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Abstract. The objective of this work is set-based verification, e.g. to
decide if two sets of images of a face are of the same person or not. The
traditional approach to this problem is to learn to generate a feature
vector per image, aggregate them into one vector to represent the set,
and then compute the cosine similarity between sets. Instead, we design a
neural network architecture that can directly learn set-wise verification.
Our contributions are: (i) We propose a Deep Comparator Network (DCN)
that can ingest a pair of sets (each may contain a variable number of im-
ages) as inputs, and compute a similarity between the pair – this involves
attending to multiple discriminative local regions (landmarks), and com-
paring local descriptors between pairs of faces; (ii) To encourage high-
quality representations for each set, internal competition is introduced
for recalibration based on the landmark score; (iii) Inspired by image
retrieval, a novel hard sample mining regime is proposed to control the
sampling process, such that the DCN is complementary to the standard
image classification models. Evaluations on the IARPA Janus face recog-
nition benchmarks show that the comparator networks outperform the
previous state-of-the-art results by a large margin.

1 Introduction

The objective of this paper is to determine if two sets of images are of the same
object or not. For example, in the case of face verification, the set could be
images of a face; and in the case of person re-identification, the set could be
images of the entire person. In both cases the objective is to determine if the
sets show the same person or not.

In the following, we will use the example of sets of faces, which are usually
referred to as ‘templates’ in the face recognition literature, and we will use this
term from here on. A template could consist of multiple samples of the same
person (e.g. still images, or frames from a video of the person, or a mixture of
both). With the great success of deep learning for image classification [1–4], by
far the most common approach to template-based face verification is to generate
a vector representing each face using a deep convolutional neural network (CNN),
and simply average these vectors to obtain a vector representation for the entire
template [5–8]. Verification then proceeds by comparing the template vectors
with some similarity metrics, e.g. cosine similarity. Rather than improve on this
simple combination rule, the research drives until now has been to improve the
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performance of the single image representation by more sophisticated training
losses, such as Triplet Loss, PDDM, and Histogram Loss [6, 7, 9–12]. This ap-
proach has achieved very impressive results on the challenging benchmarks, such
as the IARPA IJB-B and IJB-C datasets [13, 14].

However, this procedure of first generating a single vector per face, and then
simply averaging these, misses out on potentially using more available informa-
tion in four ways:

First, viewpoint conditioned similarity – it is easier to determine if two faces are
of the same person or not when they have a similar pose and lighting. For
example, if both are frontal or both in profile, then point to point comparison
is possible, whereas it isn’t if one is in profile and the other frontal;

Second, local landmark comparison – to solve the fine-grained problem, it is
essential to compare discriminative congruent ‘parts’ (local regions of the
face), such as, an eye with an eye, or a nose with a nose.

Third, within template weighting – not all images in a template are of equal
importance, the features derived from a low resolution or blurred face is
probably of less importance than the ones coming from a high-resolution
perfectly focussed face;

Fourth, between template weighting – what is useful for verification depends
on what is in both templates. For example, if one template has only profile
faces, and the second is all frontal apart from one profile instance, then it
is likely that the single profile instance in the second template is of more
importance than the frontal ones.

The simple average combination rule cannot take advantage of any of these
four, for example, unweighted average pooling ignores the difference in the
amount of information provided by each face image, and an aberrant image, such
as one that is quite blurred, can have a significant effect (since most blurred face
images look similar).

In this paper, we introduce a Deep Comparator Network (DCN), a network
architecture designed to compare pairs of templates (where each template can
contain an arbitrary number of images). The model consists of three modules:
Detect, Attend and Compare, as illustrated in Figure 1, that address the four re-
quirements above: in the Detect module, besides the dense feature representation
maps, multiple discriminative landmark detectors act on each input image and
generate the score maps; the Attend module normalizes the landmark responses
over the images within template, and output multiple landmark specific feature
descriptors by using image specific weighted average pooling on the feature maps,
finally, the Compare module compares these landmark specific feature vectors
between the two templates, and aggregates into one vector for final similarity
prediction. The DCN is trained end-to-end for the task of template verification.
The network is described in detail in § 3.

As a second contribution we introduce an idea from the instance retrieval
literature to face template verification. Large scale instance retrieval systems
achieved superior results by proceeding in two stages: given a query image, im-
ages are first retrieved and ranked using a very efficient method, such as bag
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Fig. 1. Top: overview of the Deep Comparator Network (DCN)
Bottom: functionality of the individual modules, namely, Detect, Attend, Compare.
Each of the two towers in the DCN, is able to take a template (with an arbitrary
number of images) as input. Each image is fed into the shared Detect module and
outputs a feature map, as well as multiple discriminative landmark score maps. In
the Attend module, landmark score maps (predicted from the same filter on different
input images) are first re-calibrated within the template, then landmark specific feature
vectors for each template are obtained by weighted average pooling on the feature
maps. In the Compare module, landmark specific feature vectors between the two
templates are compared with local “experts” (parametrized as fully connected layers),
and aggregated into one vector for final similarity prediction.
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of visual words; then, in a second stage, the top k images are re-ranked using a
more expensive method, such as geometric consistency with the query [15, 16].
Since image classification models can be trained very efficiently nowadays, we
repurpose this re-ranking idea for template verification as follows: during train-
ing, we employ a standard image-wise classification model for sampling the hard
template pairs. This is described in § 4, together with other training details, such
as the training set and loss functions. In § 5, we report the verification perfor-
mance of the DCN on the challenging IARPA Janus face recognition benchmarks
– IJB-B [13] and IJB-C [14]. In both datasets, the DCN is able to substantially
outperform the previous state-of-the-art methods.

2 Related work

In this section we review the work that has influenced the design of the DCN.
Multi-column architectures. Recent works [17–19] extend the traditional
image-wise architectures to multi-columns, where the models are designed to
take a set of images as inputs, and produce a single vector representation for the
entire template. The model is trained to fuse useful information from multiple in-
puts by a weighting based on the image “quality”; for instance, high-resolution,
frontal faces are weighted more than those under extreme imaging conditions
or poses. However, these models still encode the entire template with one vec-
tor. They cannot tackle the challenge of local landmark comparison and between
template weightings.
Face recognition based on part representations. Several previous works
proposed to use part-based representation for a the face image or tacks. In [20],
the face image is densely partitioned into overlapping patches at multiple scales,
and each of the patches is represented by local features, such as Local Binary
Pattern (LBP) or SIFT, then represented as a bag of spatial-appearance features
by clustering. In [21], the Fisher Vector (FV) encoding is used to aggregate local
features across different video frames to form a video-level representation.
Attention models. Attention models have been successfully used in machine
translation [22], multiple object recognition [23], and image captioning [24].
In [25], the authors propose to extract part-based feature representations from a
single input image with attention, and perform fine-grained classifications with
these part specific representations. In general, the idea of these attentional pool-
ing can be seen as a generalization of average or max pooling, where the spa-
tial weights are obtained from a parametrized function (usually a small neural
network) mapping from input image to an attention mask. Apart from soft at-
tention, [26] proposed the Spatial Transformer Networks (STNs) that allows to
learn whichever transformation parameters best aid the classification task. Al-
though no ground truth transformation is specified during training, the model
is able to attend and focus on the object of interest.
Relation/co-occurrence learning. In [27], in order to perform spatial re-
lational reasoning, the features at every spatial location are modelled with the
features at every other location. To model the co-occurence statistics of features,
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e.g. “brown eyes”, a bilinear CNN [28] was proposed for fine-grained classifica-
tion problems, the descriptor of one image is obtained from the outer product of
the feature maps. As for few-shot learning, in [29], the authors propose to learn
a local similarity metric with a deep neural network. As an extension, [30] exper-
iments with models with more capacity, where the feature maps of images (from
a support set and test set) are concatenated and passed to a relation module for
similarity learning. Similarly, in this paper, we parameterize local “experts” to
compare the feature descriptors from two templates.

3 Deep Comparator Networks

We consider the task of template-based verification, where the objective is to
decide if two given templates are of the same object or not. Generally, in verifi-
cation problems, the label spaces of the training set and testing set are disjoint.
In the application considered here, the images are of faces, and the objective is
to verify whether two templates show the same person or not.

From a high-level viewpoint, Deep Comparator Network (DCN) focus on the
scenario that two templates (each has an arbitrary number of images) are taken
as inputs, and trained end-to-end for template verification (as shown in Figure 1).
We first overview the function of these modules: Detect, Attend and Compare,
then give more details of their implementation. The detailed architectures for
the individual modules are given in the Supplementary Material.

The Detect module is shared for each input image, dense feature maps and
attention maps for multiple discriminative parts are generated for each image.
In the face recognition literature, these discriminative parts are usually termed
“landmarks”, we will use this term from here on. Note that, the implicitly in-
ferred landmarks aim to best assist the subsequent template verification task,
they may not follow the same intuitions as human defined facial landmarks,
e.g. mouth, nose, etc. Ideally, given a template with multiple images in various
poses or illuminations, the landmark filters can be sensitive to different facial
parts, viewpoints, or illuminations, e.g. one may be sensitive to the eyes in a
frontal face, one may be more responsive to a mouth in a profile face. The De-
tect module acts as the base for fulfilling template comparison conditioned on
viewpoints/local landmarks.

The Attend module achieves the within template weighting with an internal
competition mechanism, and pools out multiple landmark-specific feature de-
scriptors from each template. Given a template with multiple images, we hope
to emphasize the feature representations from the relatively high quality images,
while suppressing the lower ones. To achieve this, we normalize the attention
score maps (inferred from different samples with the same landmark filter) into
a probability distribution Consequently, multiple landmark specific feature de-
scriptors are calculated by attending to the feature maps with image specific
attentional masks (and it is assumed that high quality images will score more
highly than aberrant ones, e.g. blurry images). Therefore, the contribution of
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aberrant images is suppressed, and viewpoint factors and facial parts are de-
composed and template-wise aligned.

Finally, we use the Compare module to achieve the between template weight-
ing. The template-wise verification is reformulated as the comparison condi-
tioned on both global and local regions (i.e. landmarks), votings from the local
“experts” are aggregated into one vector for the final similarity prediction.

3.1 Detect

The Detect module takes an image as input, and generates an intermediate dense
representation with multiple (K) landmark score maps. Formally, we parametrize
the module as a standard ResNet (ψ(·; θ1)) shared by n images (Figure 2 shows
an example where n = 3):

[F1, F2, ..., Fn, A1, A2, ..., An] = [ψ(I1; θ1), ψ(I2; θ1), ..., ψ(In; θ1)] (1)

each input image is of size I ∈ RW×H×3, the output dense feature representa-
tion map F ∈ R

W

8
×

H

8
×C , and a set of attention maps A ∈ R

W

8
×

H

8
×K , where

W,H,C,K refer to the width, height, channels, and the number of landmark
score maps respectively. A global score map is also obtained by a max over the
local landmark score maps.

. . .

. . .

. . .

Fig. 2. The detect module. For each input image the detect module generates an
intermediate feature map (F ′s), K landmark attention maps (A′s), and a global map
(obtained by applying a max on the A′s channel dimension). In this example there are
three input images and three of the K landmark attention maps are shown. .

Ideally, the local score maps for each image should satisfy two conditions,
first, they should be mutually exclusive (i.e. at each spatial location only one
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landmark is activated); second, the scores on the maps should positively correlate
with image quality, i.e. the response of a particular landmark filter should be
higher on high-resolution frontal images than on low-resolution frontal images.

3.2 Attend

Re-calibration (Internal Competition). Given the feature maps and landmark
score maps for each input image, cross-normalization is used among the score
maps within same template for re-calibration. Based on the “quality” of images
within the template, the score maps (from different images within a single tem-
plate) that localize same landmark are normalized as a distribution of weight-
ings. Therefore, no matter how many images are packed into a template, the
outputted attention maps in the same column always add up to 1.0 (Figure 1).
Formally, for every n ∈ [1, N ] and k ∈ [1,K]:

An..k =
exp(An..k)

∑

nij

exp(Anijk)
(2)

Attentional Pooling. With the re-calibrated attention maps for each input image,
we next attend to the spatial locations and compute local representations by the
Hadamard Product. Formally, for each of the input image (n ∈ N), with the
feature map as Fn, and one set of attention maps An,

Vk =
∑

nij

Fnij: ⊙Anijk for k ∈ [1 : K + 1] (3)

Therefore, for each input template, we are able to calculateK+1 feature descrip-
tors (K landmark specific descriptors, “1” global feature descriptor), with each
descriptor representing either one of the facial landmarks or global information.

3.3 Compare

Up to this point, we have described how to pool K + 1 feature vectors from
the single template. In this module, we compare these descriptors in pairs be-
tween two different templates. In detail, the landmark-specific descriptors from
two templates are first L2 normalized, and concatenated along with an one-hot
encoded landmark identifier. Each concatenated vector is the input to a local
“expert” parametrized by the fully connected (FC) layers [27]. Overall, the lo-
cal experts are responsible for comparing the landmark-specific descriptors from
different templates.

Formally, we learn a similarity function y = C(x; θ2), where x = [V1k : V2k :
IDone-hot], as shown in Figure 1. After passing through the fully connected layers,
the feature representations given by local “experts” are max pooled, and fused
to provide the final similarity score.
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Discussion. Unlike the approaches of [28, 27], where features at every spatial
location are compared with those at every other location, the compare mod-
ule here only compares the descriptors that encode the same landmark region,
e.g. frontal mouth to frontal mouth. By attaching the landmark identifier (the
one-hot indicator vector), the fully connected layers are able to specialize for
individual landmark. At a high level, leveraging multiple local experts in this
way is similar to the use of multiple components (for different visual aspects) in
the deformable part model (DPM) [31].

4 Experimental details

4.1 VGGFace2 Dataset

In this paper, all models are trained on the training set of large-scale VGGFace2
dataset [5], which has large variations in pose, age, illumination, ethnicity and
profession (e.g. actors, athletes, politicians).

4.2 Landmark Regularizers

In the Attend module, the landmark score maps can be considered as a gen-
eralization of global average pooling, where the spatial “weights” are inferred
implicitly based on the input image. However, in the Detect module, there is
nothing to prevent the network from learning K identical copies of the same
landmark, for instance, it can learn to always predict the average pooling mask,
or detect the eyes, or given a network with large enough receptive field, it can al-
ways pinpoint the centre of the image. To prevent this, we experiment with two
different types of landmark regularizers: a diversity regularizer (unsupervised
learning) and a keypoints regularizer (supervised learning).

Diversity Regularizer [32]. In order to encourage landmark diversity, the most
obvious approach is to penalize the mutual overlap between the score maps of
different landmarks. Each of the landmark score maps is first self-normalized
into a probability distribution (p’s) by using the softmax (Eq 4),

pnijk =
exp(Anijk)

∑

ij exp(Anijk)
(4)

where n, i, j, k refer to the image index within the template, width, height, num-
ber of attention maps respectively.

Ideally, if all K landmarks are disjoint from each other, by taking the max
projection of these normalized distribution, there should be exactly K land-
marks, and they should sum to K.

Lreg = nK −
∑

nij

max
k=1,..,K

pnijk (5)

Note here, this regularizer is zero only if the activations in the different normal-
ized landmark score maps are disjoint and exactly 1.0.
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Keypoints Regularizer. Benifiting from the previous fruitful research in facial
keypoint detection, we obtain pseudo groundtruth landmarks from pre-trained
keypoint detectors. Although the predictions are not perfect, we conjecture that
they are sufficiently accurate to guide the network training at the early stages,
and, as the training progresses, the regularizer weights is scheduled to decay,
gradually releasing the parameter search space. As preprocessing, we predict 5 fa-
cial keypoints (Figure 3) over the entire dataset with a pre-trained MTCNN [33],
and estimate three face poses by thresholding angle ratios.1

Fig. 3. Facial landmark detection for VGGFace2 images.
Face poses are quantized into three categories based on the ration α/θ. Left-facing
profile : α/θ < 0.3, right-facing profile: α/θ > 3.0, frontal face: α/θ ∈ [0.3, 3.0]

Similar to the diveristy regularizer, the inferred landmark score maps are also
self-normalized first (Eq 4), L2 loss between the prediction (p) and the pseudo
groundtruth (p̂) is applied as auxiliary supervision. Note that, given each face
image belongs to only one of the three poses, only 4 of the 12 landmark maps
are actually useful for supervising an individual image.

Lreg =











∑

nij
1

2
(pnijk − p̂nijk)

2 for k in {pose-specific keypoints}

0

(6)

To make the experiments comparable, in both experiments, we use K = 12
landmark score maps in the Detect module.

4.3 Loss Functions

The proposed comparator network is trained end-to-end by optimizing three
types of losses simultaneously: first, template-level identity classification loss,
using a global feature representation obtained by attentional pooling with the
re-calibrated global maps (refer to Figure 2); second, a standard classification
loss (2 classes) on the similarity prediction from the Compare module; third, a
regularization loss from the landmark score maps in the Detect module.

L = α1(Lcls1 + Lcls2) + α2Lsim + α3Lreg (7)

1 In our training, we only use 4 facial landmarks, left-eye, right-eye, nose, mouth. The
mouth landmarks are obtained by averaging the two landmarks at mouth corners.
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where α1 = 2.0, α2 = 5.0 refer to the loss weights for classification and similar-
ity prediction, α3 refers to the weights for regularizer, which was initialized as
30.0 and decayed by half every 60, 000 iterations. Note that, α3 is scheduled to
decrease, thus, even for the training with the keypoints regularizer, the auxil-
iary supervision only guides the network training in early stages. Thereafter, the
classification and verification loss will dominate the training of these landmark
localizations.

4.4 Hard-sample Mining

In order to train the Comparator Network for re-ranking, we need a method to
sample hard template-template pairs. Here we described the procedure for this.
The key idea is to use the features generated by a standard ResNet-50 trained
for face image classification (on the VGGFace2 training set) to approximate the
template descriptor, and use this approximate template descriptor to select hard
template pairs.

In detail, the template-level descriptors are obtained by averaging the fea-
ture vectors (pre-computed from ResNet-50) of 3 images and L2-normalized.
The selection of hard template pairs is then integrated into the training of the
comparator network. At each iteration 256 identities are randomly sampled, and
used to create 512 templates with 3 images in each template (i.e. two templates
for each identity). In total, there are 256 positive template pairs, and a large
number of negative pairs.

(a) Confusion matrix (b) Sampling histogram

Fig. 4. Sampling strategy based on the pre-trained single-image classification networks.
Larger values refer to more difficult template pairs.

By calculating the cosine similarity between different pairs of templates, we
generate a 512 × 512 similarity matrix Ms for the template-to-template ver-
ification, where small values refer to the predicted dissimilar pairs from the
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pre-trained ResNet50. We further define the verification difficulty matrix as:

d = |groundtruth−Ms| (8)

where groundtruth label is either 0 (dissimilar) or 1 (similar). Therefore, in the
difficulty matrix, small values refer to the easy sample pairs, and large values
refer to the difficult samples.

4.5 Training details

We train the entire Comparator Network end-to-end from scratch on the VG-
GFace2 dataset, detailed architecture description can be found in Supplemen-
tary Material. During training, the shorter side of the input image is resized
to 144, while the long side is center cropped, making the input images 144× 144
pixels with the face centered, and 127.5 is subtracted from each channel. In each
tower, 3 images are packed as a template input. Note that, there is a probabil-
ity of 20% that the 3 images within one template are identical images2. In this
case, the Comparator Network become equivalent to training on single image.
Data augmentation is operated separately for each image with probability of
20%, including flipping, gaussian blur, motion blur, monochrome transforma-
tion. Adam [34] is used for optimization with an initial learning rate of 1e−4,
and mini-bateches of size 64, with equal number of positive and negative pairs.
The learning rate is decreased twice with a factor of 10 when errors plateau.
Note that, although the batch size is small, the network is actually seeing 64× 6
images every training step. Also, although the network is only trained with 3
images per tower, at test time it can be applied to any number of images per
template.

Note, an alternative is to use a pre-trained face network, e.g. a ResNet-
50 [5], as this considerably accelerates the training, compared to end-to-end
training, with almost negligible loss in performance. In detail, the Detect module
is replaced with the pre-trained ResNet-50; the landmark-conditioned descriptors
are computed from the last layer of the conv3 block (1/8 of the input spatial
resolution); and the global descriptor comes from the last layer (average pooled
vector).

5 Results

We evaluate all models on the challenging IARPA Janus Benchmarks, where all
images are captured from unconstrained environments and show large variations
in viewpoints and image quality. In contrast to the traditional closed-world clas-
sification tasks [1–3], verification is an open-world problem (i.e. the label spaces
of the training and test set are disjoint), and thus challenges the capacity and
generalization of the feature representations. All the models are evaluated on the

2 This guarantees a probability of 64% that both templates contain 3 different images,
and a probability of 36% that at least one template contains 3 identical image.
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standard 1:1 verification protocol (matching between the Mixed Media probes
and two galleries), the performance is reported as the true accept rates (TAR) vs.
false positive rates (FAR) (i.e. receiver operating characteristics (ROC) curve).

IJB-B Dataset [13] The IJB-B dataset is an extension of IJB-A [35], having
1, 845 subjects with 21.8K still images (including 11, 754 face and 10, 044 non-
face) and 55K frames from 7, 011 videos.

1:1 Verification TAR
Model FAR=1E − 4 FAR=1E − 3 FAR=1E − 2 FAR=1E − 1

Whitelam et al. [13] 0.540 0.700 0.840 −−

Navaneeth et al. [36] 0.685 0.830 0.925 0.978

ResNet50 [5] 0.784 0.878 0.938 0.975

SENet50 [5] 0.800 0.888 0.949 0.984

ResNet50+SENet50 0.800 0.887 0.946 0.981

MN-v [19] 0.818 0.902 0.955 0.984

MN-vc [19] 0.831 0.909 0.958 0.985

ResNet50+DCN(Kpts) 0.850 0.927 0.970 0.992

ResNet50+DCN(Divs) 0.841 0.930 0.972 0.995

SENet50+DCN(Kpts) 0.846 0.935 0.974 0.997

SENet50+DCN(Divs) 0.849 0.937 0.975 0.997

Table 1. Evaluation on 1:1 verification protocol on IJB-B dataset. (Higher is better)
Note that the result of Navaneeth et al. [36] was on the Janus CS3 dataset.
DCN(Divs) : Deep Comparator Network trained with Diversity Regularizer
DCN(Kpts): Deep Comparator Network trained with Keypoints Regularizer.

IJB-C Dataset [14] The IJB-C dataset is a further extension of IJB-B, having
3, 531 subjects with 31.3K still images and 117.5K frames from 11, 779 videos.
In total, there are 23124 templates with 19557 genuine matches and 15639K
impostor matches.

1:1 Verification TAR
Model FAR=1E − 4 FAR=1E − 3 FAR=1E − 2 FAR=1E − 1

GOTS-1 [14] 0.160 0.320 0.620 0.800

FaceNet [14] 0.490 0.660 0.820 0.920

VGG-CNN [14] 0.600 0.750 0.860 0.950

ResNet50 [5] 0.825 0.900 0.950 0.980

SENet50 [5] 0.840 0.910 0.960 0.987

ResNet50+SENet50 [5] 0.841 0.909 0.957 0.985

MN-v [19] 0.852 0.920 0.965 0.988

MN-vc [19] 0.862 0.927 0.968 0.989

ResNet50+DCN(Kpts) 0.867 0.940 0.979 0.997

ResNet50+DCN(Divs) 0.880 0.944 0.981 0.998

SENet50+DCN(Kpts) 0.874 0.944 0.981 0.998

SENet50+DCN(Divs) 0.885 0.947 0.983 0.998

Table 2. Evaluation on 1:1 verification protocol on IJB-C dataset. (Higher is better)
Results of GOTS-1, FaceNet, VGG-CNN are read from ROC curve in [14].
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(a) ROC for IJB-B (Higher is better) (b) ROC for IJB-C (Higher is better)

Fig. 5. ROC curve of 1:1 verification protocol on IJB-B & IJB-C dataset.

5.1 Discussion

Three phenomena can be observed from the evaluation results: first, comparing
with the previous state-of-the-art model [5], the DCN trained by re-ranking
can boost the performance significantly on both IJBB and IJBC (about 4− 5%,
which is a substantial reduction in the error); second, although the ResNet50 and
SENet50 are designed differently and trained separately, ensembles of them do
not provide any benifit. This shows that the difficult template pairs for ResNet50
remains difficult for another more powerful SENet50, indicating that the different
models trained on single image classification are not complementary to each
other; while in contrast, the DCN can be used together with either ResNet50
or SENet50 to improve the recognition system; third, the performance of DCN
trained with different regularizers are comparable to each other, showing that
groundtruth of facial keypoints is not critical in training DCN.

5.2 Visualization

Figure 6 shows the attention maps for a randomly sampled template that con-
tains multiple images with varying poses. Visualizing the maps in this way makes
the models interpretable, as it can be seen what the landmark detectors are con-
centrating on when making the verification decision. The Detect module has
learnt to pinpoint the landmarks in different poses consistently, and is even
tolerant to some out-of-plane rotation. Interestingly, the landmark detector ac-
tually learns to localize the two eyes simultaneously; we conjecture, that this is
due to the fact that human faces are approximately symmetric, and also during
training, the data is augmented with horizontal flippings.

6 Conclusion

We have introduced a new network that is able to compare templates of images
and verify if they match or not. The network is very flexible, in that the number
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Fig. 6. Predicted facial landmark score maps after self-normalizing for three of the
landmark detectors. Additional examples are given in the supplementary material.
1st row : raw images in the template, faces in a variaty of poses are shown from left
to right; 2nd,4th,6th row : self-normalized landmark score maps (attention maps); 3rd,
5th, 7th row : images overlayed with the attention maps.

of images in each template can be varied at test time, it is also opportunistic in
that it can take advantage of local evidence at test time, such as a specific facial
features like a tattoo or a port-wine stain that might be lost in a traditional
single tower per face encoding. Its performance substantially improves the state-
of-the-art on the recent and very challenging IJB benchmarks.

Although we have used face templates in this work, the Comparator Network
could be applied directly to person re-id, where often sets are available, and
also potentially could be applied to other fine-grained classification tasks, e.g.
to determine the species of a bird or flower from multiple images of the same
instance.
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