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Abstract. The perspective camera and the isometric surface prior have recently

gathered increased attention for Non-Rigid Structure-from-Motion (NRSfM). De-

spite the recent progress, several challenges remain, particularly the computa-

tional complexity and the unknown camera focal length. In this paper we present

a method for incremental Non-Rigid Structure-from-Motion (NRSfM) with the

perspective camera model and the isometric surface prior with unknown focal

length. In the template-based case, we provide a method to estimate four param-

eters of the camera intrinsics. For the template-less scenario of NRSfM, we pro-

pose a method to upgrade reconstructions obtained for one focal length to another

based on local rigidity and the so-called Maximum Depth Heuristics (MDH). On

its basis we propose a method to simultaneously recover the focal length and the

non-rigid shapes. We further solve the problem of incorporating a large number of

points and adding more views in MDH-based NRSfM and efficiently solve them

with Second-Order Cone Programming (SOCP). This does not require any shape

initialization and produces results orders of times faster than many methods. We

provide evaluations on standard sequences with ground-truth and qualitative re-

constructions on challenging YouTube videos. These evaluations show that our

method performs better in both speed and accuracy than the state of the art.

1 Introduction

Given images of a rigid object from different views, Structure-from-Motion (SfM) [1–3]

allows the computation of the object’s 3D structure. However, many such objects of in-

terest are non-rigid and the rigidity constraints of SfM do not hold. The ever increasing

number of monocular videos with deforming objects means provides a large incentive

for being able to reconstruct such scenes. Such reconstruction problems can be solved

with Non-Rigid Structure-from-Motion (NRSfM) which uses multiple images of a de-

forming object to reconstruct its 3D from a single camera. Another related approach

computes the shape based on the object’s template shape and its deformed image, also

termed as Shape-from-Template (SfT). While SfM is well-posed and has already seen

several applications in commercial software [4, 5], non-rigid reconstruction has inher-

ent theoretical problems. It is severely under-constrained without prior knowledge of

the deformation or the shapes. In fact given a number of images, infinite possibilities

of deformations exist that provide the same image projections. Therefore, one of the

major challenges in NRSfM is to efficiently combine a realistic deformation constraint

and the camera projection model to reduce the solution ambiguity.
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Fig. 1: Qualitative Results. Comparison of our dense NRSfM method (bottom-right)

to Ji et al. [6] (top-left) and Dai et al. [7] (top-right) on three different sequences.

A large majority of previous methods tackle NRSfM with an affine camera model

and a low rank approximation of the deforming shapes [7–14]. However, such methods

do not handle perspective effects and nonlinear deformations very well. In this paper

we study the use of the uncalibrated perspective camera and the isometric deforma-

tion prior for non-rigid reconstruction. Isometry is a geometric prior which implies that

the geodesic distances on the surface are preserved with the deformations. This is a

good approximation for many real objects such as a human body, paper-like surfaces,

or cloth. In SfT, the use of the isometric deformation prior with the perspective camera

is considered to be the state-of-the-art [15–17] among the parameter-free approaches.

In particular, [15, 18] also estimate the focal length while recovering the deformation.

In NRSfM, some recent methods [6, 19] provide a convex formulation with the inex-

tensible deformation for a calibrated perspective camera setup. The reconstruction is

achieved by maximizing depth along the sightlines introduced in [20,21] for template-

based reconstruction. Although the methods use the perspective camera model and ge-

ometric priors for non-rigid reconstruction, their computational complexity does not

allow reconstructing a large number of points. On the other hand, some recent dense

methods using the perspective camera model have shown promising results, but they

rely on piecewise rigidity constraints [22, 23] and shape initialization; this may be too

constraining for several applications. Furthermore, methods using the perspective cam-

era either rely on known intrinsics or cannot handle significant nonrigidity [24]. To the

best of our knowledge, estimation of the unknown focal length has not been investigated

in NRSfM for deforming surfaces.

In this paper we address the aforementioned issues with methods based on the con-

vex relaxation of isometry. More precisely, we provide the following contributions: a)

a method to ‘upgrade’ the non-rigid reconstruction obtained using incorrect camera in-

trinsics to the reconstruction of the correct one, b) a method to estimate intrinsics - all

five entries in the case of SfT and the unknown focal length in the case template-less

NRSfM c) an incremental method to add more points to the sparse 3D point-sets for

consistent and semi-dense reconstruction d) online method of reconstruction by adding

images. Besides being of immense practical concern and theoretical value, questions a)

and b) have not been attempted for NRSfM for deforming objects. We provide a unified

framework to solve the problems a) through d) using depth maximization and the re-

laxations of the isometry prior. We provide theoretical justification along with practical

methods for intrinsics/focal length estimation as well as densification and online recon-
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struction strategies. Despite being extremely challenging, we show the applicability of

our method with compelling results. A few examples among them is shown in Fig 1.

1.1 Related Work

We discuss briefly the methods based on the isometry prior and the perspective camera

model. This has been widely explored in the template-based methods [20, 21, 25]. In

particular, [21] uses the inextensibility as a relaxation of the isometry prior in order to

formulate non-rigid reconstruction as a convex problem by maximizing the depth point-

wise. Several recent NRSfM methods [6, 19, 26–28] also use isometry or inextensibil-

ity with the perspective camera model. [27, 28] require the correspondence mapping

function with its first and second-order derivatives limiting their application in prac-

tice. [19] improved upon [26] by providing a convex solution to NRSfM. They achieve

this by maximizing pointwise depth in all views under the inextensibility cone con-

straints of [21] while also computing the template geodesics. Very recently a method [6]

improving upon [19] suggested the use of maximization of sightlines rather than the

pointwise depth. Both these methods have shown that moving the surface away from

the camera under the inextensibility constraints can be formulated as a convex prob-

lem effectively reconstructing non-rigid as well as rigid objects. A different class of

methods that use energy minimization approach on an initial solution also use the per-

spective camera model but with a piece-wise rigidity prior [22, 23]. However, all of

these methods discussed here require the calibrated camera for reconstruction and do

not provide any insights on how they can be extended to an uncalibrated camera. One

notable exception is given by [24], however this approach is limited to dynamic scenes

featuring a few independently moving objects [29, 30]. Yet another problem that has

not been addressed in [6, 19] is the incremental reconstruction of a large number of

points. Semi-dense or dense reconstruction as such is not possible here due to the high

computational complexity of these methods.

2 Problem Modelling

We pose the NRSfM problem as that of finding point-wise depth in each view. We write

the unknown depth as λl
i and the known homogeneous image coordinates as uli, for

the point i in the l-th image. A set of neighboring points of i is denoted by N (i). dij
represents the template geodesic distance between point i and j, which is an unknown

quantity for the NRSfM problem and a known quantity for the SfT problem. We define

a nearest neighborhood graph as a set of fixed number of neighbors for each point i [19].

To represent the exact isometric NRSfM problem, we also introduce a geodesic distance

function between two 3D points on the surface S , gS(x, y) : R
3 × R

3 → R. Given the

camera intrinsics K, the isometric NRSfM problem can be written as:

Find K, λl
i

s.t. g
(

K
−1λl

iu
l
i, K

−1λl
ju

l
j

)

= dij , ∀i, ∀j.
(1)

(1) defines a non-convex problem and is also not tractable in its given form. It has been

shown that with various relaxations [6, 19, 26], problem (1) can be solved for a known
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K when different views and deformations are observed. In order to tackle the NRSfM

problem with an unknown focal length we start with the observation that not all such

solutions provide isometrically consistent shapes through all the views. We formulate

our methods in the following sections.

3 Uncalibrated NRSfM

Given a known object template and a calibrated camera the NRSfM problem in (1)

can be formulated as a convex problem by relaxing the isometry constraint with an

inextensibility constraint [21] as below:

max
λl
i

∑

l

∑

i

λl
i,

s.t.
∥

∥K
−1(λl

iu
l
i − λl

ju
l
j)
∥

∥ ≤ dij , ∀j ∈ N (i).

(2)

We are, however, interested on solving the same problem when both dij and K are un-

known. Unfortunately, this problem is not only non-convex, but also unbounded. There-

fore, we use two extra constraints on the variables K and dij such that the problem of (2),

for unknown dij and K, becomes bounded.

∑

i

∑

j∈N (i)

dij = 1, K ≤ K.
(3)

Despite being bounded with the addition of (3), the reconstruction problem is still non-

convex. More importantly, the maximization of the objective function favors the solu-

tion when K is as close as possible to K. Therefore, we instead solve the reconstruction

problem in (2) with a fixed initial guess K̂ and seek for the upgrade of both intrinsics

and reconstruction later. Note that fixing the intrinsics makes the problem convex and

identical to that in [19].

max
λl
i
,dij

∑

l

∑

i

λl
i,

s.t.

∥

∥

∥
K̂
−1(λl

iu
l
i − λl

ju
l
j)
∥

∥

∥
≤ dij , j ∈ N (i),

∑

i

∑

j∈N (i)

dij = 1.

(4)

Now, we are interested to upgrade the solution of (4) such that the upgraded reconstruc-

tion correctly describes the deformed object in the 3D-space. In this work, the upgrade

is carried out using a pointwise upgrade equation. In the following, we first derive this

upgrade equation assuming that the correct focal length is known and then provide the

theory and practical approaches to recover the unknown focal length.

3.1 Upgrade Equation

Let us consider, λl
i and λ̂l

i are depths, of the point represented by uli, obtained from (2)

and (4), respectively. The following proposition is the key ingredient of our work that

relates λ̂l
i to λl

i for the reconstruction upgrade.
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Proposition 1. For uli ≈ ulN (i), λ̂
l
i can be upgraded to λl

i with the known K using,

λl
i ≈

λ̂l
i

∥

∥

∥
K̂−1uli

∥

∥

∥

∥

∥K−1uli

∥

∥

. (5)

Proof. It is sufficient to show that every j ∈ N (i) satisfies

∥

∥

∥
K̂−1(λ̂l

iu
l
i − λ̂l

ju
l
j)
∥

∥

∥
≈

∥

∥K−1(λl
iu

l
i − λl

ju
l
j)
∥

∥. From (5), for any ul
i ≈ ul

N (i),

∥

∥

∥
K̂−1(λ̂l

iu
l
i − λ̂l

ju
l
j)
∥

∥

∥

2

can be

expressed as,

≈
∥

∥K
−1

u
l
i

∥

∥

2
∥

∥

∥
K̂
−1(λl

i − λl
j)u

l
i

∥

∥

∥

2

/
∥

∥

∥
K̂
−1

u
l
i

∥

∥

∥

2

,

=(λl
i − λl

j)
2
∥

∥K
−1

u
l
i

∥

∥

2
≈

∥

∥K
−1(λl

iu
l
i − λl

ju
l
j)
∥

∥

2
.⊓⊔

(6)

Note that the condition uli ≈ ulN (i) is valid for any two sufficiently close neighbors.

Such neighbors can be chosen using only the image measurements. More importantly,

the assumption uli ≈ ulN (i) still allows depths λl
i and λl

N (i) to be different. This plays a

vital role especially when the close neighboring points differ distinctly in depth, either

due to camera perspective or high frequency structural changes. Although, (5) is only a

close approximation for the reconstruction upgrade, its upgrade quality in practice was

observed to be accurate. The following remark concerns Proposition 1.

Remark 1. As the guess on intrinsics K̂ tends to the real intrinsics K, the upgrade equa-

tion (5) holds true for exact equality even when uli 6≈ ulN (i). In other words,

lim
K̂→K

λl
i = λ̂l

i. (7)

3.2 Upgrade Strategies

The upgrade equation presented in Proposition 1 assumes that the exact intrinsics K is

known. However, for uncalibrated NRSfM, K is unknown. While the principal point can

be assumed to be at the center of the image for most cameras [31], nothing can be said

about the focal length. We henceforth, present strategies to estimate K in two different

scenarios of known and unknown shape template. We rely on the fact that isometric

deformation, to a large extent, preserves local rigidity. This is reflected somewhat in the

reconstruction obtained from (4). However, due to changes in the perspective and the

extension of points along incorrect sightlines, the use of incorrect intrinsics produces

reconstructions that are very less likely to remain isometric across different views. Sim-

ilarly, an upgrade towards the correct intrinsics in that case produces reconstructions

which satisfy the isometry better. This is also supported by the results in Section 6.

There are various ways one can use isometry of the reconstructed surfaces to deter-

mine the correct intrinsics. A very simple method would be to use the fact that given

reconstructed points that are dense enough, the correct intrinsics must preserve the local
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euclidean distance. For âi = λ̂i

∥

∥

∥
K̂−1ui

∥

∥

∥
, the euclidean distance between two upgraded

neighboring 3D points, in any view as a function of intrinsics, can be expressed as,

d̂ij(K) =

∥

∥

∥

∥

âiK
−1ui

‖K−1ui‖
−

âjK
−1uj

‖K−1uj‖

∥

∥

∥

∥

. (8)

Now, we present techniques to estimate K when the shape template is known (SfT),

followed by a method to estimate the focal length for template-less case of NRSfM.

Template-based Calibration For the sake of simplicity, we present the calibration

theory using only one image. This is also the sufficient condition for reconstruction

when the shape template is known [21]. Recall that for SfT, dij in (4) are already known

during the reconstruction process. For known template distance dij and the estimated

euclidean distance after reconstruction upgrade d̂ij(K), the intrinsics K can be estimated

by minimizing,

ΦT (K) =
∑

i

∑

j∈N (i)

(

dij − d̂ij(K)
)2

. (9)

Alternatively, one can also derive polynomial equations on the entries of the so-called

Image of the Absolute Conic (IAC), defined as Ω = K−⊺K−1.

Proposition 2. As long as the rigidity between any pair {ui, uj} is maintained, either

for any K̂ and ui ≈ uj or for any pair {ui, uj} as K̂ → K, the IAC can be approximated

by solving,

u
⊺

i Ωuiu
⊺

jΩuj = γij
(

u
⊺

i Ωuj

)2
, (10)

for sufficiently many pairs, where,

γij =
( 2âiâj
â2i + â2j − d2ij

)2

. (11)

We provide the proof in the supplementary material.

Note that (10) is a degree 2 polynomial on the entries of Ω. Since, Ω has 5 degrees

of freedom, it can be estimated from 5 pairs of image points, using numerical methods.

The core idea of our template-based calibration consists of three steps: (i) a fixed

number of hypothesis generation, (ii) hypothesis validation using the upgraded recon-

struction quality, (iii) refinement of the best hypothesis.

Hypothesis generation: Given the template-based uncalibrated reconstruction from (4),

we generate a set of hypotheses for camera intrinsics from randomly selected sets of

minimal closest-point pairs. For every minimal set, we solve (10) for Ω to obtain these

hypotheses. Then, the camera intrinsics K is recovered by performing the Cholesky-

decomposition on Ω.

Hypothesis validation: Each hypothesis is validated by computing its 3D reconstruc-

tion error. To do so, we first upgrade the initial reconstruction using the upgrade (5) for

current hypothesis. Then, the reconstruction error is computed using (9). The hypothesis

that results into minimum reconstruction error is chosen for further refinement.



Incremental Non-Rigid Structure-from-Motion with Unknown Focal Length 7

Intrinsics refinement: Starting from the best hypothesis, we refine the intrinsics by

minimizing the following objective function:

E(K) = ΦT (K) + k2(1,3) + k2(2,3) +
(

1−
k(1,1)

k(2,2)

)2

, (12)

where, k(i,j) is the ith-row and jth-column entry of the normalized intrinsic matrix K.

Note that, we regularize the 3D reconstruction error ΦT (K) by the expected structure

of K (i.e. principal point close to the center and unit aspect ratio). Our regularization

term is often the main objective for existing autocalibration methods [31,32]. The min-

imization of objective E(K) can be carried out efficiently using locally optimal iterative

refinement methods.

Now, we summarize our calibration method in Algo. 1.

Algorithm 1 [K] = calibrateWithTemplate(K̂)

1. Reconstruct 3D using (4) for known dij and the guess K̂.

2. Select multiple sets of minimal closest-point pairs {ui, uj}.
3. For each set,

(i) Generate hypothesis K̃ by solving (10).

(ii) Upgrade the reconstruction for K̃ using (5).

(iii) Compute the reconstruction error for K̃ using (9).

4. Among all sets, choose K̃ with best reconstruction error.

5. Refine the best hypothesis K̃ using (12) to obtain K.

Template-less Calibration As the self-calibration with the unknown template is ex-

tremely challenging, we relax it by considering that the principal point is at the center

of the image and that the two focal lengths are equal. We assume that the intrinsics are

constant across views. We then measure the consistency of the upgraded local euclidean

distances, defined by (8), across different views. More precisely, we wish to estimate

the focal length in K by minimizing the following objective function,

Φ(K) =
∑

k

∑

l 6=k

∑

i

∑

j∈N (i)

(

d̂kij(K)− d̂lij(K)
)2

. (13)

Ideally, it is also possible to derive polynomials on Ω, analogous to (10). This can be

done by eliminating the unknown variable dij from two equations for two views of the

same pair. Unfortunately, the equation derived in this manner does not turn out to be

easily tractable. Alternatively, one can also attempt to solve the polynomials without

eliminating variables dij – on both variables Ω and dij . However for practical reasons1,

we design a method assuming only one entry of Ω, corresponding to the focal length,

is unknown. Under such assumption, we show in the supplementary materials that a

polynomial of degree 4, one variable, equivalent to (10), can also be derived.

In this paper, we avoid making hypothesis on the focal length, since it is not really

necessary. Unlike the case of template-based calibration, we address the problem of

1For most of the cameras, it is safe to assume that their intrinsics have no skew, unit aspect ratio,

and a principal point close to the image center.
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template-less calibration iteratively in two steps: (i) focal length refinement, (ii) focal

length validation. Henceforth for the template-less calibration, we make a slight abuse

of notation by using K even for the intrinsics with only unknown focal length, unless

mentioned otherwise.

Focal length refinement: Given an initial guess on focal length, its refinement is carried

out by minimizing the objective function Φ(K) of (13) (optionally, on the full intrinsics).

This refinement process finds a refined K which results a better isometric consistency

of the reconstructions across views.

Focal length validation: The main problem of template-less calibration is to obtain the

validity for the given pair of intrinsics and the reconstruction. In other words, if one

is given all reconstructions from all possible focal lengths, it is not trivial to know the

correct reconstruction. Especially when reconstructing using overestimated intrinsics

with MDH, K allows the average depths to dominate the objective, while preserving

the isometry. This usually leads to a flat and small scaled reconstruction [17]. Therefore

an overestimated guess K̂ favors its own reconstruction over any upgraded one, while

minimizing Φ(K). Relying on this observation, we seek for the isometrically consistent

reconstruction with the smallest focal length, which works very well in practice. An

algebraic analysis of our reasoning is provided in the supplementary material.

While searching for focal length, we use a sweeping procedure. On the one hand, if

a reconstruction with the given focal length does not favor any upgrade, the sweeping

is performed towards the lower focal length with a predefined step size, unless it starts

favoring the upgrade. On the other hand, if the reconstruction favors the upgrade, we

follow the suggested focal length update, until it suggests no more upgrade. The sought

focal length is the one below which the upgrade is favorable, whereas above which it is

not. Let δ(K1,K2) be gap in focal lengths of two intrinsics K1 and K2, ∆K be a small

step size which when added to an intrinsic matrix K increases its focal length by that

step size. Our template-less calibration method is summarized in Algo. 2.

Algorithm 2 [K] = calibrateWithoutTemplate(K̂)

0. Set sweep direction flag = 0.

1. Reconstruct 3D using (4) for the guess K̂.

2. Starting from K̂, minimize Φ(K) in (13) to obtain K
∗.

3. IF δ(K∗, K̂) ≤ ǫ,

IF flag == 0, set K̂ = K
∗ −∆K and goto step 1.

ELSE, return K
∗.

ELSE, set and flag = 1, K̂ = K
∗ and goto step 1.

We show in the experiment section, that the Algo. 2 converges in very few itera-

tions. In every iteration, beside the reconstruction itself, the major computation is only

required while minimizing Φ(K). Recall that, Φ(K) is minimized iteratively using a lo-

cal method. During local search, the reconstruction for every update is required to com-

pute Φ(K). Thanks to the upgrade equation, the cost Φ(K) can be computed instantly,

without going through the computationally expensive reconstruction process.
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3.3 Intrinsics Recovery in Practice

Although our reconstruction method makes inextensible shape assumption, the upgrade

strategies use the piece-wise rigidity constraint. Despite the fact that the piece-wise

rigid assumption is mostly true for inextensible shapes, it could be problematic in cer-

tain cases, for example, when the reconstructed points are too sparse. Therefore, some

special care need to taken for a robust calibration.

Distance normalization and geodesics: Recall that the upgrade equation (5) is an ap-

proximation under the assumption that either the neighboring image points are suf-

ficiently close to each other or a good guess K̂ is provided. When neither of these

conditions are satisfied, the intrinsics obtained from energy minimization may not be

sufficiently accurate. While a larger focal length may reduce the residual error, it also

reduces individual distances creating disparities in the reconstruction scale of different

views. Therefore, during each iteration of refinement, we fix the scale by enforcing,

∑

i

∑

j∈N (i)

d̂lij(K) = 1, ∀l. (14)

Another important practical aspect here is the use of geodesics ĝl(i, j) instead of d̂lij
in Eq. (13) or Eq. (9). When the scene points are sparse, using geodesics instead of

the local euclidean distances may be necessary. We therefore choose to use geodesics

computed from Dijkstra’s algorithm [33] instead of the local euclidean distances for

stability.

Re-reconstruction and re-calibration: For a better calibration accuracy, especially

when the initial guess K̂ is largely inaccurate, we iteratively perform re-reconstruction

and re-calibration, starting from newly estimated intrinsics, until convergence. This has

already been included in Algo. 2, which we also included on top of Algo. 1 in our

implementation. In practice, only a few such iterations are sufficient to converge, even

when the initial guess on intrinsics is very arbitrary.

4 Incremental Semi-dense NRSfM

The SOCP problem of (4) has the time complexity of O(n3). Therefore in practice, only

a sparse set of points can be reconstructed in this manner. Here, we present a method to

iteratively densify the initial sparse reconstruction, followed by online new view/camera

addition strategy. Besides many obvious importance of incremental reconstruction, it

is also necessary in our context: (a) to allow the selection of the closest image point

pairs for camera calibration, (b) to compute 3D Geodesic distances for single view

reconstruction.

4.1 Adding New Points

Let P represents a set of sparse points reconstructed using (4). We would like to re-
construct a set of new points Q with depths ζli , such that Q ∩ P = ∅, consistent to
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the existing reconstruction. This can be achieved by solving the following convex opti-
mization problem,

max
ζl
i
,eij ,α

αΛ+
∑

l

∑

i∈Q

ζ
l
i ,

s.t.

∥

∥

∥
K̂

−1(ζliu
l
i − αλ

l
ju

l
j)
∥

∥

∥
≤ eij , j ∈ Np(i),

∥

∥

∥
K̂

−1(ζliu
l
i − ζ

l
ju

l
j)
∥

∥

∥
≤ eij , j ∈ Nq(i),

∑

i

∑

j∈Nq(i)

eij = 1− α,

(15)

where, Λ =
∑

l

∑

i∈P λl
i, Np(i) = N (i) ∩ P , and Nq(i) = N (i) ∩ Q. The scalars α

and 1−α represent the contributions of initial reconstruction P and new reconstruction

Q, respectively. Note that the newly reconstructed points respect the inextensible crite-

ria not only among themselves but also with respect to the initial reconstruction. This

maintains the consistency between reconstructions P and Q. The incremental dense

reconstruction process iteratively adds disjoint sets Q1,Q2, . . .Qr to the initial recon-

struction P , where P encodes the overall shape and Qr represents the details.

4.2 Adding New Cameras

Adding a new camera to the NRSfM reconstruction is fundamentally a template-based

reconstruction problem. If the camera is calibrated, one can obtain the reconstruction

directly from (2). For the uncalibrated case, the camera can be calibrated first using (10),

and the reconstruction upgraded from (4) using (5). It is important to note that the

computation of accurate template geodesic distances dij , as required for template-based

reconstruction, is possible only when the reconstruction is dense enough. This is not

really a problem, thanks to the proposed incremental reconstruction method.

5 Discussion

Initial guess K̂: In all our experiments, we choose the initial guess K̂ by setting both

focal lengths to the half of the mean image size and principal point to the image center.

Missing features: Feature points may be missing from some images due to occlusion

or matching failure. This problem can be addressed during reconstruction by discard-

ing all the variables corresponding to missing points together with all the inextensible

constraints involving them as done in [19, 26].

Reconstruction Consistency: Alternative to (15), one can also think of reconstructing

two overlapping sets P and Q such that P ∩ Q = R independently. Then, the registra-

tion between them can be done with the help of R from two sides. However, this is not

only computationally inefficient due to the overlap, but also geometrically inconsistent.

6 Experimental Results

We conduct extensive experiments in order to validate the presented theory and to eval-

uate the performance, run time and practicality of the proposed methods.
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(a) Adding points: 25% of points are added incrementally to the initial reconstruction.

(b) Adding cameras: Half of the views are added to the initial reconstruction.

Fig. 2: Incremental Semi-dense NRSfM. Comparison of reconstruction error and run

time on the Hand dataset. Left: varying number of points (number of views=88). Right:

varying number of views (number of points=751). Run time shown in log scale.

Datasets. We first provide a brief descriptions of the datasets we use to analyze our

algorithms. KINECT Paper. This VGA resolution image sequence shows a textured

paper deforming smoothly [34]. The tracks contain about 1500 semi-dense but noisy

points. Hulk & T-Shirt. The datasets contain a comic book cover in 21 different defor-

mations, and a textured T-Shirt with 10 different deformations [35], in high resolution

images. Although the number of points is low (122 and 85, resp.), the tracks have very

little noise and therefore we obtain a very accurate auto-calibration. Flag. This semi-

synthetic dataset is created from mocap recordings of deforming cloth [36]. We gener-

ate 250 points in 30 views using a virtual 640x480 perspective camera.Newspaper. This

sequence2 contains the deformation and tearing of a double-page newspaper, recorded

with KINECT in HD resolution [19]. Hand. The Hand dataset [19] features medium

resolution images. Dense tracking [37] of image points yield up to 1500 tracks in 88

views. The dataset consists of ground-truth 3D for the first and the last image of the

sequence. Minion & Sunflower. These sequences are recorded with a static Kinect

sensor [38]. Minion contains a stuffed animal undergoing folding and squeezing defor-

mations. Sunflower however features only small translation w.r.t. the camera. We incre-

mentally reconstruct more than 10,000 points for Minion, and 5,000 for Sunflower, as

shown in Fig. 1. We are able to reconstruct the global deformation, and mid-level details

such as the glasses of Minion. Unfortunately, due to the failure of optical flow tracking,

we fail to reconstruct homogeneous areas and fine details. In Sunflower we can capture

the deformation of the outside leafs, whereas finer details in the center of the blossom

is not recovered due to insufficient change in viewpoint. Camel3 & Kitten4. We took

two sequences from YouTube videos to show the incremental semi-dense NRSfM from

2The dataset was provided by the authors.
3https://www.youtube.com/watch?v=PhpeadpZsa4
4https://www.youtube.com/watch?v=DIZM2OMNc7c
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uncalibrated cameras. The camel turns around its head towards the moving camera,

providing enough motion to faithfully reconstruct the 3D motion of the animal. Fig. 1

shows the 3D structure of more than 3,000 points for one out of 61 views reconstructed.

In the Kitten sequence (18,000 points for each 36 views), a cat performs both artic-

ulated and deforming motion with body and tail. Again, state-of-the-art optical flow

methods struggle to maintain stable points tracks, especially on the head. Neverthe-

less, our method captures the general motion to a very good extent. In all of the above

datasets, DLH fails to get the correct shape while MaxRig cannot reconstruct the shape

faithfully as it cannot handle enough points. Cap. This dataset contains wide-baseline

views of a cap in two different deformations [18]. The 3D template of the undeformed

cap was obtained using SfM pipeline for the images from the first camera. Then, the

second camera is calibrated using our template-based method.

6.1 Camera Calibration from a Non-rigid Scene

To measure the quality of our calibration results, we report the 3D root mean square er-

ror (RMSE), the relative focal length and principal point estimation error. Furthermore,

we provide the number of iterations and the corresponding run times in Table 1.

Dataset
Number of Run time [s] Focal Estimation Reconstruction Error Erec

Points Views Torig Niter Ttotal finit fGT fest Error % fGT fest

Template-based focal length estimation

KINECT Paper 301 23 2.3 - 16.8 - 528 590 11.74 3.00 0.54% 2.83 0.50%

Hulk 122 21 0.4 - 4.2 - 3784 4300 13.61 5.73 1.43% 5.53 1.37%

Flag 250 30 1.3 - 178.2 - 384 420 9.38 4.74 0.58% 4.54 0.56%

Cap 137 1 0.3 - 11.0 - 2039 2300 12.8 1.13 4.80% 1.13 4.80%

Template-less focal length estimation

KPaper 301 23 5.8 3 110.1 280 528 540 2.27 4.44 0.80% 4.28 0.77%

Hulk 122 21 1.9 5 36.5 1641 3784 3800 0.40 2.76 0.67% 2.75 0.66%

T-Shirt 85 10 0.6 10 24.1 2000 3787 4000 5.63 3.52 1.10% 3.42 1.07%

Flag 250 30 2.6 6 185.4 280 384 400 4.17 5.24 0.64% 5.05 0.62%

Newspaper 441 19 24.5 5 523.6 750 1055 870 16.6 7.79 1.09% 9.27 1.30%

Table 1: Focal Length Estimation from a Non-Rigid Scene. We report the run-time,

reconstruction error and relative focal length estimation error of our template-based and

template-less NRSfM calibration methods. Torig is the time needed to reconstruct with

a given focal length, Ttotal the run time including calibration. For the template-less case,

Niter iterations were performed until convergence.

Template-based Camera Calibration. In the first part of Algo. 1 we generate hy-

potheses for K and choose the one with best isometric match with the template. We

perform experiments on the KINECT Paper, Hulk and Flag dataset and report the re-

sults in Table 1. We observe a consistent improvement in reconstruction accuracy with

the estimated intrinsics. The second part of Algo. 1 involves gradient-based refinement

on the intrinsics by minimizing Eq. (12). To analyze this part, we conduct two experi-

ments: First, we perform refinement on the initially estimated intrinsics fpoly. Here we

can consistently improve reconstruction errors with the refined intrinsics. In the Hulk

and Flag dataset, we also get a better estimate of the focal length. On KINECT Paper

however, the focal length deteriorates, while reconstruction accuracy improves. This is

most probably due to the noisy tracks in the sequence. Due to the effective regulariza-

tion, the error in principal point is consistently low. In the second experiment, we gauge
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the robustness of our refinement method. To this end, we simulate initial intrinsics by

adding ±20% uniform noise independently on each of the entries of KGT , and com-

pare reconstruction error and the refined intrinsics shown in Table 2. We compare to

Bartoli et al. [18] on the Cap dataset directly from the paper, since it is non-trivial to

implement the method itself. We observed an error Ef of about 13% with our method,

compared to 3.8%-7.3% reported by [18]. The slightly higher error in the Cap dataset

can be partly attributed to the repeating texture that makes our image matches non-ideal.

Overall we can observe a consistent improvement in almost all metrics, validating the

robustness of the method and the assumptions it is based on.

Dataset
Template-based Refined Simulated initial K (103 samples avg.)

fGT fpoly Ef Erec fref Ef EPP Erec Ef ∆Ef EPP ∆EPP Erec ∆Erec

KINECT Paper 528 590 11.74 2.83 604 14.45 0.04 2.73 8.87 -0.37 0.05 -10.96 3.82 -0.25

Hulk 3784 4300 13.61 5.53 4119 8.85 1.74 5.53 7.30 -2.36 1.77 -8.84 6.52 -0.01

Flag 384 420 9.38 4.54 414 7.98 0.05 4.34 8.61 -1.05 0.08 -10.45 6.05 +0.08

Cap 2039 2300 12.8 1.13 2360 13.1 2.33 1.13 9.18 -0.10 2.33 -8.42 1.48 -0.00

Table 2: Calibration Refinement. We compute the full calibration K by initializing

with the template-based calibration fpoly, and test the robustness by adding synthetic

noise on the KGT. Reconstruction errors Erec are in mm, others in %.

Template-less Camera Calibration. To visualize the dynamics of Algo. 2, we plot

the error in isometry Φ(K) over focal length for each iteration on the Hulk dataset in

Fig. 3 (a). Typically, less than 10 iterations are necessary for the method to converge. As

we hypothesized above, Fig. 3 (b) empirically verifies that we can find the termination

criterion for our sweeping strategy by thresholding the focal length change δ(K∗, K̂).
Our method consistently recovers a correct estimate of the intrinsics as reported in

Table 1. Moreover, the fact that we obtain better reconstruction accuracy in almost all

datasets validates our approach of using the isometric consistency Φ(K).

(a) Left: in each iteration of step 2, we

look for a K
∗ that minimizes the error in

isometry Φ(K).

(b) Right: in step 3 we query the fo-

cal length gap δ(K∗, K̂), and terminate

when it becomes sufficiently small.

Fig. 3: Template-less Calibration (Algo. 2). We iteratively search the smallest K that

maximizes isometry.

6.2 Incremental Reconstruction

We first present experiments on the dense Hand dataset in Fig. 2. We compare to two

state-of-the-art NRSfM approaches, MaxRig [6] and DLH [7], as well as the to batch

version of our approach tlmdh [19]. In the first row, we plot the performance of tlmdh-

addPoints: we start by reconstructing a random subset of max{150, N
4 } points, and
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Datasets incr-tlmdh tlmdh p-isomet p-isolh DLH o-kfac

KPaper 4.64 176.16s 5.41 605.06s 7.63 13.64 14.66 13.93

Hulk 2.99 0.80s 2.76 1.99s 10.76 14.54 22.98 -

T-Shirt 3.83 0.23s 3.53 0.47s 10.60 8.94 - -

Cardboard 13.22 18.94s 14.56 34.35s - 12.95 - -

Rug 26.40 205.89s 26.60 542.39s 26.15 38.26 31.01 -

Table mat 15.99 5.54s 14.36 7.65s 14.21 20.71 17.51 16.24

Newspaper 10.79 89.27s 11.63 190.96s 18.40 37.21 24.94 30.74

Table 3: Comparison of NRSfM methods. Mean 3D errors in mm and run time com-

parison for batch and incremental reconstruction in real datasets.

incrementally add the remaining points in subsequent iterations according to Eq. (15).

While achieving competitive reconstruction accuracy on par with tlmdh, we observe re-

markable advantages in run time compared to all other methods. MaxRig shows good

accuracy, but suffers from serious run time and memory problems. DLH on the other

hand is slow and exhibits poor accuracy on this dataset, due to perspective and non-

linear deformations. The second row of Fig. 2 shows the same experimental setup with

tlmdh-addViews. Here, we reconstruct all points at once, but incrementally add the

remaining 50% of views to the reconstruction of the first half. To this end, we compute

the template from the first reconstruction and employ SfT. The graphs clearly show that

tlmdh-addViews exhibits a favorable run time complexity without impairing the re-

construction accuracy. We provide more results in the supplementary material. Further-

more, we perform extensive experiments on a variety of additional datasets, and com-

pare with the reconstructions of p-isomet [28], p-isolh [35], DLH [7], and o-kfc [39]

in Table 3 obtained from [40]. Overall, we observe a significant advantage in accuracy

and run time in particular compared to the best performing baseline tlmdh.

7 Conclusions

In this paper we formulated a method addressing the unknown focal-length in NRSfM

and unknown intrinsics in SfT. Despite the computational complexity of convex NRSfM,

we formulated an incremental framework to obtain semi-dense reconstruction and re-

construct new views. We developed our theory based on the surface isometry prior

in the context of the perspective camera. We developed and verified our approach for

intrinsics/focal-length recovery for both template-based and template-less non-rigid re-

construction. Essential to our method is a novel upgrade equation, that analytically re-

lates reconstructions for different intrinsics. We performed extensive quantitative and

qualitative analysis of our methods on different datasets which shows the proposed

methods perform well despite addressing very challenging problems.
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