1

Dilation=2

3x3

Stride=1

Dilation=4

32x32x128 32x32x256 32x32x51264x64x64

32x32x256 32x32x128 32x32xF

256
128

2F

32x32x100 32x32x2

Channel

Max Pooling

Bilinear

Interpolation

128x128xF

100 100 100

Layers=2

Hidden Size=100

!"#$

%

Video With Fred Only

&'

(' , *'= 0 (- , *-= 3

Replicate Spatially

Fig. 3. Layout Composer is run sequentially through the set of entities in the de-
scription, predicting the distributions for the location and scale of the desired entity.

beyond existing language-guided localization tasks. Predicting plausible loca-
tions and scales for objects not yet in an image requires a significant amount
of spatial knowledge about people and objects, in contrast to text based object
localization which relies heavily on appearance cues. This includes knowledge
like – a hat goes on top of a person’s head, a couch goes under the person sitting
on it, a person being talked to faces the person speaking instead of facing away,
tables are short and wide while standing people are tall and thin, etc.

Figure 3 presents a schematic for the layout composer. Given the varying
number of entities across videos, the layout composer is setup to run in a se-
quential manner over the set of distinct entities mentioned in a given description.
At each step, a text embedding of the desired entity along with a partially con-
structed video (consisting of entities fused into the video at previous steps) are
input to the model which predicts distributions for the location and scale of the
desired entity.

The layout composer models P (li|Vi−1, T, ei; θloc, θsc), the conditional distri-
bution of the location and scale (width and height normalized by image size)
of the ith entity given the text, entity noun position in tokenized text, and the
partial video with previous entities. Let Ci denote the conditioning informa-
tion, (Vi−1, T, ei). We factorize the position distribution into location and scale
components as follows:

P (li|Ci; θloc, θsc) =

F
∏

f=1

P
f
loc(xif , yif |Ci; θ

f
loc) · P

f
sc(wif , hif |xif , yif , Ci; θ

f
sc) (1)

θloc = {θfloc}
F
f=1 and θsc = {θfsc}

F
f=1 are learnable parameters. P f

loc is mod-
elled using a network that takes Ci as input and produces a distribution over
all pixel locations for the f th image frame. We model P f

sc using a Gaussian dis-
tribution whose mean µf and covariance Σf are predicted by a network given
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(xi, yi, Ci). Parameters θloc and θsc are learned from ground truth position an-
notations by minimizing the following maximum likelihood estimation loss:

M
∑

m=1

n[m]
∑

i=1

F
∑

f=1

[

− log(P f
loc(x

[m]
if , y

[m]
if |C

[m]
i ; θfloc)) + 0.5 · log(det(Σ(xif , yif , Ci; θ

f
sc)))+

0.5 · (z
[m]
if − µf (D

[m]
i ; θfsc))

T
Σf

−1(z
[m]
if − µf (D

[m]
i ; θfsc)) + log(2π)

]

(2)

where zif = [wif ;hif ] & D
[m]
i = (x

[m]
i , y

[m]
i , C

[m]
i ). For simplicity, we manually set

and freeze Σ to an isometric diagonal covariance matrix with variance of 0.005.

Feature Computation Backbone. The location and scale predictors have an
identical feature computation backbone comprising of a CNN and a bidirectional
LSTM. The CNN encodes Vi−1 (8 sub-sampled frames concatenated along the
channel dimension) as a set of convolutional feature maps which capture appear-
ance and positions of previous entities in the scene. The LSTM is used to encode
the entity Ei for which the prediction is to be made along with semantic context
available in the caption. The caption is fed into the LSTM and the hidden output
at ethi word position is extracted as the entity text encoding. The text encod-
ing is replicated spatially and concatenated with convolutional features and 2-D
grid coordinates to create a representation for each location in the convolutional
feature grid that is aware of visual, spatial, temporal, and semantic context.

Location Predictor. P f
loc is modelled using a Multi Layer Perceptron (MLP)

that produces a score for each location. This map is bilinearly upsampled to
the size of input video frames. Then, a softmax layer over all pixels produces
P

f
loc(x, y|C; θfloc) for every pixel location (x, y) in the f th video frame.

Scale Predictor. Features computed by the backbone at a particular (x, y)
location are selected and fed into the scale MLP that produces µf (xi, yi, Ci; θ

f
sc).

Feature sharing and multitask training. While it is possible to train a
separate network for each {P f

loc, µf}
F
f=1, we present a pragmatic way of sharing

features and computation for different frames and also between the location and
scale networks. To share features and computation across frames, the location
network produces F probability maps in a single forward pass. This is equivalent
to sharing all layers across all P f

loc nets except for the last layer of the MLP that
produces location scores. Similarly, all the µf nets are also combined into a single
network. We refer to the combined networks by Ploc and µ.

In addition, we also share features across the location and scale networks.
First, we share the feature computation backbone, the output from which is then
passed into location and scale specific layers. Second, we use a soft-attention
mechanism to select likely positions for feeding into the scale layers. This condi-
tions the scale prediction on the plausible locations of the entity. We combine the
F spatial maps into a single attention map through max pooling. This attention
map is used to perform weighted average pooling on backbone features and then
fed into the scale MLP. Note that this is a differentiable greedy approximation
to find the most likely location (by taking argmax of spatial probability maps)
and scale (directly using output of µ, the mode for a gaussian distribution) in
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Fig. 4. Entity Retriever retrieves spatio-temporal patches from a target database
that match entity description as encoded by the query embedding network.

a single forward pass. To keep training consistent with inference, we use the
soft-attention mechanism instead of feeding ground-truth locations into µ.

3.2 Entity Retriever

The task of the entity retriever is to find a spatio-temporal patch within a target
database that matches an entity in the description and is consistent with the
video constructed thus far – the video with all previous entities retrieved and
placed in the locations predicted by the layout network. We adopt an embedding
based lookup approach for entity retrieval. This presents several challenges be-
yond traditional image retrieval tasks. Not only does the retrieved entity need to
match the semantics of the description but it also needs to respect the implicit
relational constraints or context imposed by the appearance and locations of
other entities. E.g. for Fred is talking to Wilma, it is not sufficient to retrieve a

Wilma, but one who is also facing in the right direction, i.e. towards Fred.
The Entity Retriever is shown in Figure 4 and consists of two parts: (i)

query embedding network Q, and (ii) target embedding network R. Q and R are
learned using the query-target pairs

〈

(T [m], e
[m]
i , l

[m]
i , V

[m]
i−1 ), (V

[m], l
[m]
i , s

[m]
i )〉i,m in

the training data. For clarity, we abbreviate Q(T [m], e
[m]
i , l

[m]
i , V

[m]
i−1 ) as q

[m]
i and

R(V [m], l
[m]
i , s

[m]
i ) as r

[m]
i . At each training iteration, we sample a mini-batch of

B pairs without replacement and compute embeddings {(q
[mb]
ib

, r
[mb]
ib

)}Bb=1 where
q and r are each sequence of F embeddings corresponding to F video frames.
The model is trained using a triplet loss computed on all possible triplets in the
mini-batch. Let δb denote the set of all indices from 1 to B except b. The loss
can then be defined as

Ltriplet =
1

B · (B − 1)

B
∑

b=1

∑

b−∈δb

[

max(0, γ + q
[mb]
ib

⊙ r
[m

b−
]

i
b−

− q
[mb]
ib

⊙ r
[mb]
ib

) +

max(0, γ + q
[m

b−
]

i
b−

⊙ r
[mb]
ib

− q
[mb]
ib

⊙ r
[mb]
ib

)
]

(3)
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where q⊙r = 1
F

∑F

f=1 q[f ] ·r[f ] is the average dot product between correspond-
ing query and target frame embeddings. We use a margin of γ = 0.1.
Auxiliary Multi-label Classification Loss We found that models trained
using triplet loss alone could simply learn a one-to-one mapping between ground
truth text and entity video segments with poor generalization to unseen captions
and database videos. To guide the learning to utilize the compositional nature
of text and improve generalization, we add an auxiliary classification loss on top
of the embeddings. The key idea is to enrich the semantics of the embedding
vectors by predicting the noun, adjectives, and action words directly associated
with the entity in the description. For example, Wilma’s embedding produced
by the query and target embedding networks in Fred is talking to a happy Wilma

who is sitting on a chair. is forced to predict Wilma, happy and sitting ensuring
their representation in the embeddings. A vocabulary W is constructed of all
nouns, adjectives and verbs appearing in the training data. Then for each sample
in the mini-batch, an MLP is used as a multi-label classifier to predict associated
words from the query and target embeddings. Note that a single MLP is used
to make these noun, adjective and verb predictions on both query and target
embeddings.
Query Embedding Network (Q). Similar to the layout composer’s feature
computation backbone, Q consists of a CNN to independently encode every
frame of Vi−1 and an LSTM to encode (T, ei) which are concatenated together
along with a 2-D coordinate grid to get per-frame feature maps. However, unlike
layout composer, the query embedding network also needs to be conditioned on
the position li where entity Ei is to be inserted in Vi−1. To get location and
scale specific query embeddings, we use a simplified RoIAlign (RoIPool with
RoI quantization and bilinear interpolation) mechanism to crop out the per-

frame feature maps using the corresponding bounding box l
f
i and scaling it to a

7× 7 receptive field. The RoIAlign features are then averaged along the spatial
dimensions to get the vector representations for each time step independently. An
LSTM applied over the sequence of these embeddings is used to capture temporal
context. The hidden output of the LSTM at each time step is normalized and
used as the frame query embedding q[f ].
Target Embedding Network (R). Since during inference, R needs to embed
entities in the target database which do not have text annotations, it does not
use T as an input. Thus, R is similar to Q but without the LSTM to encode the
text. In our experiments we found that using 2-D coordinate features in both
query and target networks made the network susceptible to ignoring all other
features since it provides an easy signal for matching ground truth query-target
pairs during training. This in turn leads to poor generalization. Thus, R has no
2-D coordinate features.

3.3 Background Retriever

The task of the background retriever is to find a background scene that matches
the setting described in the description. To construct a database of backgrounds
without characters in them, we remove characters from videos (given bounding
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boxes) and perform hole filling using PatchMatch [3]. The background retriever
model is similar to the entity retriever with two main differences. First, since the
whole background scene is retrieved instead of entity segments, the conditioning
on position is removed from both query and database embedding networks re-
placing RoI pooling with global average pooling. Second, while ideally we would
like scene and entity retrieval to be conditioned on each other, for simplicity we
leave this to future work and currently treat them independently. These mod-
ifications essentially reduce the query embedding network to a text Bi-LSTM
whose output at the background word location in the description is used as
the query embedding, and the target embedding network to a video Bi-LSTM
without RoI pooling. The model is trained using just the triplet loss.

4 The Flintstones Dataset

Composition. The Flintstones dataset is composed of 25184 densely anno-
tated video clips derived from the animated sitcom The Flintstones. Clips are
chosen to be 3 seconds (75 frames) long to capture relatively small action se-
quences, limit the number of sentences needed to describe them and avoid scene
and shot changes. Clip annotations contain clip’s characters, setting, and ob-
jects being interacted with marked in text as well as their bounding boxes in all
frames. Flintstones has a 80-10-10 train-val-test split5.
Clip Annotation. Dense annotations are obtained in a multi-step process:
identification and localization of characters in keyframes, identification of the
scene setting, scene captioning, object annotation, and entity tracking to provide
annotations for all frames. The dataset also contains segmentation masks for
characters and objects. First, a rough segmentation mask is produced by using
SLIC [1] followed by hierarchical merging. This mask is then used to initialize
GrabCut [28], which further refines the segmentation. The dataset also contains
a clean background for each clip. Foreground characters and objects are excised,
and the resulting holes are filled using PatchMatch [3].

5 Experiments

5.1 Layout Composer Evaluation

Training. We use the Adam optimizer (learning rate=0.001, decay factor=0.5
per epoch, weight decay=0.0001) and a batch size of 32.
Metrics.We evaluate layout composer using 2 metrics: (a) negative log-likelihood
(NLL) of ground truth (GT) entity positions under the predicted distribution,
and (b) average normalized pixel distance (coordinates normalized by image
height and width) of the ground truth from the most likely predicted entity lo-
cation. While NLL captures both location and scale, pixel distance only measures
location accuracy. We report metrics on unseen test descriptions using ground
truth locations and appearances for previous entities in the partial video.

5 See https://prior.allenai.org/projects/craft for more details on dataset split, anno-
tation visualization, and dataset statistics

https://prior.allenai.org/projects/craft
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Table 1. Layout Composer Analysis. Evaluation of our model (last row) and
ablations on test set. First row provides theoretically computed values assuming a
uniform location distribution while making no assumptions about the scale distribution.

Text Scene Context 2D Coord. Grid Dil. Conv NLL Pixel Dist.

Uniform Distribution >9.704 >0.382

✗ ✓ ✓ ✓ 9.845 0.180
✓ ✗ ✓ ✓ 8.167 0.185
✓ ✓ ✗ ✓ 8.250 0.287
✓ ✓ ✓ ✗ 7.780 0.156

✓ ✓ ✓ ✓ 7.636 0.148

Feature Ablation. The ablation study in Table 1 shows that the layout com-
poser benefits from each of the 3 input features – text, scene context (partial
video), and 2D coordinate grid. The significant drop in NLL without text fea-
tures indicates the importance of entity identity, especially in predicting scale.
The lack of spatial awareness in convolutional feature maps without the 2D co-
ordinate grid causes pixel distance to approximately double. The performance
drop on removing scene context is indicative of the relevance of knowing what

entities are where in the scene in predicting the location of next entity. Finally,
replacing vanilla convolutions by dilated convolutions increases the spatial recep-
tive field without increasing the number of parameters improves performance,
which corroborates the usefulness of scene context in layout prediction.

5.2 Entity Retriever Evaluation.

Training. We use the Adam optimizer (learning rate=0.001, decay factor=0.5
every 10 epochs) and a batch size of 30.
Metrics. To evaluate semantic fidelity of retrieved entities to the query caption,
we measure noun, adjective, and verb recalls (@1 and @10) averaged across
entities in the test set. The captions are automatically parsed to identify nouns,
adjectives and verbs associated with each entity both in the query captions and
target database (using GT database captions for evaluation only). Note that
captions often contain limited adjective and verb information. For example, a
red hat in the video may only be referred to as a hat in the caption, and Fred

standing and talking may be described as Fred is talking. We also do not take
synonyms (talking-speaking) and hypernyms (person-woman) into account. Thus
the proposed metric underestimates performance of the entity retriever.
Feature Ablation. Table 2 shows that text and location features are critical
to noun, adjective and verb recall 6. Scene context only marginally affects noun
recall but causes significant drop in adjective and verb recalls.
Effect of Auxiliary Loss. Table 3 shows that triplet loss alone does signifi-
cantly worse than in combination with auxiliary classification loss. Adding the
auxiliary classification loss on either query or target embeddings improves over

6 For context, most frequent entity prediction baselines are on our project page.
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Table 2. Entity retriever feature ablation. Top-1 and top-10 recalls of our model
(last row) and ablations while generating videos for unseen test captions.

Query Features Recall@1 Recall@10

Text Context Location Noun Adj. Verb Noun Adj. Verb

✗ ✓ ✓ 24.88 3.04 9.48 55.22 19.39 37.18
✓ ✗ ✓ 60.54 9.5 11.2 77.71 39.92 43.58
✓ ✓ ✗ 56.14 8.56 11.34 73.03 39.35 41.48

✓ ✓ ✓ 61.19 12.36 14.77 75.98 47.72 46.86

Table 3. Entity retriever loss ablation. Top-1 and top-10 recalls of our model (last
row) and ablations while generating videos for unseen test captions.

Auxiliary Loss Recall@1 Recall@10

Triplet Query Target Noun Adj. Verb Noun Adj. Verb

✗ ✓ ✓ 35.75 7.79 8.83 63.62 43.35 33.12
✓ ✗ ✓ 51.68 3.8 8.66 67.86 25.28 39.46
✓ ✓ ✗ 50.54 4.94 9.94 66.36 28.52 39.5
✓ ✗ ✗ 48.59 3.04 9.34 65.64 20.15 37.95

✓ ✓ ✓ 61.19 12.36 14.77 75.98 47.72 46.86

Table 4. Generalization to Unseen Database Videos. Retrieval results for Craft

when queried against seen videos vs unseen videos.

Video Database
Recall@1 Recall@10

Noun Adj. Verb Noun Adj. Verb

Seen (Train) 61.19 12.36 14.77 75.98 47.72 46.86
Unseen (Test) 50.52 11.98 10.4 69.1 41.25 42.57

triplet only but is worse than using all three. Interestingly, using both auxil-
iary losses outperforms triplet loss with a single auxiliary loss (and triplet only)
on adjective and verb recall. This strongly suggests the benefits of multi-task
training in entity retrieval.

Background retriever. Similar to the entity recall evaluation, we computed a
top-1 background recall of 57.5 for Craft.

Generalization to unseen videos. A key advantage of the embedding based
text to entity video retrieval approach over text only methods is that the embed-
ding approach can use any unseen video databases without any text annotations,
potentially in entirely new domains (eg. learning from synthetic video caption
datasets and applying the knowledge to generate real videos). However, this re-
quires a model that generalizes well to unseen captions as well as unseen videos.
In Table 4 we compare entity recall when using the train set (seen) videos as the
target database vs using the test set (unseen) video as the target database.

OHEM vs All Mini-Batch Triplets. We experimented with online hard ex-
ample mining (OHEM) where negative samples that most violate triplet con-
straints are used in the loss. All triplets achieved similar or higher top-1 noun, ad-
jective and verb recall than OHEMwhen querying against seen videos (1.8,75.3,8.5%
relative gain) and unseen videos (1.7, 42.8,−5.0% relative gain).
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Table 5. Human evaluation to estimate consistency and quality of generated videos.

Composition Consistency Visual Quality

Position Rel. Size Interact. FG BG Sharpness

Pixel Generation L1 0.69 0.65 0.55 0.96 1.44 1.07
Ours (GT Position) 1.69 1.69 1.34 1.49 1.65 2.16

Ours 1.78 1.86 1.46 1.98 1.95 1.82

Modelling Whole Video vs Entities. A key motivation to composing a scene
from entities is the combinatorial nature of complex scenes. To illustrate this
point we compare Craft to a text-to-text based whole video retrieval baseline.
For a given test caption, we return a video in the database whose caption has
the highest BLEU-1 score. This approach performs much worse than our model
except on verb recall (BLEU: 49.57, 5.18, 26.64; Ours: 62.3, 21.7, 16.0). This in-
dicates that novel captions often do not find a match in the target database
with all entities and their attributes present in the same video. However, it is
more likely that each entity and attribute combination appears in some video in
the database. Note that text-to-text matching also prevents extension to unseen
video databases without text annotations.

5.3 Human Evaluation

Metrics. In addition to the automated recall metrics which capture semantic
fidelity of the generated videos to the captions, we run a human evaluation
study to estimate the compositional consistency of entities in the scene (given
the description) and the overall visual quality (independent of the description).
The consistency metric requires humans to rate each entity in the video on a 0-4
scale on three aspects: (a) position in the scene, (b) size relative to other entities
or the background, and (c) appearance and consistency of described interactions

with other entities in the scene. The visual quality metric measures the aesthetic
and realism of the generated scenes on a 0-4 scale along three axes: (a) foreground
quality, (b) background quality, and (c) sharpness. See supplementary material
for the design of these experiments.
Modelling Pixels vs Retrieval.We experimented extensively with text condi-
tioned whole video generation using models with and without adversarial losses
and obtained poor results. Since generative models tend to work better on im-
ages with single entities, we swapped out the target embedding network in the
entity retriever by a generator. Given the query embedding at each of the F time
steps, the generator produces an appearance image and a segmentation mask.
The model is trained using an L1 loss between the masked appearance image
and the masked ground truth image, and an L1 loss between the generated and
ground truth masks. See supplementary material for more details. This baseline
produced blurry results with recognizable colors and shapes for most common
characters like Fred, Wilma, Barney, and Betty at best. We also tried GAN
and VAE based approaches and got only slightly less blur. Table 5 shows that
this model performs poorly on the Visual Quality metric compared to Craft.
Moreover, since the visual quality of the generated previous entities affects the
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Wilma and Betty are 
seated at a table in 
the kitchen.

Fred wearing a 
helmet is walking in 
the living room.

Pebbles is sitting in 
a car outside.

Betty is speaking on 
the telephone in the 
kitchen.

Betty is sitting at a 
dining table hearing 
the radio.

Fred and Betty are 
seated at a table in 
the dining room.

A man wearing a 
blue shirt is talking 
in the living room.

Betty and Wilma
have a conversation 
in the living room. 
They take take turns 
conversing with 
each other while 
they are seated on 
the couch.

A guy with bow tie 
is on the tv in the 
living room. He is 
talking on the tv.

Wilma is talking to 
Fred while he is 
sitting in the dining 
room at the table
reading a book.  
Fred just reads his 
book and ignores 
Wilma.

Wilma is speaking 
to fred while he is 
laying down in the 
bedroom . fred has 
a heavily piled plate 
of food with him.

Barney and Fred are 
outside at a camp, 
and they are 
wearing uniforms 
that include 
identical green hats, 
red scarves and 
white belts. …

Fig. 5. Qualitative results for Craft. Last row shows failures of the layout com-
poser (left) and the entire system (right). See https://youtu.be/688Vv86n0z8 for video
examples, failure cases, and visualization of predicted location and scale distributions

performance of the layout composer, this also translates into poor ratings on
the composition consistency metric. Since the semantic fidelity metrics can not
be computed for this pixel generation approach, we ran a human evaluation
to compare this model to ours. Humans were asked to mark nouns, adjectives
and verbs in the sentence missing in the generated video. Craft significantly
outperformed the pixel generation approach on noun, adjective, and verb recall
(Craft 61.0, 54.5, 67.8, L1: 37.8, 45.9, 48.1).

Joint vs Independent Modelling of Layout. We compare Craft to a
model that uses the same entity retriever but with ground truth (GT) posi-
tions. Using GT positions performed worse than Craft (GT:62.2, 18.1, 12.4;
Full:62.3, 21.7, 16.0 Recall@1). This is also reflected in the composition consis-
tency metric (GT:1.69, 1.69, 1.34; Full:1.78, 1.89, 1.46). This emphasizes the need
to model layout composition and entity retrieval jointly. When using GT layouts,
the retrieval gets conditioned on the layout but not vice versa.

https://youtu.be/688Vv86n0z8
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