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Abstract. It is always well believed that modeling relationships be-
tween objects would be helpful for representing and eventually describing
an image. Nevertheless, there has not been evidence in support of the idea
on image description generation. In this paper, we introduce a new design
to explore the connections between objects for image captioning under
the umbrella of attention-based encoder-decoder framework. Specifically,
we present Graph Convolutional Networks plus Long Short-Term Mem-
ory (dubbed as GCN-LSTM) architecture that novelly integrates both
semantic and spatial object relationships into image encoder. Technical-
ly, we build graphs over the detected objects in an image based on their
spatial and semantic connections. The representations of each region pro-
posed on objects are then refined by leveraging graph structure through
GCN. With the learnt region-level features, our GCN-LSTM capitalizes
on LSTM-based captioning framework with attention mechanism for sen-
tence generation. Extensive experiments are conducted on COCO image
captioning dataset, and superior results are reported when comparing
to state-of-the-art approaches. More remarkably, GCN-LSTM increases
CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

Keywords: Image Captioning · Graph Convolutional Networks · Visual
Relationship · Long Short-Term Memory

1 Introduction

The recent advances in deep neural networks have convincingly demonstrat-
ed high capability in learning vision models particularly for recognition. The
achievements make a further step towards the ultimate goal of image under-
standing, which is to automatically describe image content with a complete and
natural sentence or referred to as image captioning problem. The typical solu-
tions [7,34,37,39] of image captioning are inspired by machine translation and
equivalent to translating an image to a text. As illustrated in Figure 1 (a) and
(b), a Convolutional Neural Network (CNN) or Region-based CNN (R-CNN) is
usually exploited to encode an image and a decoder of Recurrent Neural Net-
work (RNN) w/ or w/o attention mechanism is utilized to generate the sentence,
one word at each time step. Regardless of these different versions of CNN plus
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Fig. 1. Visual representations generated by image encoder in (a) CNN plus LSTM, (b)
R-CNN plus LSTM, and (c) our GCN-LSTM for image captioning.

RNN image captioning framework, a common issue not fully studied is how vi-
sual relationships should be leveraged in view that the mutual correlations or
interactions between objects are the natural basis for describing an image.

Visual relationships characterize the interactions or relative positions be-
tween objects detected in an image. The detection of visual relationships in-
volves not only localizing and recognizing objects, but also classifying the in-
teraction (predicate) between each pair of objects. In general, the relationship
can be represented as 〈subject-predicate-object〉, e.g., 〈man-eating-sandwich〉 or
〈dog-inside-car〉. In the literature, it is well recognized that reasoning such vi-
sual relationships is crucial to a richer semantic understanding [19,23] of the
visual world. Nevertheless, the fact that the objects could be with a wide range
of scales, at arbitrary positions in an image and from different categories re-
sults in difficulty in determining the type of relationships. In this paper, we
take the advantages of the inherent relationships between objects for interpret-
ing the images holistically and novelly explore the use of visual connections to
enhance image encoder for image captioning. Our basic design is to model the
relationships on both semantic and spatial levels, and integrate the connections
into image encoder to produce relation-aware region-level representations. As
a result, we endow image representations with more power when feeding into
sentence decoder.

By consolidating the idea of modeling visual relationship for image caption-
ing, we present a novel Graph Convolutional Networks plus Long Short-Term
Memory (GCN-LSTM) architecture, as conceptually shown in Figure 1 (c).
Specifically, Faster R-CNN is firstly implemented to propose a set of salient
image regions. We build semantic graph with directed edges on the detected
regions, where the vertex represents each region and the edge denotes the rela-
tionship (predicate) between each pair of regions which is predicted by semantic
relationship detector learnt on Visual Genome [16]. Similarly, spatial graph is
also constructed on the regions and the edge between regions models relative
geometrical relationship. Graph Convolutional Networks are then exploited to
enrich region representations with visual relationship in the structured seman-
tic and spatial graph respectively. After that, the learnt relation-aware region
representations on each kind of relationships are feed into one individual atten-
tion LSTM decoder to generate the sentence. In the inference stage, to fuse the
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outputs of two decoders, we linearly average the predicted score distributions
on words from two decoders at each time step and pop out the word with the
highest probability as the input word to both decoders at the next step.

The main contribution of this work is the proposal of the use of visual re-
lationship for enriching region-level representations and eventually enhancing
image captioning. This also leads to the elegant views of what kind of visual
relationships could be built between objects, and how to nicely leverage such
visual relationships to learn more informative and relation-aware region repre-
sentations for image captioning, which are problems not yet fully understood.

2 Related Work

Image Captioning. With the prevalence of deep learning [17] in computer vi-
sion, the dominant paradigm in modern image captioning is sequence learning
methods [7,34,37,38,39,40] which utilize CNN plus RNN model to generate novel
sentences with flexible syntactical structures. For instance, Vinyals et al. pro-
pose an end-to-end neural networks architecture by utilizing LSTM to generate
sentence for an image in [34], which is further incorporated with soft/hard atten-
tion mechanism in [37] to automatically focus on salient objects when generating
corresponding words. Instead of activating visual attention over image for every
generated word, [24] develops an adaptive attention encoder-decoder model for
automatically deciding when to rely on visual signals/language model. Recently,
in [35,39], semantic attributes are shown to clearly boost image captioning when
injected into CNN plus RNN model and such attributes can be further leveraged
as semantic attention [40] to enhance image captioning. Most recently, a novel
attention based encoder-decoder model [2] is proposed to detect a set of salient
image regions via bottom-up attention mechanism and then attend to the salient
regions with top-down attention mechanism for sentence generation.

Visual Relationship Detection. Research on visual relationship detection
has attracted increasing attention. Some early works [9,10] attempt to learn four
spatial relations (i.e., “above”, “below”, “inside” and “around”) to improve seg-
mentation. Later on, semantic relations (e.g., actions or interactions) between
objects are explored in [6,32] where each possible combination of semantic re-
lation is taken as a visual phrase class and the visual relationship detection is
formulated as a classification task. Recently, quite a few works [5,19,23,29,36]
design deep learning based architectures for visual relationship detection. [36]
treats visual relationship as the directed edges to connect two object nodes in
the scene graph and the relationships are inferred along the processing of con-
structing scene graph in an iterative way. [5,19] directly learn the visual features
for relationship prediction based on additional union bounding boxes which cov-
er object and subject together. In [23,29], the linguistic cues of the participating
objects/captions are further considered for visual relationship detection.

Summary. In short, our approach in this paper belongs to sequence learning
method for image captioning. Similar to previous approaches [2,8], GCN-LSTM
explores visual attention over the detected image regions of objects for sentence
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Fig. 2. An overview of our Graph Convolutional Networks plus Long Short-Term Mem-
ory (GCN-LSTM) for image captioning (better viewed in color). Faster R-CNN is first
leveraged to detect a set of salient image regions. Next, semantic/spatial graph is built
with directional edges on the detected regions, where the vertex represents each region
and the edge denotes the semantic/spatial relationship in between. Graph Convolu-
tional Networks (GCN) is then exploited to contextually encode regions with visual
relationship in the structured semantic/spatial graph. After that, the learnt relation-
aware region-level features from each kind of graph are feed into one individual atten-
tion LSTM decoder for sentence generation. In the inference stage, we adopt a late
fusion scheme to linearly fuse the results from two decoders.

generation. The novelty is on the exploitation of semantic and spatial relations
between objects for image captioning, that has not been previously explored. In
particular, both of the two kinds of visual relationships are seamlessly integrat-
ed into LSTM-based captioning framework via GCN, targeting for producing
relation-aware region representations and thus potentially enhancing the quality
of generated sentence through emphasizing the object relations.

3 Image Captioning by Exploring Visual Relationship

We devise our Graph Convolutional Networks plus Long Short-Term Memory
(GCN-LSTM) architecture to generate image descriptions by additionally in-
corporating both semantic and spatial object relationships. GCN-LSTM firstly
utilizes an object detection module (e.g., Faster R-CNN [30]) to detect objects
within images, aiming for encoding and generalizing the whole image into a set
of salient image regions containing objects. Semantic and spatial relation graphs
are then constructed over all the detected image regions of objects based on their
semantic and spatial connections, respectively. Next, the training of GCN-LSTM
is performed by contextually encoding the whole image region set with semantic
or spatial graph structure via GCN, resulting in relation-aware region represen-
tations. All of encoded relation-aware region representations are further injected
into LSTM-based captioning framework, enabling region-level attention mecha-
nism for sentence generation. An overview of our image captioning architecture
is illustrated in Figure 2.
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3.1 Problem Formulation

Suppose we have an image I to be described by a textual sentence S, where
S = {w1, w2, ..., wNs

} consisting of Ns words. Let wt ∈ R
Ds denote the Ds-

dimensional textual feature of the t-th word in sentence S. Faster R-CNN is
firstly leveraged to produce the set of detected objects V = {vi}

K
i=1 with K

image regions of objects in I and vi ∈ R
Dv denotes the Dv-dimensional feature

of each image region. Furthermore, by treating each image region vi as one
vertex, we can construct semantic graph Gsem = (V, Esem) and spatial graph
Gspa = (V, Espa), where Esem and Espa denotes the set of semantic and spatial
relation edges between region vertices, respectively. More details about how we
mine the visual relationships between objects and construct the semantic and
spatial graphs will be elaborated in Section 3.2.

Inspired by the recent successes of sequence models leveraged in image/video
captioning [26,27,34] and region-level attention mechanism [2,8], we aim to for-
mulate our image captioning model in a R-CNN plus RNN scheme. Our R-CNN
plus RNN method firstly interprets the given image as a set of image regions with
R-CNN, then uniquely encodes them into relation-aware features conditioned on
semantic/spatial graph, and finally decodes them to each target output word via
attention LSTM decoder. Derived from the idea of Graph Convolutional Net-
works [15,25], we leverage a GCN module in image encoder to contextually refine
the representation of each image region, which is endowed with the inherent vi-
sual relationships between objects. Hence, the sentence generation problem we
explore here can be formulated by minimizing the following energy loss function:

E(V,G,S) = − log Pr (S|V,G), (1)

which is the negative log probability of the correct textual sentence given the
detected image regions of objects V and constructed relation graph G. Note that
we use G ∈ {Gsem,Gspa} for simplicity, i.e., G denotes either semantic graph Gsem

or spatial graph Gspa. Here the negative log probability is typically measured
with cross entropy loss, which inevitably results in the discrepancy of evaluation
between training and inference. Accordingly, to further boost our captioning
model by amending such discrepancy, we can directly optimize the LSTM with
expected sentence-level reward loss as in [18,22,31].

3.2 Visual Relationship between Objects in Images

Semantic Object Relationship. We draw inspiration from recent advances
in deep learning based visual relationship detection [5,19] and simplify it as
a classification task to learn semantic relation classifier on visual relationship
benchmarks (e.g., Visual Genome [16]). The general expression of semantic rela-
tion is 〈subject-predicate-object〉 between pairs of objects. Note that the semantic
relation is directional, i.e., it relates one object (subject noun) and another ob-
ject (object noun) via a predicate which can be an action or interaction between
objects. Hence, given two detected regions of objects vi (subject noun) and vj
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Fig. 3. Detection model for semantic relation 〈subject-predicate-object〉 (red: region of
subject noun, blue: region of object noun, yellow: the union bounding box).

(object noun) within an image I, we devise a simple deep classification mod-
el to predict the semantic relation between vi and vj depending on the union
bounding box which covers the two objects together.

Figure 3 depicts the framework of our designed semantic relation detection
model. In particular, the input two region-level features vi and vj are first sepa-
rately transformed via an embedding layer, which are further concatenated with
the transferred region-level feature vij of the union bounding box containing
both vi and vj . The combined features are finally injected into the classification
layer that produces softmax probability over Nsem semantic relation classes plus
a non-relation class, which is essentially a multi-class logistic regression mod-
el. Here each region-level feature is taken from the Dv-dimensional (Dv=2,048)
output of Pool5 layer after RoI pooling from the Res4b22 feature map of Faster
R-CNN in conjunction with ResNet-101 [11].

After training the visual relation classifier on visual relationship benchmark,
we directly employ the learnt visual relation classifier to construct the corre-
sponding semantic graph Gsem = (V, Esem). Specifically, we firstly group the
detected K image regions of objects within image I into K × (K − 1) object
pairs (two identical regions will not be grouped). Next, we compute the prob-
ability distribution on all the (Nsem + 1) relation classes for each object pair
with the learnt visual relation classifier. If the probability of non-relation class
is less than 0.5, a directional edge from the region vertex of subject noun to the
region vertex of object noun is established and the relation class with maximum
probability is regarded as the label of this edge.

Spatial Object Relationship. The semantic graph only unfolds the in-
herent action/interaction between objects, while leaving the spatial relations
between image regions unexploited. Therefore, we construct another graph, i.e.,
spatial graph, to fully explore the relative spatial relations between every two
regions within one image. Here we generally express the directional spatial re-
lation as 〈objecti-objectj〉, which represents the relative geometrical position of
objectj against objecti. The edge and the corresponding class label for every two
object vertices in spatial graph Gspa = (V, Espa) are built and assigned depend-
ing on their Intersection over Union (IoU), relative distance and angle. Detailed
definition of spatial relations are shown in Figure 4.
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Fig. 4. Definition of eleven kinds of spatial relations 〈objecti-objectj〉 (red: region of
objecti, blue: region of objectj).

Concretely, given two regions vi and vj , the locations of them are denoted as
(xi, yi) and (xj , yj), which are the normalized coordinates of the centroid of the
bounding box on the image plane for vi and vj , respectively. We can thus achieve

the IoU between vi and vj , relative distance dij (dij =
√
(xj − xi)

2
+ (yj − yi)

2
)

and relative angle θij (i.e., the argument of the vector from the centroid of vi
to that of vj). Two kinds of special cases are firstly considered for classifying
the spatial relation between vi and vj . If vi completely includes vj or vi is fully
covered by vj , we establish an edge from vi to vj and set the label of spatial
relation as “inside” (class 1) and “cover” (class 2), respectively. Except for
the two special classes, if the IoU between vi and vj is larger than 0.5, we
directly connect vi to vj with an edge, which is classified as “overlap” (class 3).
Otherwise, when the ratio φij between the relative distance dij and the diagonal
length of the whole image is less than 0.5, we classify the edge between vi and
vj solely relying on the size of relative angle θij and the index of class is set as
⌈θij/45

◦⌉+3 (class 4-11). When the ratio φij > 0.5 and IoU < 0.5, the spatial
relation between them is tend to be weak and no edge is established in this case.

3.3 Image Captioning with Visual Relationship

With the constructed graphs over the detected objects based on their spatial
and semantic connections, we next discuss how to integrate the learnt visual
relationships into sequence learning with region-based attention mechanism for
image captioning via our designed GCN-LSTM. Specifically, a GCN-based image
encoder is devised to contextually encode all the image regions with semantic or
spatial graph structure via GCN into relation-aware representations, which are
further injected into attention LSTM for generating sentence.

GCN-based Image Encoder. Inspired from Graph Convolutional Net-
works for node classification [15] and semantic role labeling [25], we design a
GCN-based image encoder for enriching the region-level features by capturing
the semantic/spatial relations on semantic/spatial graph, as illustrated in the
middle part of Figure 2. The original GCN is commonly operated on an undi-
rected graph, encoding information about the neighborhood of each vertex vi as
a real-valued vector, which is computed by

v
(1)
i = ρ

( ∑

vj∈N (vi)

Wvj + b
)
, (2)
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where W ∈ R
Dv×Dv is the transformation matrix, b is the bias vector and ρ de-

notes an activation function (e.g., ReLU). N (vi) represents the set of neighbors
of vi, i.e., the region vertices have visual connections with vi here. Note that
N (vi) also includes vi itself. Although the original GCN refines each vertex by
accumulating the features of its neighbors, none of the information about direc-
tionality or edge labels is included for encoding image regions. In order to enable
the operation on labeled directional graph, the original GCN is upgraded by fully
exploiting the directional and labeled visual connections between vertices.

Formally, consider a labeled directional graph G = (V, E) ∈ {Gsem,Gspa}
where V is the set of all the detected region vertices and E is a set of visual
relationship edges. Separate transformation matrices and bias vectors are utilized
for different directions and labels of edges, respectively, targeting for making
the modified GCN sensitive to both directionality and labels. Accordingly, each
vertex vi is encoded via the modified GCN as

v
(1)
i = ρ

( ∑

vj∈N (vi)

Wdir(vi,vj)vj + blab(vi,vj)

)
, (3)

where dir(vi, vj) selects the transformation matrix with regard to the direction-
ality of each edge (i.e., W1 for vi-to-vj , W2 for vj-to-vi, and W3 for vi-to-vi).
lab(vi, vj) represents the label of each edge. Moreover, instead of uniformly ac-
cumulating the information from all connected vertices, an edge-wise gate unit is
additionally incorporated into GCN to automatically focus on potentially impor-
tant edges. Hence each vertex vi is finally encoded via the GCN in conjunction
with an edge-wise gate as

v
(1)
i = ρ

( ∑
vj∈N (vi)

gvi,vj (Wdir(vi,vj)vj + blab(vi,vj))
)
,

gvi,vj = σ
(
W̃dir(vi,vj)vj + b̃lab(vi,vj)

)
,

(4)

where gvi,vj denotes the scale factor achieved from edge-wise gate, σ is the lo-

gistic sigmoid function, W̃dir(vi,vj) ∈ R
1×Dv is the transformation matrix and

b̃lab(vi,vj) ∈ R is the bias. Consequently, after encoding all the regions {vi}
K
i=1

via GCN-based image encoder as in Eq.(4), the refined region-level features

{v
(1)
i }Ki=1 are endowed with the inherent visual relationships between objects.
Attention LSTM Sentence Decoder. Taking the inspiration from region-

level attention mechanism in [2], we devise our attention LSTM sentence decoder

by injecting all of the relation-aware region-level features {v
(1)
i }Ki=1 into a two-

layer LSTM with attention mechanism, as shown in the right part of Figure 2.
In particular, at each time step t, the attention LSTM decoder firstly collects
the maximum contextual information by concatenating the input word wt with
the previous output of the second-layer LSTM unit h2

t−1 and the mean-pooled

image feature v = 1
K

K∑
i=1

v
(1)
i , which will be set as the input of the first-layer

LSTM unit. Hence the updating procedure for the first-layer LSTM unit is as

h1
t = f1

([
h2
t−1,Wswt,v

])
, (5)
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where Ws ∈ R
D1

s×Ds is the transformation matrix for input word wt, h
1
t ∈ R

Dh

is the output of the first-layer LSTM unit, and f1 is the updating function
within the first-layer LSTM unit. Next, depending on the output h1

t of the first-
layer LSTM unit, a normalized attention distribution over all the relation-aware
region-level features is generated as

at,i = Wa

[
tanh

(
Wfv

(1)
i +Whh

1
t

)]
, λt = softmax (at) , (6)

where at,i is the i-th element of at, Wa ∈ R
1×Da , Wf ∈ R

Da×Dv and Wh ∈
R

Da×Dh are transformation matrices. λt ∈ R
K denotes the normalized attention

distribution and its i-th element λt,i is the attention probability of v
(1)
i . Based

on the attention distribution, we calculate the attended image feature v̂t =
K∑
i=1

λt,iv
(1)
i by aggregating all the region-level features weighted with attention.

We further concatenate the attended image feature v̂t with h1
t and feed them

into the second-layer LSTM unit, whose updating procedure is thus given by

h2
t = f2

([
v̂t,h

1
t

])
, (7)

where f2 is the updating function within the second-layer LSTM unit. The out-
put of the second-layer LSTM unit h2

t is leveraged to predict the next word wt+1

through a softmax layer.

3.4 Training and Inference

In the training stage, we pre-construct the two kinds of visual graphs (i.e., seman-
tic and spatial graphs) by exploiting the semantic and spatial relations among
detected image regions as described in Section 3.2. Then, each graph is sepa-
rately utilized to train one individual GCN-based encoder plus attention LSTM
decoder. Note that the LSTM in decoder can be optimized with conventional
cross entropy loss or the expected sentence-level reward loss as in [22,31].

At the inference time, we adopt a late fusion scheme to connect the two visual
graphs in our designed GCN-LSTM architecture. Specifically, we linearly fuse
the predicted word distributions from two decoders at each time step and pop
out the word with the maximum probability as the input word to both decoders
at the next time step. The fused probability for each word wi is calculated as:

Pr (wt = wi) = αPrsem (wt = wi) + (1− α) Prspa (wt = wi) , (8)

where α is the tradeoff parameter, Prsem (wt = wi) and Prspa (wt = wi) denotes
the predicted probability for each word wi from the decoder trained with seman-
tic and spatial graph, respectively.

4 Experiments

We conducted the experiments and evaluated our proposed GCN-LSTM model
on COCO captioning dataset (COCO) [21] for image captioning task. In addi-
tion, Visual Genome [16] is utilized to pre-train the object detector and semantic
relation detector in our GCN-LSTM.
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4.1 Datasets and Experimental Settings

COCO, is the most popular benchmark for image captioning, which contain-
s 82,783 training images and 40,504 validation images. There are 5 human-
annotated descriptions per image. As the annotations of the official testing set
are not publicly available, we follow the widely used settings in [2,31] and take
113,287 images for training, 5K for validation and 5K for testing. Similar to
[13], we convert all the descriptions in training set to lower case and discard
rare words which occur less than 5 times, resulting in the final vocabulary with
10,201 unique words in COCO dataset.

Visual Genome, is a large-scale image dataset for modeling the interac-
tions/relationships between objects, which contains 108K images with densely
annotated objects, attributes, and relationships. To pre-train the object detec-
tor (i.e., Faster R-CNN in this work), we strictly follow the setting in [2], taking
98K for training, 5K for validation and 5K for testing. Note that as part of im-
ages (about 51K) in Visual Genome are also found in COCO, the split of Visual
Genome is carefully selected to avoid contamination of the COCO validation
and testing sets. Similar to [2], we perform extensive cleaning and filtering of
training data, and train Faster R-CNN over the selected 1,600 object classes
and 400 attributes classes. To pre-train the semantic relation detector, we adopt
the same data split for training object detector. Moreover, we select the top-50
frequent predicates in training data and manually group them into 20 predi-
cate/relation classes. The semantic relation detection model is thus trained over
the 20 relation classes plus a non-relation class.

Features and Parameter Settings. Each word in the sentence is rep-
resented as “one-hot” vector (binary index vector in a vocabulary). For each
image, we apply Faster R-CNN to detect objects within this image and select
top K = 36 regions with highest detection confidences to represent the image.
Each region is represented as the 2,048-dimensional output of pool5 layer after
RoI pooling from the Res4b22 feature map of Faster R-CNN in conjunction with
ResNet-101 [11]. In the attention LSTM decoder, the size of word embedding
D1

s is set as 1,000. The dimension of the hidden layer Dh in each LSTM is set as
1,000. The dimension of the hidden layer Da for measuring attention distribution
is set as 512. The tradeoff parameter α in Eq.(8) is empirically set as 0.7.

Implementation Details. We mainly implement our GCN-LSTM based on
Caffe [12], which is one of widely adopted deep learning frameworks. The whole
system is trained by Adam [14] optimizer. We set the initial learning rate as
0.0005 and the mini-batch size as 1,024. The maximum training iteration is set
as 30K iterations. For sentence generation in inference stage, we adopt the beam
search strategy and set the beam size as 3.

Evaluation Metrics. We adopt five types of metrics: BLEU@N [28], ME-
TEOR [3], ROUGE-L [20], CIDEr-D [33] and SPICE [1]. All the metrics are
computed by using the codes1 released by COCO Evaluation Server [4].

Compared Approaches. We compared the following state-of-the-art meth-
ods: (1) LSTM [34] is the standard CNN plus RNN model which only injects

1 https://github.com/tylin/coco-caption

https://github.com/tylin/coco-caption
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Table 1. Performance of our GCN-LSTM and other state-of-the-art methods on CO-
CO, where B@N , M, R, C and S are short for BLEU@N , METEOR, ROUGE-L,
CIDEr-D and SPICE scores. All values are reported as percentage (%).

Cross-Entropy Loss CIDEr-D Score Optimization

B@1 B@4 M R C S B@1 B@4 M R C S

LSTM [34] - 29.6 25.2 52.6 94.0 - - 31.9 25.5 54.3 106.3 -
SCST [31] - 30.0 25.9 53.4 99.4 - - 34.2 26.7 55.7 114.0 -
ADP-ATT [24] 74.2 33.2 26.6 - 108.5 - - - - - - -
LSTM-A [39] 75.4 35.2 26.9 55.8 108.8 20.0 78.6 35.5 27.3 56.8 118.3 20.8
Up-Down [2] 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4

GCN-LSTMspa 77.2 36.5 27.8 56.8 115.6 20.8 80.3 37.8 28.4 58.1 127.0 21.9
GCN-LSTMsem 77.3 36.8 27.9 57.0 116.3 20.9 80.5 38.2 28.5 58.3 127.6 22.0
GCN-LSTM 77.4 37.1 28.1 57.2 117.1 21.1 80.9 38.3 28.6 58.5 128.7 22.1

image into LSTM at the initial time step. We directly extract results reported
in [31]. (2) SCST [31] employs a modified visual attention mechanism of [37] for
captioning. Moreover, a self-critical sequence training strategy is devised to train
LSTM with expected sentence-level reward loss. (3) ADP-ATT [24] develops an
adaptive attention based encoder-decoder model for automatically determining
when to look (sentinel gate) and where to look (spatial attention). (4) LSTM-

A [39] integrates semantic attributes into CNN plus RNN captioning model for
boosting image captioning. (5)Up-Down [2] designs a combined bottom-up and
top-down attention mechanism that enables region-level attention to be calcu-
lated. (6) GCN-LSTM is the proposal in this paper. Moreover, two slightly dif-
ferent settings of GCN-LSTM are named as GCN-LSTMsem and GCN-LSTMspa

which are trained with only semantic graph and spatial graph, respectively.
Note that for fair comparison, all the baselines and our model adopt ResNet-

101 as the basic architecture of image feature extractor. Moreover, results are
reported for models optimized with both cross entropy loss or expected sentence-
level reward loss. The sentence-level reward is measured with CIDEr-D score.

4.2 Performance Comparison and Experimental Analysis

Quantitative Analysis. Table 1 shows the performances of different models on
COCO image captioning dataset. Overall, the results across six evaluation met-
rics optimized with cross-entropy loss and CIDEr-D score consistently indicate
that our proposed GCN-LSTM achieves superior performances against other
state-of-the-art techniques including non-attention models (LSTM, LSTM-A)
and attention-based approach (SCST, ADP-ATT and Up-Down). In particular,
the CIDEr-D and SPICE scores of our GCN-LSTM can achieve 117.1% and
21.1% optimized with cross-entropy loss, making the relative improvement over
the best competitor Up-Down by 3.2% and 3.9%, respectively, which is generally
considered as a significant progress on this benchmark. As expected, the CIDEr-
D and SPICE scores are boosted up to 128.7% and 22.1% when optimized with
CIDEr-D score. LSTM-A exhibits better performance than LSTM, by further
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GT: a group of children sitting at a table eating pieces of cake

LSTM: a group of people sitting at a table with a cake

Up-Down: a group of children sitting at a table with a cake

GCN-LSTM: a group of children sitting at a table eating a cake

GT: two young boys are playing with tennis rackets

LSTM: a young boy playing a game of tennis

Up-Down: two young boys playing tennis on a tennis court

GCN-LSTM: two young boys playing with tennis rackets on a court

GT: a baby girl standing in a shopping cart holding an umbrella

LSTM: a woman walking down a street holding an umbrella

Up-Down: a little girl holding an umbrella in a street

GCN-LSTM: a little girl holding an umbrella in a shopping cart

GT: a herd of zebras grazing in a field and a rainbow

LSTM: a group of zebras standing in a field

Up-Down: a group of zebras and a rainbow in the sky

GCN-LSTM: a group of zebras grazing in a field with a rainbow in the sky

GT: a man in a suit on a plaza, holding a blue umbrella in the rain

LSTM: a person walking down a street with an umbrella

Up-Down: a man walking in the rain with an umbrella

GCN-LSTM: a man in a suit holding an umbrella in the rain
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Fig. 5. Graphs and sentences generation results on COCO dataset. The semantic graph
is constructed with semantic relations predicted by our semantic relation detection
model. The spatial graph is constructed with spatial relations as defined in Figure
4. The output sentences are generated by 1) Ground Truth (GT): One ground truth
sentence, 2) LSTM, 3) Up-Down and 4) our GCN-LSTM.

explicitly taking the high-level semantic information into account for encoding
images. Moreover, SCST, ADP-ATT and Up-Down lead to a large performance
boost over LSTM, which directly encodes image as one global representation.
The results basically indicate the advantage of visual attention mechanism by
learning to fucus on the image regions that are most indicative to infer the next
word. More specifically, Up-Down by enabling attention to be calculated at the
level of objects, improves SCST and ADP-ATT. The performances of Up-Down
are still lower than our GCN-LSTMspa and GCN-LSTMsem which additional-
ly exploits spatial/semantic relations between objects for enriching region-level
representations and eventually enhancing image captioning, respectively. In ad-
dition, by utilizing both spatial and semantic graphs in a late fusion manner,
our GCN-LSTM further boosts up the performances.

Qualitative Analysis. Figure 5 shows a few image examples with the con-
structed semantic and spatial graphs, human-annotated ground truth sentences
and sentences generated by three approaches, i.e., LSTM, Up-Down and our
GCN-LSTM. From these exemplar results, it is easy to see that the three auto-
matic methods can generate somewhat relevant and logically correct sentences,
while our model GCN-LSTM can generate more descriptive sentence by enrich-
ing semantics with visual relationships in graphs to boost image captioning. For
instance, compared to the same sentence segment “with a cake” in the sentences
generated by LSTM and Up-Down for the first image, “eating a cake” in our
GCN-LSTM depicts the image content more comprehensive, since the detected
relation “eating” in semantic graph is encoded into relation-aware region-level
features for guiding sentence generation.
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Table 2. Leaderboard of the published state-of-the-art image captioning models on
the online COCO testing server, where B@N , M, R, and C are short for BLEU@N ,
METEOR, ROUGE-L, and CIDEr-D scores. All values are reported as percentage (%).

Model
B@2 B@3 B@4 M R C

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

GCN-LSTM 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5

Up-Down [2] 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

LSTM-A [39] 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0

SCST [31] 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7

G-RMI [22] 59.1 84.2 44.5 73.8 33.1 62.4 25.5 33.9 55.1 69.4 104.2 107.1

ADP-ATT [24] 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9

Performance on COCO Online Testing Server. We also submitted our
GCN-LSTM optimized with CIDEr-D score to online COCO testing server and
evaluated the performance on official testing set. Table 2 summarizes the per-
formance Leaderboard on official testing image set with 5 (c5) and 40 (c40) ref-
erence captions. The latest top-5 performing methods which have been officially
published are included in the table. Compared to the top performing methods
on the leaderboard, our proposed GCN-LSTM achieves the best performances
across all the evaluation metrics on both c5 and c40 testing sets.

Human Evaluation. To better understand how satisfactory are the sen-
tences generated from different methods, we also conducted a human study to
compare our GCN-LSTM against two approaches, i.e., LSTM and Up-Down.
All of the three methods are optimized with CIDEr-D score. 12 evaluators are
invited and a subset of 1K images is randomly selected from testing set for
the subjective evaluation. All the evaluators are organized into two groups. We
show the first group all the three sentences generated by each approach plus
five human-annotated sentences and ask them the question: Do the systems pro-
duce captions resembling human-generated sentences? In contrast, we show the
second group once only one sentence generated by different approach or human
annotation (Human) and they are asked: Can you determine whether the given
sentence has been generated by a system or by a human being? From evalu-
ators’ responses, we calculate two metrics: 1) M1: percentage of captions that
are evaluated as better or equal to human caption; 2) M2: percentage of cap-
tions that pass the Turing Test. The results of M1 are 74.2%, 70.3%, 50.1% for
GCN-LSTM, Up-Down and LSTM. For the M2 metric, the results of Human,
GCN-LSTM, Up-Down and LSTM are 92.6%, 82.1%, 78.5% and 57.8%. Overall,
our GCN-LSTM is clearly the winner in terms of two criteria.

Effect of Fusion Scheme. There are generally two directions for fusing se-
mantic and spatial graphs in GCN-LSTM. One is to perform early fusion scheme
by concatenating each pair of region features from graphs before attention mod-
ule or the attended features from graphs after attention module. The other is
our adopted late fusion scheme to linearly fuse the predicted word distributions
from two decoders. Figure 6 depicts the three fusion schemes. We compare the
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Fig. 6. Different schemes for fusing spatial and semantic graphs in GCN-LSTM: (a)
Early fusion before attention module, (b) Early fusion after attention module and (c)
Late fusion. The fusion operator could be concatenation or summation.
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Fig. 7. The effect of the tradeoff parameter α in our GCN-LSTM with cross-entropy
loss over (a) BLEU@4 (%), (b) METEOR (%) and (c) CIDEr-D (%) on COCO.

performances of our GCN-LSTM in the three fusion schemes (with cross-entropy
loss). The results are 116.4%, 116.6% and 117.1% in CIDEr-D metric for early
fusion before/after attention module and late fusion, respectively, which indicate
that the adopted late fusion scheme outperforms other two early fusion schemes.

Effect of the Tradeoff Parameter α. To clarify the effect of the tradeoff
parameter α in Eq.(8), we illustrate the performance curves over three evaluation
metrics with a different tradeoff parameter in Figure 7. As shown in the figure,
we can see that all performance curves are generally like the “∧” shapes when
α varies in a range from 0 to 1. The best performance is achieved when α is
about 0.7. This proves that it is reasonable to exploit both semantic and spatial
relations between objects for boosting image captioning.

5 Conclusions

We have presented Graph Convolutional Networks plus Long Short-Term Mem-
ory (GCN-LSTM) architecture, which explores visual relationship for boosting
image captioning. Particularly, we study the problem from the viewpoint of mod-
eling mutual interactions between objects/regions to enrich region-level repre-
sentations that are feed into sentence decoder. To verify our claim, we have built
two kinds of visual relationships, i.e., semantic and spatial correlations, on the
detected regions, and devised Graph Convolutions on the region-level represen-
tations with visual relationships to learn more powerful representations. Such
relation-aware region-level representations are then input into attention LSTM
for sentence generation. Extensive experiments conducted on COCO image cap-
tioning dataset validate our proposal and analysis. More remarkably, we achieve
new state-of-the-art performances on this dataset. One possible future direction
would be to generalize relationship modeling and utilization to other vision tasks.



Exploring Visual Relationship for Image Captioning 15

References

1. Anderson, P., Fernando, B., Johnson, M., Gould, S.: Spice: Semantic propositional
image caption evaluation. In: ECCV (2016)

2. Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., Zhang,
L.: Bottom-up and top-down attention for image captioning and visual question
answering. In: CVPR (2018)

3. Banerjee, S., Lavie, A.: Meteor: An automatic metric for mt evaluation with im-
proved correlation with human judgments. In: ACL workshop (2005)

4. Chen, X., Fang, H., Lin, T.Y., Vedantam, R., Gupta, S., Dollár, P., Zitnick, C.L.:
Microsoft COCO captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325 (2015)

5. Dai, B., Zhang, Y., Lin, D.: Detecting visual relationships with deep relational
networks. In: CVPR (2017)

6. Divvala, S.K., Farhadi, A., Guestrin, C.: Learning everything about anything:
Webly-supervised visual concept learning. In: CVPR (2014)

7. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan,
S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual
recognition and description. In: CVPR (2015)

8. Fu, K., Jin, J., Cui, R., Sha, F., Zhang, C.: Aligning where to see and what to tell:
image captioning with region-based attention and scene-specific contexts. IEEE
Trans. on PAMI (2017)

9. Galleguillos, C., Rabinovich, A., Belongie, S.: Object categorization using co-
occurrence, location and appearance. In: CVPR (2008)

10. Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation
with relative location prior. IJCV (2008)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

12. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
In: MM (2014)

13. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image
descriptions. In: CVPR (2015)

14. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

16. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S.,
Kalantidis, Y., Li, L.J., Shamma, D.A., et al.: Visual genome: Connecting language
and vision using crowdsourced dense image annotations. IJCV (2017)

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)

18. Li, Y., Yao, T., Pan, Y., Chao, H., Mei, T.: Jointly localizing and describing events
for dense video captioning. In: CVPR (2018)

19. Li, Y., Ouyang, W., Zhou, B., Wang, K., Wang, X.: Scene graph generation from
objects, phrases and region captions. In: ICCV (2017)

20. Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: ACL
Workshop (2004)

21. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014)



16 T. Yao, Y. Pan, Y. Li, and T. Mei

22. Liu, S., Zhu, Z., Ye, N., Guadarrama, S., Murphy, K.: Optimization of image
description metrics using policy gradient methods. In: ICCV (2017)

23. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with
language priors. In: ECCV (2016)

24. Lu, J., Xiong, C., Parikh, D., Socher, R.: Knowing when to look: Adaptive attention
via a visual sentinel for image captioning. In: CVPR (2017)

25. Marcheggiani, D., Titov, I.: Encoding sentences with graph convolutional networks
for semantic role labeling. In: EMNLP (2017)

26. Pan, Y., Mei, T., Yao, T., Li, H., Rui, Y.: Jointly modeling embedding and trans-
lation to bridge video and language. In: CVPR (2016)

27. Pan, Y., Yao, T., Li, H., Mei, T.: Video captioning with transferred semantic
attributes. In: CVPR (2017)

28. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: ACL (2002)

29. Plummer, B.A., Mallya, A., Cervantes, C.M., Hockenmaier, J., Lazebnik, S.: Phrase
localization and visual relationship detection with comprehensive image-language
cues. In: ICCV (2017)

30. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In: NIPS (2015)

31. Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence
training for image captioning. In: CVPR (2017)

32. Sadeghi, M.A., Farhadi, A.: Recognition using visual phrases. In: CVPR (2011)
33. Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: Consensus-based image

description evaluation. In: CVPR (2015)
34. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: A neural image

caption generator. In: CVPR (2015)
35. Wu, Q., Shen, C., Liu, L., Dick, A., Hengel, A.v.d.: What value do explicit high

level concepts have in vision to language problems? In: CVPR (2016)
36. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative mes-

sage passing. In: CVPR (2017)
37. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,

Bengio, Y.: Show, attend and tell: Neural image caption generation with visual
attention. In: ICML (2015)

38. Yao, T., Pan, Y., Li, Y., Mei, T.: Incorporating copying mechanism in image cap-
tioning for learning novel objects. In: CVPR (2017)

39. Yao, T., Pan, Y., Li, Y., Qiu, Z., Mei, T.: Boosting image captioning with at-
tributes. In: ICCV (2017)

40. You, Q., Jin, H., Wang, Z., Fang, C., Luo, J.: Image captioning with semantic
attention. In: CVPR (2016)


