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Abstract. Urban zoning enables various applications in land use analysis and

urban planning. As cities evolve, it is important to constantly update the zoning

maps of cities to reflect urban pattern changes. This paper proposes a method

for automatic urban zoning using higher-order Markov random fields (HO-MRF)

built on multi-view imagery data including street-view photos and top-view satel-

lite images. In the proposed HO-MRF, top-view satellite data is segmented via a

multi-scale deep convolutional neural network (MS-CNN) and used in lower-

order potentials. Street-view data with geo-tagged information is augmented in

higher-order potentials. Various feature types for classifying street-view images

were also investigated in our work. We evaluated the proposed method on a num-

ber of famous metropolises and provided in-depth analysis on technical issues.

Keywords: Urban zoning, street-view images, satellite images, higher-order Markov

random fields

1 Introduction

Urban zoning is a common practice adopted by many developed countries for urban

planning [1]. The primary purpose of urban zoning is to segregate an urban area into

distinct zones with regard to the use of spaces (e.g., residential, commercial, industrial),

while specifying the height and bulk of structures, the lot dimensions, and open space

requirements [2]. Urban planners, administrators, and policy makers rely on urban zon-

ing maps to analyze, predict, and plan for urban development.

Conventional urban zoning approaches [2] require tremendous manual efforts; hence,

they are time-consuming, prone to error, and non-scalable. Routine processes in updat-

ing a zoning map typically require several months of intensive labor work. Therefore, an

automatic approach for urban zoning is highly favorable and deserves in-depth studies.

Existing efforts (e.g., [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],

[16]) have been classifying land use and land cover using remotely sensed data (i.e.,

satellite and aerial images). Several methods (e.g., [3], [9], [10], [11]) applied image

segmentation techniques on aerial images. However, manually segmenting those im-

ages is laborious and challenging: human efforts are needed for visually interpreting
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every pixel from single or multiple band(s). Hence, automatic semantic segmentation

techniques (e.g., [4], [5], [6], [7], [8], [14], [16]) have also been proposed.

Thanks to the rise of social networking services (e.g., Flickr, Facebook), an enor-

mous amount of street-view photos with geo-tagged information are publicly shared.

This sort of data carry detailed semantic information about different places and thus

could help to interpret zoning information. In this paper, we explore the use of street-

view photos and satellite images for automatic urban zoning. Specifically, we propose

an urban zoning method using multi-source data including top-view satellite images and

street-view photos. This multi-source data is fused into a higher order Markov random

fields (HO-MRF) model. In the model, a multi-scale deep convolutional neural network

(MS-CNN) is built to segment the top-view data and used in lower-order potentials

while the street-view photos are classified and added in higher-order potentials. We con-

ducted extensive experiments to investigate various aspects of our proposed solution. In

particular, we investigated different features and classifiers that could be used for clas-

sifying street-view photos. We compared the use of multi-source vs single-source data.

We also compared our proposed HO-MRF model with conventional MRF and our deep

neural network with existing network architectures.

It is important to note that urban zoning conceptually differs from land cover or

land use despite their correlation. Land cover refers to the observed physical cover on

the earth surface. Land use refers to the activities people undertake on a certain type

of land cover to change or maintain it, or to produce [17]. Urban zoning, on the other

hand, refers to segregating an urban area into distinct zones by the use of buildings and

spaces within a zone. It provides a convenient mean to visualize patterns of social and

economic developments.

The remainder of the paper is organized as follows. Section 2 reviews the related

work. Our proposed method is presented in Section 3. Datasets and experiments are

described in section 4. Section 5 concludes the paper and provides remarks.

2 Related Work

2.1 Land use and Land cover Classification

Early works (e.g., [18], [19]) have successfully applied satellite sensor technology for

monitoring agricultural land use, which motivate recent attempts on applying similar

technologies for analyzing land use and land cover. Barnsley and Barr [20] proposed

to extract land use information using land cover classification from multi-spectral im-

ages captured by a satellite sensor. However, the degree of sensitivity between land use

patterns and the accuracy of initial land cover classification is yet to be determined.

Brown et al. [3] analyzed the relationship between land use and land cover from a

spatial-temporal perspective using a Markov transition probability model. Porway et al.

[12], [13] proposed a hierarchical and contextual model for aerial image understanding.

Lienou et al. [15] annotated satellite images using semantic concepts related to land use.

The annotation task combined the classification of image patches and the integration of

the spatial information between these patches. Rozenstein and Karnieli [4] introduced

Geographical Information Systems (GIS) to facilitate land use classification based on
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hybrid supervised and unsupervised learning on remote sensing data. Hu and Wang

[14] used a decision tree with remote-sensing data to classify urban land use classes.

Banerjee et al. [7] applied cluster ensemble techniques to support self-training-based,

unsupervised land cover classification on satellite images, to overcome the challenge

of limited information in data distribution. Luus et al. [16] introduced multi-view deep

learning to the field of land use classification.

There are also recent works on applying semantic segmentation techniques to land

use and land cover classification. For example, Frohlich et al. [6] used iterative context

forests to classify land cover from satellite images by considering contextual informa-

tion. Volpi and Ferrari [9] segmented satellite images using conditional random fields.

Albert et al. [11] proposed a method for the simultaneous classification of land cover

and land use, taking the consideration of spatial context.

2.2 Urban Understanding from Street-View Photos

The abundance of street-view photos provides new opportunities for computer vision

research on understanding urban areas. For example, previous works have demonstrated

using such data for city identification [21], [22], geo-informative social attributes pre-

diction [23] and urban perception [24], [25]. Recently, Dubey et al. quantified the per-

ception of urban environment at the global scale by training a convolutional neural

architecture on a new crowd-sourced dataset [26].

An early attempt was made by Leung and Newsam [27] on using street-view photos

for classifying land use and land cover. To measure social development, they formulated

the problem as supervised binary classification. Oba et al. [28] proposed text features in

addition to visual features to improve land cover classification. Frey et al. [29] applied

unsupervised learning to automatically characterize large geographical regions into lo-

cation types.

2.3 Correlation between Top-View and Street-View Imagery Data

Recently the correlation between top-view and street-view imagery data has been ex-

ploited for scene understanding. For example, Lin et al. [30] proposed to learn features

using deep networks for cross-view image matching. In this work, the geo-location of

a street-view query image on an aerial image is determined via feature matching. In

[31], Máttyus et al. proposed an automatic road segmentation method for vehicles us-

ing both aerial and ground-view imagery data. Specifically, ground-view images of a

road are captured using a stereo camera built in vehicles and paired with aerial imagery

obtained from GPS to reasoning the road surface and perform road segmentation. In

[32], functions of buildings were classified using both ground-level and overhead im-

ages. Convolutional neural networks (CNNs) were used to learn visual features at both

ground and overhead levels. The ground-level feature map for an input overhead im-

age was then constructed by applying kernel regression on the ground-level features

extracted by the CNNs on ground-level images.
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Fig. 1: Our approach infers a reliable urban zoning map from top-view satellite images

and street-view photos.

3 Proposed Method

3.1 Higher-order Markov Random Fields

The problem of urban zoning can be described as follows. Given a satellite image S
covering an urban area U and a set of randomly downloaded street-view photos G =
{gi} located within U and associated with geo-tagged information, the problem is to

infer possible zoning maps of U at metropolis-level. Fig. 1 illustrates the proposed

urban zoning system.

We formulate the problem of urban zoning as segmenting the satellite image S into

a number of regions, called zones, and identifying the zone types of the regions. The

zone type of each region is determined by the visual information extracted from the

pixels of that region and the associated street-view photos.

According to the definition of the uses of urban buildings and spaces [2], we cat-

egorize urban zones into 4 types: Residential, Commercial, Industrial, and Others in

this paper. This categorization ensures the generality of the problem. Let Z be the set

of zone types. |Z| = 4 in our case. Fig. 2 shows some examples of street-view photos

under different zone types.

Technically, the problem stated above can be regarded as semantic segmentation of

the satellite image S. Following this idea, we propose a higher-order Markov random

fields (HO-MRF) model to solve the problem. In our HO-MRF model, unary terms are

computed from visual features extracted on the satellite image S via a deep convolu-

tional neural network. The relationships between the satellite image S and its associated

street-view photos G are encoded in higher order potentials and augmented to the HO-

MRF model. Fig. 3 summarizes the workflow of this solution.

The HO-MRF model is constructed as follows. The input satellite image S is rep-

resented as a lattice of pixels. Each pixel pi ∈ S is considered as a node and its label

is denoted as li taking value in Z. Akin to fully connected MRFs [33], each pixel is

connected to all other pixels.
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Fig. 2: Examples of street-view photos from New York, San Francisco, and Boston.

The zoning problem is equivalent to finding the best configurationL = (l1, l2, ..., l|S|)
for |S| pixels of the satellite image S. In particular, we minimize the energy function,

L∗ = argmin
L∈L|S|

[

∑

i∈S

ψi(li) +
∑

(i,j),i<j

ψi,j(li, lj) +
∑

i∈S

ϕ(li, G) +
∑

g∈G

ϕ(g)

]

, (1)

The unary potential ψi(li) in (1) is defined as,

ψi(li = z) ∝ − logC(S,pi|li = z), (2)

where C is the classification scores of assigning the zone type of pixel pi (i.e., li) to z
based on the input satellite image S. The computation of C will be presented in details

in Section 3.2.

The pairwise potential ψij(li, lj) is defined as a mixture of Gaussians of the location

and color information of image pixels on S. In particular,

ψij(li, lj) = µij

[

exp

(

−
|pi − pj |

2

2α2
−
|ci − cj |

2

2β2

)

+ exp

(

−
|pi − pj |

2

2γ2

)]

(3)

where ci/cj is the color vector at pixel pi/pj and pi is the location vector (i.e., x- and

y-coordinate) of pi, µij is the Pott label compatibility function [33], e.g.,

µij =

{

−1, if li = lj

1, otherwise.
(4)

In the HO-MRF model, we introduce higher-order potentials (e.g., ϕ(g)) capturing

the relationships between S and G. The term ϕ(li, G) encodes the zone consistency
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Fig. 3: The work�ow of our approach. From left to right: Input data (1st column), Satel-
lite image pixel classi�cation and street-view photo classi�cation (2nd column), zoning
using HO-MRF (3rd column), output (4th column).

between a pointp i on S and its nearest street-view photo inG. Note that since every
street-view photo is associated with a geo-location, the distance between a pixelp i 2 S
to a street-view photo can be determined. In particular, we de�ne,

' (l i ; G) / min
g2 G;f (g)= l i

�
� log

�
1

d(p i ; g)

��
; (5)

wheref (g) is a function returning the zone type ofg and is described in Section 3.3;
d(p i ; g) is the spatial distance betweenp i andg. Intuitively, ' (l i ; G) is inverse to the
distance fromp i to its closest street-view photo whose zone type isl i . In other words,
the zone type ofp i would be more biased by its nearest street-view photo.

Note that' (l i ; G) needs to be computed for everyp i . To save the computational
cost, the Distance Transform proposed in [34] is applied on grids formed by the loca-
tions of street-view photosG. In particular, the zone type of each street-view photo is
�rst obtained (see Section 3.3). For every zone typez 2 Z , a Distance TransformD z is
applied on the street-view photos that have been classi�ed as zone typez. The potential
' (l i ; G) can then be rewritten as,

' (l i ; G) / � log
1

D l i (p i )
; (6)

whereD l i (p i ) is the value of the Distance TransformD l i at locationp i .
The term' (g) represents the zone consistency of pixels in a local image region (on

S), at which the street-view photog could be captured. Speci�cally, giveng, its geo-
location onS can be obtained and, at this geo-location, a local image regionR(g) of
sizeW � W is extracted. In our implementation,W is set to 46, which is also the size
of image patches used in classifying pixels on the satellite imageS (see Section 3.2).
We then construct a probability distributionPg(lk ) over the labelslk 2 L conditioned
























