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Figure 1. Interpretable Physics Models. Consider the sequences shown above. Not only
we can predict the future frames of collisions but we can also predict the underlying
factors that lead to such an inference. For example, we can infer the mass of cylinder
is much higher in second sequence and therefore it hardly moves in the image. Our
ability to infer meaningful underlying latent factors inspires us in this paper to learn
an interpretable intuitive physics model.

Abstract Humans have a remarkable ability to use physical common-
sense and predict the effect of collisions. But do they understand the un-
derlying factors? Can they predict if the underlying factors have changed?
Interestingly, in most cases humans can predict the effects of similar
collisions with different conditions such as changes in mass, friction, etc.
It is postulated this is primarily because we learn to model physics with
meaningful latent variables. This does not imply we can estimate the
precise values of these meaningful variables (estimate exact values of mass
or friction). Inspired by this observation, we propose an interpretable
intuitive physics model where specific dimensions in the bottleneck layers
correspond to different physical properties. In order to demonstrate that
our system models these underlying physical properties, we train our
model on collisions of different shapes (cube, cone, cylinder, spheres etc.)
and test on collisions of unseen combinations of shapes. Furthermore,
we demonstrate our model generalizes well even when similar scenes are
simulated with different underlying properties.
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1 Introduction

Consider the collision image sequences shown in Figure 1. When people see these
images, they not only recognize the shapes and color of objects but also predict
what is going to happen. For example, in the first sequence people can predict
that the cylinder is going to rotate while in the second sequence the ball will
bounce with no motion on cylinder. But beyond visual prediction, we can even
infer the underlying latent factors which can help us explain the difference in
visual predictions. For example, a possible explanation of the behavior between
the two sequences, if we knew the ball’s mass didn’t change, is that the first
sequence’s cylinder was lighter than the ball whereas in the second sequence the
cylinder was heavier than the ball. Beyond this we can deduce that the cylinder
in the first sequence was much lighter than the one in the second.

Humans demonstrate the profound ability to understand the underlying
physics of the world [9,10] and use it to predict the future. We use this physical
commonsense for not only rich understanding but also for physical interactions.
The question arises as to whether this physical commonsense is just an end-to-
end model with intermediate representations being a black-box, or explicit and
meaningful intermediate representations? For humans, the answer appears to be
the latter. We can predict the future if some underlying conditions are changed.
For example, we can predict that if we throw the ball in the second sequence
with 10x initial speed then the cylinder might rotate.

In this paper, we focus on learning an intuitive model of physics [13,17,2].
Unlike some recent efforts, where the goal is to learn physics in an end-to-end
manner with little-to-no constraints on intermediary layers, we focus on learning
an interpretable model. More specifically, the bottleneck layers in our network
model physical properties such as mass, friction, etc.

Learning an interpretable intuitive physics model is, however, quite a chal-
lenging task. For example, Wu et al. [25] attempts to build a model but the
inverse graphics engine infers physical properties such as mass and friction. These
properties are then used with neural physics engine or simulators for prediction.
But can we really infer physical properties from the few frames of such collisions?
Can we separate friction from mass, restitution by observing the frames? The
fact is most of these physical factors are so dependent that it is infeasible to
infer the exact values of physical properties. For example we can determine ratios
between properties but not the precise values of both (e.g., we can determine
the relative mass between two objects but not the exact values for both). This
is precisely why in [25] only one factor is inferred from motion and the other
factor is directly correlated to the appearance. Furthermore, the learned physics
model is domain-specific and will not generalize–even across different shapes.

To tackle these challenges, we propose an interpretable intuitive physics model,
where specific dimensions in the bottleneck layers correspond to different physical
properties. The bottleneck layer models the distribution rather than infer precise
values of mass, speed and friction. In order to demonstrate that our system
models these underlying physical properties, we train our model on collision
of different shapes (cube, cone, cylinder, spheres etc.) and test on collisions of
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unseen combinations of shapes altogether. We also demonstrate the richness of
our model by predicting the future states under different physical conditions (e.g.,
how the future frames will look if the friction is doubled).

Our contributions include: (a) an intuitive physics model that disentangles
different physical properties in an interpretable way; (b) a staggered training algo-
rithm designed to distinguish the subtleties between different physical quantities;
(c) generalization to different shapes and physical quantity combinations; most im-
portantly, (d) the ability to adapt future predictions when physical environments
change. Note (d) is different from generalization: the hallucination/prediction is
done for a physical scene completely different from the observed first four frames.

2 Related Work

Physical reasoning and learning physical commonsense has raised a lot of interest
in recent years [29,17,16,28,18,1,31,5]. There has been multiple efforts to learn
implicit and explicit models of physics commonsense. The underlying goal of
most of these systems is to use physics to predict what is going to happen
next [8,6,13,14,7,26,24]. The hope is that if the model can predict what is going
to happen next after interacting with objects, it will be forced to understand the
physical properties of the objects. For example, [13] tries to learn the physical
properties by predicting whether a tower of blocks will fall. [7] proposed to learn
a visual predictive model for playing billiards.

However, the first issue is what is the right data to learn this physics model.
Researchers have tried a wide spectrum of approaches. For example, many
researchers have focused on the task of visual prediction using real-world videos,
based on the hypothesis that the predictive model will contain some underlying
physical properties [22,15,21]. While videos provide realistic data, there is little
to no control on how the data is collected and therefore the implicit models end
up learning dynamic models of texture. In order to force physical commonsense
learning, people have even tried using videos of physical interactions. For example,
Physics101 dataset [24] collects sequences of collisions for this task. But most
of the learning still happens passively (random batches). In order to overcome
that, recent approaches have tried to learn physics by active interaction using
robots [18,1,6]. While there is more control in the process of data collection, there
are still issues with lack of diverse data due to most experiments being performed
in lab setting with few objects. Finally, one can collect data with full control over
several physical parameters using simulation. There has been lot of recent efforts
in using simulation to learn physical models [13,7,17,16]. One limitation of these
approaches, in terms of data, is the lack of diversity during training, which forces
them to learn physics models specific to particular shapes such as blocks, spheres
etc. Furthermore, none of these approaches use the full power of simulation to
generate a dense set of videos with multiple conditions. Most importantly, none
of these approaches learn an interpretable model.

Apart from the question of data, another core issue is how explicit is the
representation of physics in these models. To truly understand the object physical
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properties, it requires our model to be interpretable [3,23,25,4,12]. That is, the
model should not only be able to predict the futures, but the latent representations
should also indicate the physical properties (e.g., mass, friction and speed)
implicitly or explicitly. For example, [3] proposed an Interaction Network which
learns to predict the rigid body dynamics of gravitational systems. [25] proposed
to explicitly estimate the physical object states and forward this state information
to a physics engine for prediction. However, we argue exact values of these physical
properties might not be possible due to entanglement of various factors. Instead
of estimating the physics states explicitly, our work focuses on separating the
dimensions in the bottleneck layer.

Our work is mostly related to the Inverse Graphics Network [12]. It learns a
disentangled representation in the graphics code layer where different neurons are
encouraged to represent different transformations including pose and light. The
system can be trained in an end-to-end manner without providing an explicit
state value as supervisions for the graphics code layer. However, unlike the Inverse
Graphics Network, where pose and light can be separately inferred from the
input images, the dynamics are dependent on the joint set of physical properties
in our model (mass, friction and speed), which confound future predictions.

Our model is also related to the visual prediction models [11,22,15,27,30,19,20]
in computer vision. For example, [20] proposed to directly predict a sequence of
video frames in raw pixels given a sequence of former frames as inputs. Instead
of directly predicting the pixels, [22] proposed to predict the optical flows given
an input image and then warp the flows on the input images to generate future
frames. However, the optical flow estimation is not always correct, introducing
errors in the supervisions for training. To tackle this, [30] proposed a bilinear
sampling layer which makes the warping process differentiable. This enables them
to train their prediction model from pixels to pixels in an end-to-end manner.

3 Dataset

We create a new dataset for our experiments in this paper. The advantage of our
proposed dataset is that we have rich combinations of different physical properties
as well as different object appearances for different types of collisions (falling over,
twisting, bouncing, etc.). Unlike previous datasets, the physical properties in our
dataset are independent from the object shapes and appearance. In this way,
we can train models which force estimation of physical properties by observing
the collisions. More importantly, our testing sets contain novel combinations of
object shapes or physical properties that are unseen in the training set. The
details of dataset generation is illustrated as following.

We generate our data using the Unreal Engine 4 (UE4) game engine. We
use 11 different object combinations with 5 unique basic objects: sphere, cube,
cylinder, cone, and wedge. We select 3 different physical properties including
mass of static object, initial speed of colliding object and friction of floor. For
each property, we choose 5 different scales of values as shown in Table 1. For
simplicity, we specify a certain scale of parameter by the format {parameter
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Figure 2. Our dataset includes 2 object collisions with a variety of shapes. Unlike
existing physics datasets which have only one type of shape, our dataset is diverse in
terms of different shapes and physical properties of objects.

name}{scale} (e.g., mass1, friction4, speed2). We simulate all the 5× 5× 5 = 125
sets of physical combinations. For each set of physical property combination,
there are 11 different object combinations and 15 different initial rotation and
restitution. Thus in total there are 125×15×11 = 20625 collisions. Each collision
is represented by 5 sample frames with 0.5s time intervals between them.

The diversity in our dataset is highlighted in Figure 2. For example, our dataset
has cones toppling over; cylinders falling down when hit by a ball and rolling
cylinders. We believe this large diversity makes it one of the most challenging
datasets to learn and disentangle physical properties.

For training, we use 124 sets of physics combination with 9 different object
combinations (16740 collisions). The remaining data are used for two types of
testing: (i) parameter testing and (ii) shape testing. The parameter testing set
contains 135 collisions with unseen physical parameter combinations (mass3,
speed3, friction3) but seen object shape combinations. The shape testing set on
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Table 1. Dataset Settings

scale1 scale2 scale3 scale4 scale5

Mass 100 200 300 400 500

Speed 10000 20000 30000 40000 50000

Friction 0.01 0.02 0.03 0.04 0.05

the other hand, contains 3750 collisions with 2 unseen shape combinations yet
seen physical parameter combinations. We show the generalization ability of our
physics model on both testing conditions.

4 Interpretable Physics Model

Our goal is to develop a physics-based reasoning network to solve prediction tasks,
e.g., physical collisions, while having interepretable intermediate representations.

4.1 Visual Prediction Model

As illustrated in Figure 3, our model takes in 4 RGB video frames as input and
learns to predict the future 5th RGB frame after the collisions. The model is com-
posed with two parts: an encoder for extracting abstract physical representations
and a decoder for future frame prediction.

Encoder for physics representations. The encoder is designed to capture
the motion of two colliding objects, from which the physical properties can be
inferred. Given 4 RGB frames as inputs, they are first forwarded to a ConvNet with
AlexNet architecture and ImageNet pre-training. We extract the pool5 feature
for each video frame and concatenate the features together as a representation
for the input sequence. This feature is then forwarded to two convolutional layers
and four fully connected layers to obtain the physics representation.

The physics representation is a 306 dimensional vector, which contains dis-
entangled neurons of mass (dimensions 1 to 25), speed (dimensions 26 to 50),
friction (dimensions 51 to 75), and other intrinsic information (dimensions 76 to
306), as shown in Figure 3. Note that although the vector is disentangled, there
is no explicit meanings for each neuron value.

Decoder for future prediction. The physics representation is forwarded to
a decoder for future frame prediction. Our decoder contains one fully-connected
layer followed by six decovolutional layers. Inspired by [30,22], our decoder uses
optical flow fields as the output representation instead of directly outputing the
RGB raw pixel values. The optical flow is then used to perform warping on the
last input frame by a bilinear sampling layer [30] to generate the future frame.
Since the bilinear sampling layer is differentiable, the network can be trained in
an end-to-end manner with the 5th frame for direct supervision.

There are two major advantages of using optical flow as outputs: (i) it can
force the model to learn the factors that cause the changes between two frames;
(ii) it allows the model to focus on the changes of the foreground objects.
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Figure 3. Model Architecture: we follow an encoder-decoder framework. The encoder
takes 4 frames of a collision (2 before collision, 1 during collision, and 1 after collision).
All inputs are first passed through a pre-trained Alexnet. The Alexnet features are
further appended along channels and are sent to two convolution layers and four fully-
connected layers. The resulting physics vector is passed through a decoder consisting of
one fully-connected layer and six up-sampling convolution layers to produce an optical
flow. The number on the convolution layers and transpose convolution layers stands for
the kernel size of corresponding layer. The last bilinear grid sampling layer takes the
optical flow and the 4th input frame to produce future prediction.

4.2 Learning Objective

Formally, we define the encoder as a function f and the decoder as a function
g. Given an image sequence x as inputs (4 frames), our encoder transforms the
images into a physically meaningful and disentangled representation z = f(x)
and then the decoder transforms this representation into a future frame y = g(z).

The disentangled representation z can be formulated as z = (φm, φs, φf , φi)
where (·, ·) denotes concatenation. The first part (φm, φs, φf ) denotes the combi-
nation physics variable, which encodes the physical quantities (m, s, f stands
for mass, speed, and friction respectively). The second part φi is the intrinsic

variable, representing all the other intrinsic properties in the scene (e.g., colors,
shapes and initial rotation).

In this paper, we study the effect of varying the values of physical quantities
in a two-object collision scenario. Following the strategy in [12], we group our
training sequence samples into mini-batches. Inside one mini-batch, only one
physical property changes across all the samples and other physical properties
remain fixed. We denote Bp = {(xk, yk)}

5

k=1
as one mini-batch with 5 sequences,

where the only changing property is p (i.e., we use p as a variable to represent
either mass, speed or friction).

For each mini-batch Bp during training, we encourage only the dimensions
corresponding to the property p to change in z. For example, when training with
a mini-batch where only mass is changing, we force the network to have different
values in the dimensions for φm and same values for the rest of the dimensions
in z. For simplicity, we further denote the dimensions which relevant to p in z as
φ
p
k and the rest of the dimensions as φ̄p

k for example k.
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We train our prediction model with this constraint. Assuming we are training
with one batch Bp = {(xk, yk)}

5

k=1
. In a maximum likelihood estimation (MLE)

framework, this can be formulated as maximizing the log-probabilities under the
desired constraints:

maximize
5∑

k=1

log(P(yk|xk))

subject to φ̄
p
i = φ̄

p
j , ∀1 ≤ i, j ≤ 5

(1)

where φ̄
p
k contains both the intrinsic variable inferred from image sequence xk

and inferred physics variables, except for the changing parameter.
In our auto-encoder architecture, the objective function is equivalent to

minimizing the l1 distance between the predicted images ŷk and the ground truth
future images yk:

Lmle =
∑

k

||ŷk − yk||1. (2)

The constraints in Eq. 1 can be satisfied via minimizing the loss between φ̄
p
k

and the mean of them within the mini-batch φ̄p = 1

5

∑
k φ̄

p
k as,

Lave =
∑

k

||φ̄p
k − φ̄p||2

2
. (3)

We apply both losses jointly during training our model with a constant λ

balancing between them as,

L = Lmle + λLave. (4)

In practice, we set the λ dynamically so that both gradients are maintained in
the same magnitude. The value of λ is around 1e− 6.

4.3 Staggered Training

Although we follow the training objective proposed in [12], it is actually non-
trivial to directly optimize with this objective. There is a fundamental difference
between our problem and the settings in [12]: the physical dynamics are dependent
across the set of properties, which confounds training. The same sequence of
inputs and output ground-truth might infer different combinations of the physical
properties. For example, both large friction and slow speed can lead to small
movements of the second object after collision. Thus modifications on training
method is required to handle this multi-modality issue.

We propose a staggered training algorithm to alleviate this problem. We first
divide the entire training set D into 3 different sets {Dp}, where p indicates one
of the physics properties( mass, speed or friction). Each Dp contains different
mini-batches of Bp, inside which the only changing property is indicated by p.

The idea is: instead of training with all the physics properties at the same time
in the beginning, we perform curriculum learning. We first train the network with
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one subset Dp and then progressively add more subsets with different properties
into training. In this way, our training set becomes larger and larger through
time. By learning the physics properties in this sequential manner, we force the
network to recognize new physical properties one by one while keeping the learned
properties. In practice, we observe that in the first training session, the network
behaves normally. For the following training sessions, the loss will increase in the
beginning, and will decrease to roughly the same level as the previous session.

5 Experiments

We now demonstrate the effectiveness and generalization of our model. We
will perform two sets of experiments with respect to two different testing sets
in our dataset. One tests on unseen physical property combinations but seen
shape combinations, and the other tests on unseen shape combinations with seen
physical properties. Before going into further analysis, we will first describe the
implementation details of our model and the baseline method.
Implementation details In total, we trained for 319 epochs. We used ADAM
for optimization, with initial learning rate 10−6. During training, each mini-batch
mentioned above has 5 sequences. During the training for the first physical
quantity, each batch contains 3 mini-batches, which means 15 data in total. For
the second round of staggered training, each batch contains 2 mini-batches, one
for each physical quantity; similarly, in the third round of training, each batch
contains 3 mini-batches, one for each physical quantity.
Baseline model Our baseline model learns intuitive physics in an end-to-end
manner and post-hoc obtains the dimensions that correspond to different physical
properties. We need the disentagled representation because we want to test the
generalization when the physical properties are different from input video: e.g.,
what happens if friction is doubled? What happens if the speed is 1/10th?

For the baseline, we use the same network architecture. Different from our
approach, we do not add any constraints on the bottleneck representation layer as
in Eq. 1 in the baseline model. However, we still want to obtain the disentangled
representation from this baseline for comparison. Recall that we have a subset Dp

for each property p (mass, friction or speed). The examples in each mini-batch
inside Dp specify the change of property p. We compute the variances for each
neuron in the bottleneck representation for each Dp, and select 25 dimensions
with top variances as the vector indicating property p.

5.1 Visual prediction

Unseen Parameters: First we evaluate if we can predict future pixels when we
see a novel combination of physical parameters. Specifically, our model has never
seen in training a combination of mass=3, friction=3 and speed=3. Figure 4 shows
our interpretable model generalizes well and produces high quality predictions.
Unseen Shape Combinations: Next, we want to explore if our visual prediction
model generalizes to different shape combinations using two unseen sets: (a) cone
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f4 Prediction f5 Groundtruth f5

Figure 4. Prediction results for unseen parameters but seen shapes.

and cuboid; (b) cuboid and sphere. To demonstrate that our model understands
each of these physical properties, we show contrasted prediction results for two
different values. For example, we will use different friction values (1, 5) but same
mass and speed. Comparing these two outputs should highlight how our approach
understands the underlying friction values.

As shown in Figure. 5, our predicted future frame has high quality compared
to the ground-truth. We show that our model can generalize the physics reasoning
to unseen objects and learn to output different collisions results given different
physical environments. For example in the second condition, when the mass of
sphere is high (5), our approach can predict it will not move and instead the
cube will bounce back. We also compare our approach to baseline quantitatively:
our approach has pixel error of 87.3, while baseline has pixel error of 95.6.The
results clearly indicate our interpretable model tends to generalize better than
an end-to-end model when test conditions are very different.

In addition to the baseline, we also compare our model with two other methods
based on optical flow. First, we trained another prediction network using the
optical flow computed between the 4th and the 5th frame as direct supervisions,
instead of using the pixels of the 5th frame. For testing, we apply the predicted
optical flows on the 4th frame to generate the future frame. The loss between
the future frame and the ground-truth 5th frame is 118.8. Second, we computed
3 optical flows of first 4 frames, using which to find a linear model to generate
the future optical flow. We apply this optical flow on the 4th frame and compare
the result to the ground-truth 5th frame. The error reaches to 292.5. The result
shows that our method achieves high precision than using optical flow directly.

5.2 Physical Interpolation

To show our model has actually learnt physics properties, we perform a series of
interpolations on the bottleneck representation.
Interpolating physics representation within a mini-batch. We first show
that the learned bottleneck layer is meaningful and smooth. To demonstrate
this, we interpolate between different physical properties and compare our result
with the ground-truth. The experiment is conducted in the following way. Let’s
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Figure 5. 4 input frames, the predicted 5th frame and ground-truth for collisions with
unseen shape combinations. Contrast the predictions as one of physical property changes.
For example, to show our approach understand these shapes, we predict for two different
friction values in first case (keeping mass and speed same). The less motion in 2nd case
shows that our approach understands the concept of friction.

take mass as an example: given a mini-batch where only mass changes, we use
the encoder to get the physics vector z1 = (φm

1
, φs

1
, φ

f
1
, φi

1
) from mass1 data and

z5 = (φm
5
, φs

5
, φ

f
5
, φi

5
) from mass5 data. To estimate the physics vector for massi,

we interpolate a new mass variable φ̂m
i = (1− 0.25i) · φm

1
+ 0.25i · φm

5
and use

this to create a new physics vector ẑi = (φ̂m
i , φs

1
, φ

f
1
, φi

1
). We pass the new vector

to the decoder to predict the optical flows, which are warped to the 4th image in
sequence i via the bilinear sampling layer, and generate the future frame.

We perform the same set of experiments for the baseline model. Quantitatively,
we evaluate the prediction using the sum of mean square error for each pixel, as
shown in Table 2, which shows that our method is significantly better than the
baseline. We also visualized the results in Figure 6. Interestingly, our interpolation
results are also very close to the ground-truth. On the other hand, baseline models
failed easily when there is a dramatic change during interpolations.

We also trained another model which takes physics parameters and the optical
flows of first 4-frame as inputs, and predicts the future frame. This model performs



12 Tian Ye, Xiaolong Wang, James Davidson, Abhinav Gupta

G
ro

u
n

d
 t

ru
th

In
te

rp
o

la
ti

o
n

Mass = 2 Mass = 3 Mass = 4 Baseline Mass = 4

Groundtruth

Mass = 5

Groundtruth

Mass = 1

Groundtruth

Friction = 5

In
te

rp
o

la
ti

o
n

G
ro

u
n

d
 t

ru
th

Baseline Friction = 4

Groundtruth

Friction = 1

Friction = 2 Friction = 3 Friction = 4

Speed = 2 Speed = 3 Speed = 4
In

te
rp

o
la

ti
o

n
G

ro
u

n
d

 t
ru

th
Baseline Speed = 4

Groundtruth

Speed = 5

Groundtruth

Speed = 1

Figure 6. Interpolation results for physical quantity with different values. Our inter-
polation results are shown with blue frames. Images with red frame in last column
represents the interpolation results for baseline when physical quantities equal to 4.

Table 2. Interpolation Result. The numbers are pixel prediction errors

Method shape 2 shape 3 shape 4 shape 5 parameter 3

Baseline 117.76 130.41 154.78 173.80 299.88

Flow + Physics 272.02 317.79 328.06 336.54 671.51

Ours 110.93 119.73 131.70 138.04 154.09

much worse than our model in the interpolation test as shown in Figure 6. We
believe a ground-truth physics parameter based approach focuses on classification
instead of learning an intuitive physics model. In interpolation experiments, the
model cannot separate physics information from the optical flow features.

From these comparison, we can see that only by learning interpretable repre-
sentations, we can generate reasonable prediction results after interpolations.

Changing physical properties. In this experiment, we show that physics
variables learned by our model are interpretable by finding a mapping between
different scale of the same physical property. Specifically, we want to see: can we
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Figure 7. Prediction by learning double, triple ratio relation for different physical
entities. Top: the result with unseen shapes. Bottom: result with unseen parameters.

Table 3. Ratio Result. Comparing visual prediction when underlying physical parame-
ters are changed by a factor

Method shape ratio 2 (↓) shape ratio 3 (↓) parameter ratio 3 (↓)

Baseline 345.60 310.37 490.92

Ours 110.79 124.00 157.10

predict the future if the mass is doubled while all other physics conditions remain
the same? For each physical quantity p, we train two networks F p

2
and F

p
3
which

learns to double or triple the scale of a physical property. For example, we can
project the physics representation of mass1 to mass3 by using the network F

p
3
.

The network architecture for both F
p
2
and F

p
3
is a simple 2-layer fully connected

network with 256 hidden neurons per layer. These two networks can be trained
using the physical representations inferred by our encoder with the training data.

In testing time, we apply the similar interpolation as the last experiment.
The only difference is that instead of using an interpolation between two relevant
representations, we use the fully connected network to generate the new repre-
sentations. We again evaluate the quantitative results by computing the mean
square error over the pixels. As shown in Table 3, we have a larger performance
gain in this setting compared to the baseline. Figure 7 shows the prediction
results of our model when the physics property is enlarged from scale 1 to 2 and
3, which are all very close to the ground-truth. This is another evidence showing
our physics representation is interpretable and generalizes significantly better.

Switching between the object shapes. In experiments above, we interpolate
the physics representation and apply them to the same object shape combinations.
In this experiment, for a physical property p, we replace the corresponding variable
φp of one collision with the variable from another collision with different objects
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Figure 8. Prediction when physical property vector from one shape combination is
applied to a different shape combinations. The first row shows switched result; the
second row shows the prediction without switching; the third row shows ground-truth.

but the same p value. We visualize the results in Figure 8, where the first
line shows the predictions when we replace current φp with one from another
shape combination. The results are almost same as the original prediction and
the ground-truth, which means that the physical variable of same value can be
transferred among different shape combinations. It also shows that the dimensions
of physics and other dimensions are independent and can be appended easily.

6 Conclusions

We demonstrated an interpretable intuitive physics model that generalizes across
scenes with different underlying properties and object shapes. Most importantly,
our model is able to predict the future when physical environment changes. To
achieve this we proposed a model where specific dimensions in the bottleneck layers
correspond to different physical properties. However, often physical properties
are dependent and intertangled, so we introduced a training curriculum and
generalized loss function that was shown to outperform the baseline approaches.
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