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Abstract. Compositional models represent patterns with hierarchies of
meaningful parts and subparts. Their ability to characterize high-order
relationships among body parts helps resolve low-level ambiguities in hu-
man pose estimation (HPE). However, prior compositional models make
unrealistic assumptions on subpart-part relationships, making them in-
capable to characterize complex compositional patterns. Moreover, state
spaces of their higher-level parts can be exponentially large, complicat-
ing both inference and learning. To address these issues, this paper in-
troduces a novel framework, termed as Deeply Learned Compositional
Model (DLCM), for HPE. It exploits deep neural networks to learn the
compositionality of human bodies. This results in a novel network with
a hierarchical compositional architecture and bottom-up/top-down in-
ference stages. In addition, we propose a novel bone-based part repre-
sentation. It not only compactly encodes orientations, scales and shapes
of parts, but also avoids their potentially large state spaces. With sig-
nificantly lower complexities, our approach outperforms state-of-the-art
methods on three benchmark datasets.

1 Introduction

Human pose estimation (HPE) means to locate body parts from input images.
It serves as a fundamental tool for several practical applications such as action
recognition, human-computer interaction and video surveillance [1]. The most
recent HPE systems have adopted convolutional neural networks (CNNs) [2–4]
as their backbones and yielded drastic improvements on standard benchmarks
[5–9]. However, they are still prone to fail when there exist ambiguities caused
by overlapping parts, nearby persons and clutter backgrounds, e.g., Fig. 1.

One promising way to tackle these difficulties is to exploit the composition-
ality [10, 11] of human bodies. It means to represent a whole body as a hierarchy
of parts and subparts, which satisfy some articulation constraints. This kind
of hierarchical structure enables us to capture high-order relationships among
parts and characterize an exponential number of plausible poses [12]. Based on
this principle, compositional models1 [13, 14] infer poses via two stages, as il-
lustrated in Fig. 2(a). In the bottom-up stage, states of higher-level parts are

1 We focus on multilevel compositional models in this paper.
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Fig. 1. Pairs of pose predictions obtained by an eight-stack hourglass network [5] (left)
and our approach (right). Some wrong part localizations are highlighted by green el-
lipses. By exploiting compositionality of human bodies, our approach is able to reduce
low-level ambiguities in pose estimations. See Fig. 8 for more examples

Fig. 2. (a) A typical compositional model of a human body. The pose is estimated
via two stages: bottom-up inference followed by top-down refinement. (b) Each tensor
represents score maps of several parts. An SLIS function aggregates information from
input score maps on a spatially local support to predict output score maps. (c) Overview
of our deeply learned compositional model. The orange and green arrows respectively
denote SLIS functions modeled by CNNs in bottom-up and top-down stages. The
colored rectangles on the left side denote predicted score maps of parts at different
semantic levels while the heat maps on the right side represent their corresponding
ground truth in the training phase

recursively predicted from states of their child parts. In the top-down stage,
states of lower-level parts are refined by their parents’ states updated one step
earlier. Such global adjustments enable pose estimations to optimally meet the
relational constraints and thus reduce low-level image ambiguities. In the last
decade, compositional models have been adopted in several HPE systems [12,
15–19] and shown superior performances over their flat counterparts.

However, there are problems with existing compositional models designed for
HPE [12, 15–19]. First, they often assume a Gaussian distribution on the subpart-
part displacement with the subpart’s anchor position being its mean. While
simplifying both their inference and learning [20], this assumption generally does
not hold in real scenarios, e.g., distributions of joints visualized in [21–23]. Thus,
we argue it is incapable to characterize the complex compositional relationships
among body parts. Second, a set of discrete type variables are often used to
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model the compatibility among parts. They not only include the orientation and
scale of a part but also span semantic classes (a straight versus bended arm).
As the distinct types of a part can be as many as the different combinations of
all its children’s types, state spaces for higher-level parts can be exponentially
large. This makes both computation and storage demanding. Third, when the
compositional structure has loops, approximate inference algorithms must be
used. As a result, both the learning and testing will be adversely affected.

To address these issues, this paper introduces a novel framework, termed as
Deeply Learned Compositional Model (DLCM), for HPE. We first show each
bottom-up/top-down inference step of general compositional models is indeed
an instantiation of a generalized process we call spatially local information sum-

marization (SLIS). As shown in Fig. 2(b), it aggregates information from input
score maps2 on a spatially local support to predict output score maps. In this
paper, we exploit CNNs to model this process due to their capability to approx-
imate inference functions via spatially local connections. As a result, DLCMs
can learn more sophisticated and realistic compositional patterns within human
bodies. To avoid potentially large state spaces, we propose to use state variables
to only denote locations and embed the type information into score maps. Spe-
cially, we use bone segments to represent a part and supervise its score map in
the training phase. This novel representation not only compactly encodes the
orientation, scale and shape of a part, but also reduces both computation and
space complexities. Fig. 2(c) provides an overview of a DLCM. We evaluate the
proposed approach on three HPE benchmarks. With significantly less parameters
and lower computational complexities, it outperforms state-of-the-art methods.

In summary, the novelty of this paper is as follows:

– To the best of our knowledge, this is the first attempt to explicitly learn the
hierarchical compositionality of visual patterns via deep neural networks.
As a result, DLCMs are capable to characterize the complex and realistic
compositional relationships among body parts.

– We propose a novel part representation. It encodes the orientation, scale and
shape of each part compactly and avoids their potentially large state spaces.

– Compared with prior deep neural networks, e.g., CNNs, designed for HPE,
our model has a hierarchical compositional structure and bottom-up/top-
down inference stages across multiple semantic levels. We show in the ex-
periments that the compositional nature of DLCMs helps them resolve the
ambiguities that appear in bottom-up pose predictions.

2 Related Work

Compositional models. Compositionality has been studied in several lines
of vision research [13, 24, 14, 25] and exploited in tasks like HPE [12, 15–19, 26],

2 Each entry of a score map evaluates the goodness of a part being at a certain state,
e.g., location and type.
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semantic segmentation [27] and object detection [28]. However, prior composi-
tional models adopt simple and unrealistic relational modeling, e.g., pairwise
potentials based on Gaussian distributions. They are incapable to model com-
plex compositional patterns. Our approach attempts to address this difficulty
by learning the compositional relationships among body parts via the powerful
CNNs. In addition, we exploit a novel part representation to compactly encode
the scale, orientation and shape of each part and avoid their potentially large
state spaces.

CNN-based HPE. All state-of-the-art HPE systems take CNNs as their
main building block [5–7, 9, 29]. Newell et. al. [5] introduce a novel hourglass
module to process and consolidate features across all scales to best capture the
various spatial relationships associated with the body. Yang et. al. [7] combine
CNNs and the expressive deformable mixture of parts [30] to enforce the spatial
and appearance consistency among body parts. Hu and Ramanan [29] unroll the
inference process of hierarchical rectified Gaussians as bidirectional architectures
that also reason with top-down feedback. Instead of predicting body joint posi-
tions directly, Sun et. al. [31] regress the coordinate shifts between joint pairs
to encode their interactions. It is worth noting that none of these methods de-
composes entities as hierarchies of meaningful and reusable parts or infers across
different semantic levels. Our approach differs from them in that: (1) It has a
hierarchical compositional network architecture; (2) CNNs are used to learn the
compositional relationships among body parts; (3) Its inference consists of both
bottom-up and top-down stages across multiple semantic levels; (4) It exploits
a novel part representation to supervise the training of CNNs.

Bone-based part representations. Some prior works [32, 33] use heat
maps of limbs between each pair of adjacent joints as supervisions of deep neu-
ral networks. Their motivation is that modeling pairs of joints helps capture
additional body constraints and correlations. Different with them, our bone-
based part representation has (1) a hierarchical compositional structure and (2)
multiple semantic levels. It is designed to (1) tightly encode the scale, orientation
and shape of a part, (2) avoid exponentially large state spaces for higher-level
parts and (3) guide CNNs to learn the compositionality of human bodies.

3 Our Approach

We first make a brief introduction to general compositional models (Sec. 3.1).
Their inference steps are generalized as SLIS functions and modeled with CNNs
(Sec. 3.2). We then describe our novel bone-based part representation (Sec. 3.3).
Finally, the deeply learned compositional models are detailed in Sec. 3.4.

3.1 Compositional models

A compositional model is defined on a hierarchical graph, as shown in Fig.
3. It is characterized by a 4-tuple (V, E , φand, φleaf ), which specifies its graph
structure (V, E) and potential functions (φand, φleaf ). We consider two types of
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Fig. 3. Example compositional models (a) without and (b) with part sharing and
higher-order cliques

nodes3: V = Vand ∪ V leaf . And-nodes Vand model the composition of subparts
into higher-level parts. Leaf nodes V leaf model primitives, i.e., the lowest-level
parts. We call And-nodes at the highest level as root nodes. E denotes graph
edges. In this section, we first illustrate our idea using the basic compositional
model shown in Fig. 3(a), which does not share parts and considers only pairwise
relationships, and then extend it to the general one, as shown in Fig. 3(b).

A state variable wu is associated to each node/part u ∈ V. For HPE, it can
be the position pu and type tu of this part: wu = {pu, tu}. As a motivating
example, Yang and Ramanan [30] use types to represent orientations, scales and
semantic classes (a straight versus bended arm) of parts.

Let Ω denote the set of all state variables in the model. The probability
distribution over Ω is of the following Gibbs form:

p(Ω|I) =
1

Z
exp{−E(Ω, I)} (1)

where I is the input image, E(Ω, I) is the energy and Z is the partition function.
For convenience, we use a score function S(Ω), defined as the negative energy, to
specify the model and omit I. Without part sharing and higher-order potentials,
it can be written as:

S(Ω) ≡ −E(Ω, I) =
∑

u∈Vleaf

φleaf
u (wu, I) +

∑

u∈Vand

∑

v∈ch(u)

φand
u,v (wu, wv) (2)

where ch(u) denotes the set of children of node u. The two terms are potential
functions corresponding to Leaf and And nodes, respectively. The first term acts
like a detector: it determines how likely the primitive modeled by Leaf-node
u is present at location pu and of type tu. The second term models the state
compatibility between a subpart v and its parent u.

Thanks to the tree structure, the optimal states Ω∗ for an input image I
can be computed efficiently via dynamic programming. We call this process the
compositional inference. It is consisted of two stages. In the bottom-up stage,

3 We do not need Or-nodes [13, 14] here as part variations have been explicitly modeled
by the state variables of And-nodes.
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Fig. 4. Illustration of input-output relationships between child and parent score maps
in the compositional inference. In this example, node u has two children v1 and v2.
(a) In the bottom-up stage, the score map of a higher-level part is a function of its
children’s score maps. (b) In the top-down stage, the score map of a lower-level part is
refined by its parent’s score map updated one step earlier

the maximum score, i.e., maxΩ S(Ω), can be calculated recursively as:

(Leaf) S↑
u(wu) = φleaf

u (wu, I) (3)

(And) S↑
u(wu) =

∑

v∈ch(u)

max
wv

[φand
u,v (wu, wv) + S↑

v (wv)] (4)

where S↑
u(wu) is the maximum score of the subgraph formed by node u and all

its descendants, with root node u taking state wu, and is computed recursively
by Eq. (4), with boundary conditions provided by Eq. (3). The recursion begins
from the Leaf-level and goes up until root nodes are reached. As a function,
S↑
u(wu) assigns each possible state of part u a score. It can also be considered as

a tensor/map, each entry of which is indexed by the part’s state and valued by
the corresponding score. Thus, we also call S↑

u(wu) the score map of part u.

In the top-down stage, we recursively invert Eq. (4) to obtain the optimal
states of child nodes that yield the maximum score:

(Root) w∗
u = argmaxwu

S↓
u(wu) ≡ argmaxwu

S↑
u(wu) (5)

(Non-root) w∗
v = argmaxwv

S↓
v (wv) ≡ argmaxwv

[φand
u,v (w

∗
u, wv) + S↑

v (wv)] (6)

where node u in Eq. (6) is the unique parent of node v, i.e., {u} = pa(v),
S↑
u(wu) and S↑

v (wv) are acquired from the bottom-up stage, S↓
u(wu) and S↓

v (wv)
are respectively refined score maps of nodes u and v. Specially, w∗

u and w∗
v are

respectively optimal states of parts u and v, and are computed recursively by
Eq. (6), with boundary conditions provided by Eq. (5). The recursion begins
from root nodes and goes down until the Leaf-level is reached.

3.2 Spatially local information summarization

From Eq. (6), S↓
v (wv) for non-root nodes is defined as:

S↓
v (wv) = φand

u,v (w
∗
u, wv) + S↑

v (wv) (7)
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Fig. 5. (a) Illustration of the SLIS function in the compositional infe rence. Each cube
denotes a score map corresponding to a part or subpart. Each entry in the output/right
score map is obtained by aggregating information from the input/le ft score maps on
a local spatial support. (b) Illustration of bone-based part rep resentations. First row:
the right lower arm, right upper arm, right arm and left arm of a person. S econd row:
right or left legs of di�erent persons

where f ug = pa(v), w�
u = argmaxwu

S#
u (wu ). We can write the bottom-up (BU)

and top-down (TD) recursive equations, i.e., Eq. (4) and Eq. (7), together as

(BU) S"
u (wu ) =

X

v2 ch(u)

max
wv

[� and
u;v (wu ; wv ) + S"

v (wv )] (8)

(TD) S#
v (wv ) =

X

wu

� and
u;v (wu ; wv ) �S#

u (wu ) + S"
v (wv ) (9)

where �S#
u (wu ) is the hard-thresholded version ofS#

u (wu ): �S#
u (wu ) equals to 1 if

wu = w�
u and 0 otherwise. As illustrated in Fig. 4, these two equations intuitively

demonstrate how score maps arepropagated upwards and downwards in the
inference process, which �nally gives us the globally optimal states, i.e., 
 � , of
the compositional model.

In both equations, there exist summation and/or maximization operations
over state variables, e.g.,

P
v2 ch(u) maxwv and

P
wu

, as well as between score
maps. They can be considered as average and maximum poolings. In the liter-
ature of statistical learning [34], pooling means to combine features ina way
that preserves task-related information while removing irrelevant details, leads
to more compact representations, and better robustness to noise and clutter.
In the compositional inference, score maps of some parts are combined to get
relevant information about the states of other related parts. This analogy leads
us to think of Eqs. (8) and (9) as di�erent kinds of information summarization .

Since child and parent parts should not be far apart in practice, it is unneces-
sary to search them within the whole image [35, 36, 14]. Thus, it is reasonableto
constrain their relative displacements to be within a small range:pv � pu 2 Duv ,
e.g., Duv = [ � 50; 50] � [� 50; 50]. For compositional models, this constraint can
be enforced by setting� and

u;v (wu ; wv ) = 0 if pv � pu =2 Duv . Consequently, for each
entry of the score maps on the LHS of Eqs. (8) and (9), only information within
a local spatial region is summarized on the RHS, as the mapping shown in Fig.






















