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Fig. 1: Applications of the proposed method. Our algorithm takes per-
frame processed videos with serious temporal flickering as inputs (lower-left) and
generates temporally stable videos (upper-right) while maintaining perceptual
similarity to the processed frames. Our method is blind to the specific image
processing algorithm applied to input videos and runs at a high frame-rate. This
figure contains animated videos, which are best viewed using Adobe Acrobat.

Abstract. Applying image processing algorithms independently to each
frame of a video often leads to undesired inconsistent results over time.
Developing temporally consistent video-based extensions, however, re-
quires domain knowledge for individual tasks and is unable to generalize
to other applications. In this paper, we present an efficient approach
based on a deep recurrent network for enforcing temporal consistency in
a video. Our method takes the original and per-frame processed videos as
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inputs to produce a temporally consistent video. Consequently, our ap-
proach is agnostic to specific image processing algorithms applied to the
original video. We train the proposed network by minimizing both short-
term and long-term temporal losses as well as a perceptual loss to strike
a balance between temporal coherence and perceptual similarity with the
processed frames. At test time, our model does not require computing
optical flow and thus achieves real-time speed even for high-resolution
videos. We show that our single model can handle multiple and unseen
tasks, including but not limited to artistic style transfer, enhancement,
colorization, image-to-image translation and intrinsic image decomposi-
tion. Extensive objective evaluation and subject study demonstrate that
the proposed approach performs favorably against the state-of-the-art
methods on various types of videos.

1 Introduction

Recent advances of deep convolutional neural networks (CNNs) have led to
the development of many powerful image processing techniques including, im-
age filtering [30,37], enhancement [10,24,38], style transfer [17,23,29], coloriza-
tion [19,41], and general image-to-image translation tasks [21,27,43]. However,
extending these CNN-based methods to video is non-trivial due to memory and
computational constraints, and the availability of training datasets. Applying
image-based algorithms independently to each video frame typically leads to
temporal flickering due to the instability of global optimization algorithms or
highly non-linear deep networks. One approach for achieving temporally co-
herent results is to explicitly embed flow-based temporal consistency loss in the
design and training of the networks. However, such an approach suffers from two
drawbacks. First, it requires domain knowledge to re-design the algorithm [1,16],
re-train a deep model [12,15], and video datasets for training. Second, due to the
dependency of flow computation at test time, these approaches tend to be slow.

Bonneel et al. [6] propose a general approach to achieve temporal coherent re-
sults that is blind to specific image processing algorithms. The method takes the
original video and the per-frame processed video as inputs and solves a gradient-
domain optimization problem to minimize the temporal warping error between
consecutive frames. Although the results of Bonneel et al. [6] are temporally
stable, their algorithm highly depends on the quality of dense correspondence
(e.g., optical flow or PatchMatch [2]) and may fail when a severe occlusion oc-
curs. Yao et al. [39] further extend the method of Bonneel et al. [6] to account
for occlusion by selecting a set of key-frames. However, the computational cost
increases linearly with the number of key-frames, and thus their approach can-
not be efficiently applied to long video sequences. Furthermore, both approaches
assume that the gradients of the original video are similar to the gradients of
the processed video, which restricts them from handling tasks that may generate
new contents (e.g., stylization).

In this work, we formulate the problem of video temporal consistency as a
learning task. We propose to learn a deep recurrent network that takes the input
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and processed videos and generates temporally stable output videos. We mini-
mize the short-term and long-term temporal losses between output frames and
impose a perceptual loss from the pre-trained VGG network [34] to maintain
the perceptual similarity between the output and processed frames. In addition,
we embed a convolutional LSTM (ConvLSTM) [36] layer to capture the spatial-
temporal correlation of natural videos. Our network processes video frames se-
quentially and can be applied to videos with arbitrary lengths. Furthermore, our
model does not require computing optical flow at test time and thus can process
videos at real-time rates (400+ FPS on 1280× 720 videos).

As existing video datasets typically contain low-quality frames, we collect a
high-quality video dataset with 80 videos for training and 20 videos for evalua-
tion. We train our model on a wide range of applications, including colorization,
image enhancement, and artistic style transfer, and demonstrate that a single

trained model generalizes well to unseen applications (e.g., intrinsic image de-
composition, image-to-image translation). We evaluate the quality of the output
videos using temporal warping error and a learned perceptual metric [42]. We
show that the proposed method strikes a good balance between maintaining the
temporal stability and perceptual similarity. Furthermore, we conduct a user
study to evaluate the subjective preference between the proposed method and
state-of-the-art approaches.

We make the following contributions in this work:

1. We present an efficient solution to remove temporal flickering in videos via
learning a deep network with a ConvLSTM module. Our method does not
require pre-computed optical flow or frame correspondences at test time and
thus can process videos in real-time.

2. We propose to minimize the short-term and long-term temporal loss for
improving the temporal stability and adopt a perceptual loss to maintain
the perceptual similarity.

3. We provide a single model for handling multiple applications, including but
not limited to colorization, enhancement, artistic style transfer, image-to-
image translation and intrinsic image decomposition. Extensive subject and
objective evaluations demonstrate that the proposed algorithm performs fa-
vorably against existing approaches on various types of videos.

2 Related Work

We address the temporal consistency problem on a wide range of applications,
including automatic white balancing [14], harmonization [4], dehazing [13], image
enhancement [10], style transfer [17,23,29], colorization [19,41], image-to-image
translation [21,43], and intrinsic image decomposition [3]. A complete review of
these applications is beyond the scope of this paper. In the following, we discuss
task-specific and task-independent approaches that enforce temporal consistency
on videos.

Task-specific approaches. A common solution to embed the temporal consis-
tency constraint is to use optical flow to propagate information between frames,
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Table 1: Comparison of blind temporal consistency methods. Both the
methods of Bonneel et al. [6] and Yao et al. [39] require dense correspondences
from optical flow or PatchMatch [2], while the proposed method does not explic-
itly rely on these correspondences at test time. The algorithm of Yao et al. [39]
involves a key-frame selection from the entire video and thus cannot generate
output in an online manner.

Bonneel et al. [6] Yao et al. [39] Ours

Content constraint gradient local affine perceptual loss
Short-term temporal constraint X - X

Long-term temporal constraint - X X

Require dense correspondences
X X -

(at test time)
Online processing X - X

e.g., colorization [28] and intrinsic decomposition [40]. However, estimating op-
tical flow is computationally expensive and thus is impractical to apply on high-
resolution and long sequences. Temporal filtering is an efficient approach to ex-
tend image-based algorithms to videos, e.g., tone-mapping [1], color transfer [5],
and visual saliency [25] to generate temporally consistent results. Nevertheless,
these approaches assume a specific filter formulation and cannot be generalized
to other applications.

Recently, several approaches have been proposed to improve the temporal sta-
bility of CNN-based image style transfer. Huang et al. [15] and Gupta et al. [12]
train feed-forward networks by jointly minimizing content, style and temporal
warping losses. These methods, however, are limited to the specific styles used
during training. Chen et al. [7] learn flow and mask networks to adaptively blend
the intermediate features of the pre-trained style network. While the architecture
design is independent of the style network, it requires the access to intermediate
features and cannot be applied to non-differentiable tasks. In contrast, the pro-
posed model is entirely blind to specific algorithms applied to the input frames
and thus is applicable to optimization-based techniques, CNN-based algorithms,
and combinations of Photoshop filters.

Task-independent approaches. Several methods have been proposed to im-
prove temporal consistency for multiple tasks. Lang et al. [25] approximate
global optimization of a class of energy formulation (e.g., colorization, optical
flow estimation) via temporal edge-aware filtering. In [9], Dong et al. propose
a segmentation-based algorithm and assume that the image transformation is
spatially and temporally consistent. More general approaches assume gradient
similarity [6] or local affine transformation [39] between the input and the pro-
cessed frames. These methods, however, cannot handle more complicated tasks
(e.g., artistic style transfer). In contrast, we use the VGG perceptual loss [23]
to impose high-level perceptual similarity between the output and processed
frames. We list the feature-by-feature comparisons between Bonneel et al. [6],
Yao et al. [39] and the proposed method in Table 1.
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Fig. 2:Overview of the proposed method.We train an image transformation
network that takes It−1, It, Ot−1 and processed frame Pt as inputs and generates
the output frame Ot which is temporally consistent with the output frame at the
previous time step Ot−1. The output Ot at the current time step then becomes
the input at the next time step. We train the image transformation network with
the VGG perceptual loss and the short-term and long-term temporal losses.

3 Learning Temporal Consistency

In this section, we describe the proposed recurrent network and the design of
the loss functions for enforcing temporal consistency on videos.

3.1 Recurrent network

Fig. 2 shows an overview of the proposed recurrent network. Our model takes
as input the original (unprocessed) video {It|t = 1 · · ·T} and per-frame pro-
cessed videos {Pt|t = 1 · · ·T}, and produces temporally consistent output videos
{Ot|t = 1 · · ·T}. In order to efficiently process videos with arbitrary length, we
develop an image transformation network as a recurrent convolutional network

to generate output frames in an online manner (i.e., sequentially from t = 1 to
T ). Specifically, we set the first output frame O1 = P1. In each time step, the
network learns to generate an output frame Ot that is temporally consistent with
respect to Ot−1. The current output frame is then fed as the input at the next
time step. To capture the spatial-temporal correlation of videos, we integrate a
ConvLSTM layer [36] into our image transformation network. We discuss the
detailed design of our image transformation network in Section 3.3.
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Fig. 3: Temporal losses. We adopt the short-term temporal loss on neighbor
frames and long-term temporal loss between the first and all the output frames.

3.2 Loss functions

Our goal is to reduce the temporal inconsistency in the output video while
maintaining the perceptual similarity with the processed frames. Therefore, we
propose to train our model with (1) a perceptual content loss between the output
frame and the processed frame and (2) short-term and long-term temporal losses
between output frames.

Content perceptual loss. We compute the similarity between Ot and Pt using
the perceptual loss from a pre-trained VGG classification network [34], which
is commonly adopted in several applications (e.g., style transfer [23], super-
resolution [26], and image inpainting [31]) and has been shown to correspond
well to human perception [42]. The perceptual loss is defined as:

Lp =

T
∑

t=2

N
∑

i=1

∑

l

∥

∥

∥
φl(O

(i)
t )− φl(P

(i)
t )

∥

∥

∥

1
, (1)

where O
(i)
t represents a vector ∈ R3 with RGB pixel values of the output O at

time t, N is the total number of pixels in a frame, and φl(·) denotes the feature
activation at the l-th layer of the VGG-19 network φ. We choose the 4-th layer
(i.e., relu4-3) to compute the perceptual loss.

Short-term temporal loss. We formulate the temporal loss as the warping
error between the output frames:
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∥
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where Ôt−1 is the frame Ot−1 warped by the optical flow Ft⇒t−1, and Mt⇒t−1 =
exp(−α‖It − Ît−1‖

2
2) is the visibility mask calculated from the warping error

between input frames It and warped input frame Ît−1. The optical flow Ft⇒t−1

is the backward flow between It−1 and It. We use the FlowNet2 [20] to efficiently
compute flow on-the-fly during training. We use the bilinear sampling layer [22]
to warp frames and empirically set α = 50 (with pixel range between [0, 1]).

Long-term temporal loss. While the short-term temporal loss (2) enforces
the temporal consistency between consecutive frames, there is no guarantee for
long-term (e.g., more than 5 frames) coherence. A straightforward method to
enforce long-term temporal consistency is to apply the temporal loss on all pairs
of output frames. However, such a strategy requires significant computational
costs (e.g., optical flow estimation) during training. Furthermore, computing
temporal loss between two intermediate outputs is not meaningful before the
network converges.

Instead, we propose to impose long-term temporal losses between the first

output frame and all of the output frames:

Llt =
T
∑

t=2

N
∑

i=1

M
(i)
t⇒1

∥

∥

∥
O

(i)
t − Ô

(i)
1

∥

∥

∥

1
. (3)

We illustrate an unrolled version of our recurrent network as well as the short-
term and long-term losses in Fig. 3. During the training, we enforce the long-term
temporal coherence over a maximum of 10 frames (T = 10).

Overall loss. The overall loss function for training our image transformation
network is defined as:

L = λpLp + λstLst + λltLlt, (4)

where λp, λst and λlt are the weights for the content perceptual loss, short-term
and long-term losses, respectively.

3.3 Image transformation network

The input of our image transformation network is the concatenation of the cur-
rently processed frame Pt, previous output frame Ot−1 as well as the current
and previous unprocessed frames It, It−1. As the output frame typically looks
similar to the currently processed frame, we train the network to predict the
residuals instead of actual pixel values, i.e., Ot = Pt + F(Pt), where F denotes
the image transformation network. Our image transformation network consists
of two strided convolutional layers, B residual blocks, one ConvLSTM layer, and
two transposed convolutional layers.

We add skip connections from the encoder to the decoder to improve the
reconstruction quality. However, for some applications, the processed frames
may have a dramatically different appearance than the input frames (e.g., style
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Fig. 4: Architecture of our image transformation network. We split the
input into two streams to avoid transferring low-level informati on from the input
frames to output.

transfer or intrinsic image decomposition). We observe that the skip connections
may transfer low-level information (e.g., color) to the output frames and produce
visual artifacts. Therefore, we divide the input into two streams: one for the
processed framesPt and Ot � 1, and the other stream for input frames I t and
I t � 1. As illustrated in Fig. 4, the skip connections only add skip connections
from the processed frames to avoid transferring the low-level information from
the input frames. We provide all the implementation details in the supplementary
material.

4 Experimental Results

In this section, we �rst describe the employed datasets for training and test-
ing, followed by the applications of the proposed method and the metrics for
evaluating the temporal stability and perceptual similarity. We the n analyze
the e�ect of each loss term in balancing the temporal coherence and percep-
tual similarity, conduct quantitative and subjective comparisons with existing
approaches, and �nally discuss the limitations of our method. The source code
and datasets are publicly available at http://vllab.ucmerced.edu/wlai24/
video_consistency .

4.1 Datasets

We use theDAVIS -2017 dataset [32], which is designed for video segmentation
and contains a variety of moving objects and motion types. TheDAVIS dataset
has 60 videos for training and 30 videos for validation. However, the lengthsof
the videos in the DAVIS dataset are usually short (less than 3 seconds) with
4,209 training frames in total. Therefore, we collect additional 100 high-quality
videos from Videvo.net [35], where 80 videos are used for training and 20 videos
for testing. We scale the height of video frames to 480 and keep the aspectratio.
We use both the DAVIS and Videvo training sets, which contains a total of
25,735 frames, to train our network.


















