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Abstract. Humans recognize the visual world at multiple levels: we
effortlessly categorize scenes and detect objects inside, while also identi-
fying the textures and surfaces of the objects along with their different
compositional parts. In this paper, we study a new task called Unified
Perceptual Parsing, which requires the machine vision systems to recog-
nize as many visual concepts as possible from a given image. A multi-task
framework called UPerNet and a training strategy are developed to learn
from heterogeneous image annotations. We benchmark our framework on
Unified Perceptual Parsing and show that it is able to effectively segment
a wide range of concepts from images. The trained networks are further
applied to discover visual knowledge in natural scenes1.

Keywords: Deep neural network, semantic segmentation, scene under-
standing

1 Introduction

The human visual system is able to extract a remarkable amount of semantic
information from a single glance. We not only instantly parse the objects con-
tained within, but also identify the fine-grained attributes of objects, such as
their parts, textures and materials. For example in Figure 1, we can recognize
that this is a living room with various objects such as a coffee table, a painting,
and walls inside. At the same time, we identify that the coffee table has legs, an
apron and top, as well as that the coffee table is wooden and the surface of the
sofa is knitted. Our interpretation of the visual scene is organized at multiple
levels, from the visual perception of the materials and textures to the semantic
perception of the objects and parts.

Great progress in computer vision has been made towards human-level visual
recognition because of the development of deep neural networks and large-scale
image datasets. However, various visual recognition tasks are mostly studied in-
dependently. For example, human-level recognition has been reached for object
classification [1] and scene recognition [2]; objects and stuff are parsed and seg-
mented precisely at pixel-level [3,2]; Texture and material perception and recog-
nition have been studied in [4] and [5]. Since scene recognition, object detection,

1 Models are available at https://github.com/CSAILVision/unifiedparsing

https://github.com/CSAILVision/unifiedparsing
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Fig. 1. Network trained for Unified Perceptual Parsing is able to parse various visual
concepts at multiple perceptual levels such as scene, objects, parts, textures, and ma-
terials all at once. It also identifies the compositional structures among the detected
concepts.

texture and material recognition are intertwined in human visual perception,
this raises an important question for the computer vision systems: is it possi-
ble for a neural network to solve several visual recognition tasks simultaneously?
This motives our work to introduce a new task called Unified Perceptual Parsing
(UPP) along with a novel learning method to address it.

There are several challenges in UPP. First, there is no single image dataset
annotated with all levels of visual information. Various image datasets are con-
structed only for specific task, such as ADE20K for scene parsing [2], the De-
scribe Texture Dataset (DTD) for texture recognition [4], and OpenSurfaces for
material and surface recognition [6]. Next, annotations from different perceptual
levels are heterogeneous. For example, ADE20K has pixel-wise annotations while
the annotations for textures in the DTD are image-level.

To address the challenges above we propose a framework that overcomes the
heterogeneity of different datasets and learns to detect various visual concepts
jointly. On the one hand, at each iteration, we randomly sample a data source,
and only update the related layers on the path to infer the concepts from the
selected source. Such a design avoids erratic behavior that the gradient with
respect to annotations of a certain concept may be noisy. On the other hand,
our framework exploits the hierarchical nature of features from a single network,
i.e., for concepts with higher-level semantics such as scene classification, the
classifier is built on the feature map with the higher semantics only; for lower-
level semantics such as object and material segmentation, classifiers are built on
feature maps fused across all stages or the feature map with low-level semantics
only. We further propose a training method that enables the network to predict
pixel-wise texture labels using only image-level annotations.

Our contributions are summarized as follows: 1) We present a new parsing
task Unified Perceptual Parsing, which requires systems to parse multiple visual
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concepts at once. 2) We present a novel network called UPerNet with hierarchical
structure to learn from heterogeneous data from multiple image datasets. 3) The
model is shown to be able to jointly infer and discover the rich visual knowledge
underneath images.

1.1 Related work

Our work is built upon the previous work of semantic segmentation and multi-
task learning.

Semantic segmentation. To generate pixel-wise semantic predictions for a
given image, image classification networks [7,8,9,1] are extended to generate
semantic segmentation masks. Pioneering work by Chen et al. [10], based on
structure prediction, uses conditional random field (CRF) to refine the acti-
vations of the final feature map of CNNs. The most prevalent framework de-
signed for this pixel-level classification task is the Fully Convolutional Network
(FCN) [11], which replaces fully-connected layers in classification networks with
convolutional layers. Noh et al. [12] propose a framework which applies deconvo-
lution [13] to up-sample low resolution feature maps. Yu and Vladlen [14] propose
an architecture based on dilated convolution which is able to exponentially ex-
pand the receptive field without loss of resolution or coverage. More recently,
RefineNet [15] uses a coarse-to-fine architecture which exploits all information
available along the down-sampling process. The Pyramid Scene Parsing Net-
work (PSPNet) [16] performs spatial pooling at several grid scales and achieves
remarkable performance on several segmentation benchmarks [17,18,2].

Multi-task learning. Multi-task learning, which aims to train models to ac-
complish multiple tasks at the same time, has attracted attention since long be-
fore the era of deep learning. For example, a number of previous research works
focus on the combination of recognition and segmentation [19,20,21]. More re-
cently, Elhoseiny et al. [22] have proposed a model that performs pose estimation
and object classification simultaneously. Eigen and Fergus [23] propose an archi-
tecture that jointly addresses depth prediction, surface normal estimation, and
semantic labeling. Teichmann et al. [24] propose an approach to perform clas-
sification, detection, and semantic segmentation via a shared feature extractor.
Kokkinos proposes the UberNet [25], a deep architecture that is able to do seven
different tasks relying on diverse training sets. Another recent work [3] proposes
a partially supervised training paradigm to scale up the segmentation of objects
to 3, 000 objects using box annotations only. Comparing our work with previous
works on multi-task learning, only a few of them perform multi-task learning on
heterogeneous datasets, i.e., a dataset that does not necessarily have all levels
of annotations over all tasks. Moreover, although tasks in [25] are formed from
low level to high level, such as boundary detection, semantic segmentation and
object detection, these tasks do not form the hierarchy of visual concepts. In
Section 4.2, we further demonstrate the effectiveness of our proposed tasks and
frameworks in discovering the rich visual knowledge from images.
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2 Defining Unified Perceptual Parsing

We define the task of Unified Perceptual Parsing as the recognition of many
visual concepts as possible from a given image. Possible visual concepts are
organized into several levels: from scene labels, objects, and parts of objects,
to materials and textures of objects. The task depends on the availability of
different kinds of training data. Since there is no single image dataset annotated
with all visual concepts at multiple levels, we first construct an image dataset
by combining several sources of image annotations.

2.1 Datasets

In order to accomplish segmentation of a wide range of visual concepts from mul-
tiple levels, we utilize the Broadly and Densely Labeled Dataset (Broden) [26], a
heterogeneous dataset that contains various visual concepts. Broden unifies sev-
eral densely labeled image datasets, namely ADE20K [2], Pascal-Context [27],
Pascal-Part [28], OpenSurfaces [6], and the Describable Textures Dataset (DTD) [4].
These datasets contain samples of a broad range of scenes, objects, object parts,
materials and textures in a variety of contexts. Objects, object parts and mate-
rials are segmented down to pixel level while textures and scenes are annotated
at image level.

The Broden dataset provides a wide range of visual concepts. Nevertheless,
since it is originally collected to discover the alignment between visual con-
cepts and hidden units of Convolutional Neural Networks (CNNs) for network
interpretability [26,29], we find that samples from different classes are unbal-
anced. Therefore we standardize the Broden dataset to make it more suitable
for training segmentation networks. First, we merge similar concepts across dif-
ferent datasets. For example, objects and parts annotations in ADE20K, Pascal-
Context, and Pascal-Part are merged and unified. Second, we only include object
classes which appear in at least 50 images and contain at least 50, 000 pixels in
the whole dataset. Also, object parts which appear in at least 20 images can be
considered valid parts. Objects and parts that are conceptually inconsistent are
manually removed. Third, we manually merge under-sampled labels in OpenSur-
faces. For example, stone and concrete are merged into stone, while clear plastic
and opaque plastic are merged into plastic. Labels that appear in less than 50
images are also filtered out. Fourth, we map more than 400 scene labels from
the ADE20K dataset to 365 labels from the Places dataset [30].

Table 1 shows some statistics of our standardized Broden, termed as Bro-
den+. It contains 57, 095 images in total, including 22, 210 images from ADE20K,
10, 103 images from Pascal-Context and Pascal-Part, 19, 142 images from Open-
Surfaces and 5, 640 images from DTD. Figure 2 shows the distribution of objects
as well as parts grouped by the objects to which they belong. We also provide
examples from each source of the Broden+ dataset in Figure 3.
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Category Classes Sources Eval. Metrics

scene 365 ADE [2] top-1 acc.
object 335 ADE [2], Pascal-Context[27] mIoU & pixel acc.
object w/ part 77 ADE [2], Pascal-Context[27] -
part 152 ADE [2], Pascal-Part [28] mIoU (bg) & pixel acc.
material 26 OpenSurfaces [6] mIoU & pixel acc.
texture 47 DTD [4] top-1 acc.

Table 1. Statistics of each label type in the Broden+ dataset. Evaluation metrics for
each type of labels are also listed.
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Fig. 2. a) Sorted object classes by frequency: we show top 120 classes selected from
the Broden+. Object classes that appear in less than 50 images or contain less than
50, 000 pixels are filtered. b) Frequency of parts grouped by objects. We show only top
30 objects with their top 5 frequent parts. The parts that appear in less than 20 images
are filtered.

2.2 Metrics

To quantify the performance of models, we set different metrics based on the
annotations of each dataset. Standard metrics to evaluate semantic segmentation
tasks include Pixel Accuracy (P.A.), which indicates the proportion of correctly
classified pixels, and mean IoU (mIoU), which indicates the intersection-over-
union (IoU) between the predicted and ground truth pixels, averaged over all
object classes. Note that since there might be unlabeled areas in an image, the
mIoU metric will not count the predictions on unlabeled regions. This would
encourage people to exclude the background label during training. However, it
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Fig. 3. Samples from the Broden+ dataset. The ground-truth labels for scene and
texture are image-level annotations, while for object, part and material are pixel-wise
annotations. Object and part are densely annotated, while material is partially anno-
tated. Images with texture labels are mostly such localized object regions.

is not suitable for the evaluation of tasks like part segmentation, because for
some objects the regions with part annotations only account for a small number
of pixels. Therefore we use mIoU, but count the predictions in the background
regions, denoted as mIoU-bg, in certain tasks. In this way, excluding background
labels during training will boost P.A. by a small margin. Nonetheless, it will
significantly downgrade mIoU-bg performance.

For object and material parsing involving ADE20K, Pascal-Context, and
OpenSurfaces, the annotations are at pixel level. Images in ADE20K and Pascal-
Context are fully annotated, with the regions that do not belong to any pre-
defined classes categorized into an unlabeled class. Images in OpenSurfaces are
partially annotated, i.e., if several regions of material occur in a single image,
more than one region may not be annotated. We use P.A. and mIoU metrics for
these two tasks.

For object parts we use P.A. and mIoU-bg metrics for the above mentioned
reason. The IoU of each part is first averaged within an object category, then
averaged over all object classes. For scene and texture classification we report
top-1 accuracy. Evaluation metrics are listed in Table 1.

To balance samples across different labels in different categories we first ran-
domly sample 10% of original images as the validation set. We then randomly
choose an image both from the training and validation set, and check if the an-
notations in pixel level are more balanced towards 10% after swapping these two
images. The process is performed iteratively. The dataset is split into 51, 617
images for training and 5, 478 images for validation.

3 Designing Networks for Unified Perceptual Parsing

We demonstrate our network design in Figure 4, termed as UPerNet (Unified
Perceptual ParsingNetwork), based on the Feature Pyramid Network (FPN) [31].
FPN is a generic feature extractor which exploits multi-level feature represen-
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Fig. 4. UPerNet framework for Unified Perceptual Parsing. Top-left: The Feature Pyra-
mid Network (FPN) [31] with a Pyramid Pooling Module (PPM) [16] appended on the
last layer of the back-bone network before feeding it into the top-down branch in FPN.
Top-right: We use features at various semantic levels. Scene head is attached on the
feature map directly after the PPM since image-level information is more suitable for
scene classification. Object and part heads are attached on the feature map fused by
all the layers put out by FPN. Material head is attached on the feature map in FPN
with the highest resolution. Texture head is attached on the Res-2 block in ResNet [1],
and fine-tuned after the whole network finishes training on other tasks. Bottom: The
illustrations of different heads. Details can be found in Section 3.

tations in an inherent and pyramidal hierarchy. It uses a top-down architecture
with lateral connections to fuse high-level semantic information into middle and
low levels with marginal extra cost. To overcome the issue raised by Zhou et

al. [32] that although the theoretical receptive field of deep CNN is large enough,
the empirical receptive field of deep CNN is relatively much smaller [33], we ap-
ply a Pyramid Pooling Module (PPM) from PSPNet [16] on the last layer of the
backbone network before feeding it into the top-down branch in FPN. Empiri-
cally we find that the PPM is highly compatible with the FPN architecture by
bringing effective global prior representations. For further details on FPN and
PPM, we refer the reader to [31] and [16].

With the new framework, we are able to train a single network which is able
to unify parsing of visual attributes at multiple levels. Our framework is based
on Residual Networks [1]. We denote the set of last feature maps of each stage
in ResNet as {C2, C3, C4, C5}, and the set of feature maps put out by FPN as
{P2, P3, P4, P5}, where P5 is also the feature map directly following PPM. The
down-sampling rates are {4, 8, 16, 32}, respectively. Scene label, the highest-level
attribute annotated at image-level, is predicted by a global average pooling of P5
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followed by a linear classifier. It is worth noting that, unlike frameworks based on
a dilated net, the down-sampling rate of P5 is relatively large so that the features
after global average pooling focus more on high-level semantics. For object label,
we empirically find that fusing all feature maps of FPN is better than only using
the feature map with the highest resolution (P2). Object parts are segmented
based on the same feature map as objects. For materials, intuitively, if we have
prior knowledge that these areas belong to the object “cup”, we are able to
make a reasonable conjecture that it might be made up of paper or plastics.
This context is useful, but we still need local apparent features to decide which
one is correct. It should also be noted that an object can be made up of various
materials. Based on the above observations, we segment materials on top of P2

rather than fused features. Texture label, given at the image-level, is based on
non-natural images. Directly fusing these images with other natural images is
harmful to other tasks. Also we hope the network can predict texture labels at
pixel level. To achieve such a goal, we append several convolutional layers on
top of C2, and force the network to predict the texture label at every pixel.
The gradient of this branch is prevented from back-propagating to layers of
backbone networks, and the training images for texture are resized to a smaller
size (∼ 64× 64). The reasons behind these designs are: 1) Texture is the lowest-
level perceptual attribute, thus it is purely based on apparent features and does
not need any high-level information. 2) Essential features for predicting texture
correctly are implicitly learned when trained on other tasks. 3) The receptive
field of this branch needs to be small enough, so that the network is able to
predict different labels at various regions when an image at normal scale is fed
in the network. We only fine-tune the texture branch for a few epochs after the
whole network finishes training on other tasks.

When only trained on object supervision, without further enhancements, our
framework yields almost identical performance as the state-of-the-art PSPNet,
while requiring only 63% of training time for the same number of epochs. It is
worth noting that we do not even perform deep supervision or data augmenta-
tions used in PSPNet other than scale jitter, according to the experiments in
their paper [16]. Ablation experiments are provided in Section 4.1.

3.1 Implementation details

Every classifier is preceded by a separate convolutional head. To fuse the layers
with different scales such as {P2, P3, P4, P5}, we resize them via bilinear inter-
polation to the size of P2 and concatenate these layers. A convolutional layer
is then applied to fuse features from different levels as well as to reduce chan-
nel dimensions. All extra non-classifier convolutional layers, including those in
FPN, have batch normalization [34] with 512-channel output. ReLU [35] is ap-
plied after batch normalization. Same as [36], we use the “poly” learning rate
policy where the learning rate at current iteration equals the initial learning rate
multiplying

(

1− iter
max iter

)power
. The initial learning rate and power are set to

0.02 and 0.9, respectively. We use a weight decay of 0.0001 and a momentum
of 0.9. During training the input image is resized such that the length of its
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shorter side is randomly chosen from the set {300, 375, 450, 525, 600}. For infer-
ence we do not apply multi-scale testing for fair comparison, and the length is
set to 450. The maximum length of the longer side is set to 1200 in avoidance of
GPU memory overflow. The layers in the backbone network are initialized with
weights pre-trained on ImageNet [37].

During each iteration, if a mini-batch is composed of images from several
sources on various tasks, the gradient with respect to a certain task can be
noisy, since the real batch size of each task is in fact decreased. Thus we randomly
sample a data source at each iteration based on the scale of each source, and
only update the path to infer the concepts related to the selected source. For
object and material, we do not calculate loss on unlabeled area. For part, as
mentioned in Section 2.2, we add background as a valid label. Also the loss of a
part is applied only inside the regions of its super object.

Due to physical memory limitations a mini-batch on each GPU involves only
2 images. We adopt synchronized SGD training across 8 GPUs. It is worth noting
that batch size has proven to be important to generate accurate statistics for
tasks like classification [38], semantic segmentation [16] and object detection [39].
We implement batch normalization such that it is able to synchronize across
multiple GPUs. We do not fix any batch norm layer during training. The number
of training iterations of ADE20k (with ∼ 20k images) alone is 100k. If trained
on a larger dataset, we linearly increase training iterations based on the number
of images in the dataset.

3.2 Design discussion

State-of-the-art segmentation networks are mainly based on fully convolutional
networks (FCNs) [11]. Due to a lack of sufficient training samples, segmentation
networks are usually initialized from networks pre-trained for image classifica-
tion [37,7,8]. To enable high-resolution predictions for semantic segmentation,
dilated convolution [14], a technique which removes the stride of convolutional
layers and adds holes between each location of convolution filters, has been pro-
posed to ease the side effect of down-sampling while maintaining the expansion
rate for receptive fields. The dilated network has become the de facto paradigm
for semantic segmentation.

We argue that such a framework has major drawbacks for the proposed Uni-
fied Perceptual Parsing task. First, recently proposed deep CNNs [1,40], which
have succeeded on tasks such as image classification and semantic segmenta-
tion usually have tens or hundreds of layers. These deep CNNs are intricately
designed such that the down-sampling rate grows rapidly in the early stage of
the network for the sake of a larger receptive field and lighter computational
complexity. For example, in the ResNet with 100 convolutional layers in total,
there are 78 convolutional layers in the Res-4 and Res-5 blocks combined, with
down-sampling rates of 16 and 32, respectively. In practice, in a dilated seg-
mentation framework, dilated convolution needs to be applied to both blocks to
ensure that the maximum down-sampling rate of all feature maps do not exceed
8. Nevertheless, due to the feature maps within the two blocks are increased to
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Method Mean IoU(%) Pixel Acc.(%) Overall(%) Time(hr)

FCN [11] 29.39 71.32 50.36 -
SegNet [42] 21.64 71.00 46.32 -
DilatedNet [14] 32.31 73.55 52.93 -
CascadeNet [2] 34.90 74.52 54.71 -
RefineNet (Res-152) [15] 40.70 - - -

DilatedNet∗†(Res-50) [16] 34.28 76.35 55.32 53.9

PSPNet†(Res-50) [16] 41.68 80.04 60.86 61.1

FPN (/16) 34.46 76.04 55.25 18.1
FPN (/8) 34.99 76.54 55.77 20.2
FPN (/4) 35.26 76.52 55.89 21.2
FPN+PPM (/4) 40.13 79.61 59.87 27.8
FPN+PPM+Fusion (/4) 41.22 79.98 60.60 38.7

Table 2. Detailed analysis of our framework based on ResNet-50 v.s. state-of-the-art
methods on ADE20K dataset. Our results are obtained without multi-scale inference or
other techniques. FPN baseline is competitive while requiring much less computational
resources. Further increasing resolution of feature maps brings consistent gain. PPM is
highly compatible with FPN. Empirically we find that fusing features from all levels of
FPN yields best performance. ∗: A stronger reference for DilatedNet reported in [16].
†: Training time is based on our reproduced models. We also use the same codes in
FPN baseline.

4 or 16 times of their designated sizes, both the computation complexity and
GPU memory footprint are dramatically increased. The second drawback is that
such a framework utilizes only the deepest feature map in the network. Prior
works [41] have shown the hierarchical nature of the features in the network,
i.e., lower layers tend to capture local features such as corners or edge/color
conjunctions, while higher layers tend to capture more complex patterns such as
parts of some object. Using the features with the highest-level semantics might
be reasonable for segmenting high-level concepts such as objects, but it is nat-
urally unfit to segment perceptual attributes at multiple levels, especially the
low-level ones such as textures and materials. In what follows, we demonstrate
the effectiveness and efficiency of our UPerNet.

4 Experiments

The experiment section is organized as follows: we first introduce the quantitative
study of our proposed framework on the original semantic segmentation task and
the UPP task in Section 4.1. Then we apply the framework to discover visual
common sense knowledge underlying scene understanding in Section 4.2.

4.1 Main results

Overall architecture. To demonstrate the effectiveness of our proposed archi-
tecture on semantic segmentation, we report the results trained on ADE20K us-
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Training Data Object Part Scene Material Texture

+O +P +S +M +T mI. P.A. mI.(bg) P.A. T-1 mI. P.A. T-1

X 24.72 78.03 - - - - - -
X - - - - - 52.78 84.32 -

X X 23.92 77.48 30.21 48.30 - - - -
X X X 23.83 77.23 30.10 48.34 71.35 - - -
X X X X 23.36 77.09 28.75 46.92 70.87 54.19 84.45 -

X X X X X 23.36 77.09 28.75 46.92 70.87 54.19 84.45 35.10

Table 3. Results of Unified Perceptual Parsing on the Broden+ dataset. O: Object. P:
Part. S: Scene. M: Material. T: Texture. mI.: mean IoU. P.A.: pixel accuracy. mI.(bg):
mean IoU including background. T-1: top-1 accuracy.

ing object annotations under various settings in Table 2. In general, FPN demon-
strates competitive performance while requiring much less computational re-
sources for semantic segmentation. Using the feature map up-sampled only once
with a down-sampling rate of 16 (P4), it reaches mIoU and P.A. of 34.46/76.04,
almost identical to the strong baseline reference reported in [16] while only taking
about 1/3 of the training time for the same number of iterations. Performance
improves further when the resolution is higher. Adding the Pyramid Pooling
Module (PPM) boosts performance by a 4.87/3.09 margin, which demonstrates
that FPN also suffers from an insufficient receptive field. Empirically we find
that fusing features from all levels of FPN yields best performance, a consistent
conclusion also observed in [43].

The performance of FPN is surprising considering its simplicity with fea-
ture maps being simply up-sampled by bilinear interpolation instead of time-
consuming deconvolution, and the top-down path is fused with bottom-up path
by an 1x1 convolutional layer followed by element-wise summation without any
complex refinement module. It is the simplicity that accomplishes its efficiency.
We therefore adopt this design for Unified Perceptual Parsing.

Multi-task learning with heterogeneous annotations. We report the re-
sults trained on separate or fused different sets of annotations. The baseline of ob-
ject parsing is the model trained on ADE20K and Pascal-Context. It yields mIoU
and P.A. of 24.72/78.03. This result, compared with the results for ADE20K,
is relatively low because Broden+ has many more object classes. The baseline
of material is the model trained on OpenSurfaces. It yields mIoU and P.A. of
52.78/84.32. Joint training of object and part parsing yields 23.92/77.48 on ob-
ject and 30.21/48.30 on part. The performance on object parsing trained plus
part annotations is almost identical to that trained only on object annotations.
After adding a scene prediction branch it yields top-1 accuracy of 71.35% on
scene classification, with negligible downgrades of object and part performance.
When jointly training material with object, part, and scene classification, it
yields a performance of 54.19/84.45 on material parsing, 23.36/77.09 on object
parsing, and 28.75/46.92 on part parsing. It is worth noting that the object
and part both suffer a slight performance degrade due to heterogeneity, while
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Fig. 5. Predictions on the validation set using UPerNet (ResNet-50). From left to right:
scene classification, and object, part, material, and texture parsing.

material enjoys a boost in performance compared with that trained only on
OpenSurfaces. We conjecture that it is attributed to the usefulness of informa-
tion in object as priors for material parsing. As mentioned above, we find that
directly fusing texture images with other natural images is harmful to other
tasks, since there are nontrivial differences between images in DTD and natu-
ral images. After fine-tuning on texture images using the model trained with
all other tasks, we can obtain the quantitative texture classification results by
picking the most frequent pixel-level predictions as an image-level prediction.
It yields classification accuracy of 35.10. The performance on texture indicates
that only fine-tuning the network on texture labels is not optimal. However, this
is a necessary step to overcome the fusion of natural and synthetic data sources.
We hope future research can discover ways to better utilize such image-level
annotations for pixel-level predictions.

Qualitative results.We provide qualitative results of UPerNet, as visualized in
Figure 5. UPerNet is able to unify compositional visual knowledge and efficiently
predicts hierarchical outputs simultaneously.

4.2 Discovering visual knowledge in natural scenes

Unified Perceptual Parsing requires a model that is able to recognize as many
visual concepts as possible from a given image. If a model successfully achieves
this goal, it could discover rich visual knowledge underlying the real world, such
as answering questions like “What are the commonalities between living rooms
and bedrooms?” or “What are the materials that make a cup?” The discovery or
even the reasoning of visual knowledge in natural scenes will enable future vision
systems to understand its surroundings better. In this section, we demonstrate
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Fig. 6. Visualizing discovered compositional relations between various concepts.

that our framework trained on the Broden+ is able to discover compositional
visual knowledge at multiple levels. That is also the special application for the
network trained on heterogeneous data annotations. We use the validation set of
Places-365 [30] containing 36, 500 images from 365 scenes as our testbed, since
the Places dataset contains images from a variety of scenes and is closer to
real world. We define several relations in a hierarchical way, namely scene-object

relation, object-part relation, object-material relation, part-material relation and
material-texture relation. Note that only the object-part relations can be directly
read out from the ground-truth annotations, other types of relations can only
be extracted from the network predictions.
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Scene-object relations. For each scene, we count how many objects show up
normalized by the frequency of this scene. According to [44], we formulate the
relation as a bipartite graph G = (V,E) comprised of a set V = Vs ∪ Vo of
scene nodes and object nodes together with a set E of edges. The edge with a
weight from vs to vo represents the percent likelihood that object vo shows up
in scene vs. No edge connects two nodes that are both from Vs or both from Vo.
We filter the edges whose weight is lower than a threshold and run a clustering
algorithm to form a better layout. Due to space limitations, we only sample
dozens of nodes and show the visualization of the graph in Figure 6(a). We can
clearly see that the indoor scenes mostly share objects such as ceiling, floor,
chair, or windowpane while the outdoor scenes mostly share objects such as sky,
tree, building, or mountain. What is more interesting is that even in the set of
scenes, human-made and natural scenes are clustered into different groups. In the
layout, we are also able to locate a common object appearing in various scenes,
or find the objects in a certain scene. The bottom-left and bottom-right pictures
in Figure 6(a) illustrate an example in which we can reasonably conclude that
the shelf often appears in shops, stores, and utility rooms; and that in a heliport
there are often trees, fences, runways, persons, and of course, airplanes.

Object(part)-material relations. Apart from scene-object relations, we are
able to discover object-material relations as well. Thanks to the ability of our
model to predict a label of both object and material at each pixel, it is straight-
forward to align objects with their associated materials by counting at each pixel
what percentage of each material is in every object. Similar to the scene-object
relationship, we build a bipartite graph and show its visualization in the left of
Figure 6(b). Using this graph we can infer that some sinks are ceramic while
others are metallic; different floors have different materials, such as wood, tile,
or carpet. Ceiling and wall are painted; the sky is also “painted”, more like a
metaphor. However, we can also see that most of the bed is fabric instead of
wood, a misalignment due to the actual objects on the bed. Intuitively, the ma-
terial of a part in an object will be more monotonous. We show the part-material
visualization in the middle of Figure 6(b).

Material-texture relations. One type of material may have various kinds of
textures. But what is the visual description of a material? We show the visu-
alization of material-texture relations in the right of Figure 6(b). It is worth
noting that although there is a lack of pixel-level annotations for texture labels,
we can still generate a reasonable relation graph. For example, a carpet can be
described as matted, blotchy, stained, crosshatched and grooved.

5 Conclusion

This work studies the task of Unified Perceptual Parsing, which aims at parsing
visual concepts across scene categories, objects, parts, materials and textures
from images. A multi-task network and training strategy of handling heteroge-
neous annotations are developed and benchmarked. We further utilize the trained
network to discover visual knowledge among scenes.
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