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Abstract. In this paper, we propose Transductive Semi-Supervised Deep
Learning (TSSDL) method that is effective for training Deep Convolu-
tional Neural Network (DCNN) models. The method applies transduc-
tive learning principle to DCNN training, introduces confidence levels on
unlabeled image samples to overcome unreliable label estimates on out-
liers and uncertain samples, and develops the Min-Max Feature (MMF)
regularization that encourages DCNN to learn feature descriptors with
better between-class separability and within-class compactness. TSSDL
method is independent of any DCNN architectures and complementary
to the latest Semi-Supervised Learning (SSL) methods. Comprehensive
experiments on the benchmark datasets CIFAR10 and SVHN have shown
that the DCNN model trained by the proposed TSSDL method can
produce image classification accuracies compatible to the state-of-the-
art SSL methods, and that combining TSSDL with the Mean Teacher
method can produce the best classification accuracies on the two bench-
mark datasets.

Keywords: Transductive Semi-Supervised Deep Learning (TSSDL), Min-
Max Feature (MMF) regularization, Deep Convolutional Neural Network
(DCNN), confidence levels.

1 Introduction

To date, Deep Convolutional Neural Networks (DCNNs) have shown state-of-
the-art performances in numerous computer vision applications, such as im-
age classification [1–5], object detection [6, 7], face recognition [8–10], image re-
trieval [11–14], etc. One of the main driving forces of these great accomplish-
ments is the availability of large scale image datasets that contain millions of
labeled training samples. However, creating a large scale, high quality training
set by human labeling is very time-consuming, expensive, or even prohibitive
(e.g. training set for image semantic segmentation). On the other hand, there
are an unlimited number of unlabeled images on the Internet, which can be
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easily obtained by web crawlers and search engines. In recent years, there have
been increased research efforts that employ Semi-Supervised Learning (SSL) ap-
proaches to train DCNNs with both labeled and unlabeled image samples. Such
research efforts have a great potential to dramatically reduce the cost of training
DCNN models with high performance accuracies.

Many traditional SSL methods are based on the so-called label propaga-
tion approach [15–18], which measures similarities between training samples,
and propagates labels of labeled samples to nearby unlabeled ones. Another line
of research works are known as Transductive Semi-Supervised Learning (TSS-
L) [19–23], in which labels of unlabeled samples are treated as variables, and
are determined through the iterative training process. At the end of the training
process, a classifier is learned from both the labeled and unlabeled training sam-
ples. As additional unlabeled samples are used for training, classifiers generated
by SSL and TSSL methods usually outperform their counterparts generated by
supervised learning methods given the same amount of labeled training samples.

There are two common problems associated with the traditional SSL and
TSSL methods. First, these methods generally require high-quality feature de-
scriptors to measure the similarity distances among the training samples from
the very beginning of the training process. This requirement makes them diffi-
cult to be applied to DCNN training, because feature descriptors generated by a
DCNN model are of low quality at early training stages, and improve gradually
along the iterative training process. Second, traditional SSL and TSSL methods
treat every unlabeled sample equally, which makes the model learning process
vulnerable to outliers and uncertain data samples. This problem will become
more severe for training DCNNs, because initial feature descriptors generated
by DCNNs are of low quality and unstable, which may mislead the training
process into a wrong direction.

Recent research works [24–28] have explored supervisory information from
unlabeled image samples by adding different perturbations to each image, and
enforcing the label consistency between different perturbed versions of the image.
The temporal ensembling (TempEns) work [25] enhances the perturbation-based
methods by maintaining an Exponential Moving Average (EMA) of label pre-
dictions on each training sample, and penalizing the prediction of the network-
in-training which is inconsistent with the corresponding EMA prediction. The
Mean Teacher method [26] further improves TempEns by using EMA on DC-
NN model weights instead of label predictions. These two latest methods have
achieved state-of-the-art image classification accuracies in the SSL field.

In this paper, we propose a novel Transductive Semi-Supervised Deep Learn-
ing (TSSDL) method that is effective for training DCNN models. The proposed
TSSDL method is comprised of three major components. First, we extend the
traditional TSSL methods to make it applicable to DCNN training. We also
treat the labels of unlabeled samples as variables, and try to determine their
optimal labels together with the optimal DCNN parameter set by minimizing
the proposed loss function through the iterative training process. To the best
of our knowledge, this is the first attempt in the literature to apply the trans-
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ductive learning principle to DCNN model training. Second, to overcome the
problem that low-quality feature descriptors generated by the DCNN model at
early training stages may mislead the training process into a wrong direction, we
introduce the confidence level ri for each unlabeled sample Xi, which indicates
how reliable is the label vector yi of Xi predicted by the current version of DCN-
N model. ri is computed based on the assumption that yi will be more reliable if
Xi is located in densely populated regions, and vice versa. This is because label
predictions for unlabeled samples in densely populated regions tend to be more
accurate than those in sparsely populated ones. Third, we develop the Min-Max
Feature (MMF) regularization that enforces features learned by the DCNN mod-
el to have the following properties: If two images possess the same label, then
the distance between their feature descriptors must be minimized; otherwise,
the distance must be larger than a predefined margin. The MMF regularization
can be considered as an important extension to the traditional label propagation
methods which mandates not only that images with the same label be close to
each other in the feature space, but also that images with different labels be
separated from each other by a predefined margin. These two mandates serve to
force the DCNN model to learn better feature descriptors from the given labeled
and unlabeled training samples.

The proposed TSSDL method is independent of any DCNN architectures,
and is complementary to the latest SSL methods. Comprehensive experimental
evaluations on the benchmark datasets CIFAR10 and SVHN have shown that
the DCNN model trained by the proposed TSSDL method can produce image
classification accuracies that are compatible to the state-of-the-art SSL methods,
and that combining TSSDL with the Mean Teacher method can produce the best
classification accuracies on the two benchmark datasets.

To sum up, our main contributions include:

– We extend the traditional TSSL methods to make it applicable to DCNN
model training.

– We introduce the confidence level for each unlabeled sample to discount
influences from outliers and uncertain samples.

– We develop the MMF regularization to make the DCNN model learn feature
descriptors such that images with the same label will be close to each other
in the feature space, and that images with different labels will be separated
by a predefined margin.

The remaining of this paper is organized as follows: Section 2 reviews relat-
ed works. Section 3 describes our method. Section 4 presents the experimental
evaluations and analysis, and Section 5 concludes our work.

2 Related Work

In the past, many semi-supervised learning (SSL) methods [19, 20, 29–32] have
been proposed in the literature. A large group of traditional SSL methods are
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based on the label propagation approach, which infers labels for unlabeled sam-
ples by measuring similarities between training samples, and propagating labels
of labeled samples to nearby unlabeled ones.

Another line of research works are known as Trasductive Semi-Supervised
Learning (TSSL) [19–22]. The key characteristic of TSSL is that labels of unla-
beled samples are viewed as optimization variables, and are iteratively updated
in the training process. As the learning proceeds, predicted labels of unlabeled
samples become more consistent among themselves, and with labels of labeled
samples.

Traditional SSL and the TSSL methods assume that feature descriptors of
training samples are known and fixed, and their performance accuracies are high-
ly dependent on the quality of the provided feature descriptors. This requirement
makes them difficult to be applied to DCNN model training, because in deep
learning, feature descriptors are learned during the training process. They are
of low quality at early stages, and are gradually improved along the training
process.

In recent years, there have been increased research efforts to develop SSL
methods for DCNN model training. Some works use unlabeled data to pre-train
DCNN models in an unsupervised way, and then fine-tune the models on labeled
data [33–36]. Other works use unlabeled data in the entire training process in-
stead of just pre-training. For example, Hoffer et al. [37] used the regularization
term of entropy minimization to enforce that one sample is assigned to one class
to reduce the overlaps between different classes. Weston et al. [38] proposed
an unsupervised embedding for DCNN training. Kingma et al. [39] proposed
the deep generative models for SSL. Based on the expectation-maximization al-
gorithm, Papandreou et al. [39] developed a DCNN training method for SSL
semantic image segmentation. Abbasnejad et al. [40] proposed the infinite vari-
ational autoencoder for SSL. Haeusser et al. [41] proposed a SSL method by
association.

There also exist research studies [42–45] that use Generative Adversarial
Networks (GAN) to generate additional training samples by optimizing an ad-
versarial game between the discriminator and the generator. Samples generated
by GAN can be viewed as a kind of “data augmentation”.

A line of works more closely related to our method are the regularizations
of features learned by DCNNs. For example, Sajjadi et al. [46] proposed to
use perturbations (such as random data augmentation, dropout) on images to
learn robust features. Miyato et al. [27] proposed a virtual adversarial training
(VAT) method with the virtual adversarial loss, which improves the robustness
of the model’s predictions against adversarial perturbations. Rasmus et al. [47]
proposed a SSL method with ladder networks [48]. Π model [25] evaluates the
network twice for each training sample under two different i.i.d perturbations
at every iteration of the training process, and enforces the label predictions
on the two perturbed versions of the training sample to be consistent. Temporal
ensembling (TempEns) [25] enhances the Π model by maintaining an exponential
moving average (EMA) of label predictions on each training sample, and using it
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as the target prediction for the sample. It penalizes the prediction of the network-
in-training which is inconsistent with its corresponding target prediction. Mean
Teacher [26] further improves TempEns by using EMA on model weights instead
of label predictions. To date, TempEns and Mean Teacher have achieved the
state-of-the-art image classification accuracies in the SSL field.

However, the latest SSL methods described above only consider the perturba-
tions around each single data point, while ignore the relationships between data
points. In other words, these methods have not fully utilized the information,
such as the structural information in the unlabeled data. It is known that data
points belonging to the same class tend to form clusters. This has motivated us
to develop the MMF regularization to utilize the structural information among
unlabeled data points.

3 Methodology

3.1 Preliminaries

Let D = L
⋃

U be the entire training set, where L = {(Xi,yi)}
L
i=1, U =

{Xi}
L+U
i=L+1 denote the labeled and unlabeled sample sets, respectively, and Xi

is the ith training sample. If Xi ∈ L, then yi = [y1i , y
2
i , · · · , y

K
i ]⊤ ∈ {0, 1}K is

the corresponding one-hot ground-truth label vector, where yji = 1 if Xi belongs

to the jth class, and yji = 0 otherwise. K refers to the number of classes, L, U
are the numbers of labeled and unlabeled training samples, respectively. Usually
L≪ U . Let N = L+ U be the total number of training samples.

3.2 Transductive Semi-Supervised Deep Learning (TSSDL)

When training a DCNN model using a Supervised Learning (SL) method, the
typical loss function can be written as:

ℓSL(X ,Y; θ) =
L
∑

i=1

ℓ0(Xi,yi; θ) , (1)

where X = {Xi}
L
i=1, Y = {yi}

L
i=1, θ is the entire parameter set of the DCNN

model, and ℓ0(Xi,yi; θ) is the loss for sampleXi. Here, Y is the manually provid-
ed ground-truth label vector set for the training set X , and is fixed throughout
the entire training process. If the softmax loss is used, which is a popular choice
for most image classification tasks, then Eq. (1) can be rewritten as:

ℓSL(X ,Y; θ) =

L
∑

i=1

CEsoftmax(Wf(Xi; θ),yi), (2)

where f(Xi; θ) is the output of the DCNN’s penultimate layer for sample Xi,
which can be considered as the learned feature descriptors of Xi, and W is the
parameters of the last fully-connected layer of the DCNN. Here CEsoftmax(a,b) =
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Cross-Entropy(softmax(a),b). The goal is to learn an optimal parameter set θ∗

that minimizes the loss function: θ∗ = argminθ ℓ
SL(X ,Y; θ).

In contrast, the proposed TSSDL method uses the following loss function to
train a DCNN model:

ℓTSSDL(X , Ỹ; θ,R) =

N
∑

i=1

ri · CEsoftmax(Wf(Xi; θ), ỹi), (3)

where Ỹ = {ỹi}
N
i=1 is the estimated set of label vectors for the training set

X = {Xi}
N
i=1, and each element ri of R = {ri}

N
i=1 is the confidence level for

sample Xi, which indicates how reliable is the estimated label vector ỹi of Xi,
and is computed in a self-consistent way (to be explained below). If Xi ∈ L, ỹi

is fixed to its ground-truth label vector ỹi = yi throughout the entire training
process. For unlabeled training sample Xi ∈ U , ỹi is the estimate of its label
vector by the current version of the network, and is treated as an optimization
variable. As the transductive learning process progresses to its convergence, ỹi

gets iterative updates, and converges to the final predicted label vector for Xi.
The transductive learning process aims to learn optimal sets of θ∗, Ỹ∗ and R∗

that jointly minimize the loss function:

(Ỹ∗, θ∗,R∗) = arg min
Ỹ,θ,R

ℓTSSDL(X , Ỹ; θ,R) . (4)

It is noteworthy to point out that the proposed TSSDL method is different
from traditional Transductive Semi-Supervised Learning (TSSL) methods in the
following two aspects:

(1) Traditional TSSL methods require a fixed feature descriptor f(Xi) for each
training sample Xi, whereas the proposed TSSDL method keeps learning,
and gradually optimizes f(Xi) throughout the training process.

(2) Traditional TSSL methods treat every unlabeled sample Xi ∈ U equally,
which makes the learning process vulnerable to outliers and uncertain sam-
ples. In contract, the proposed TSSDL method introduces the confidence
level ri for each sample Xi to discount influences from those adverse sam-
ples.

We compute the confidence level ri for Xi as follows. For each labeled sample
Xi ∈ L, we always set its confidence level ri = 1. For each unlabeled sample
Xi ∈ U , we compute ri based on the intuition that: (i) outliers and highly uncer-
tain samples usually reside in sparsely populated areas in the feature space; and
(ii) samples located in densely populated areas are more likely to be assigned cor-
rect labels. Let {f1, · · · , fN} be the learned feature descriptors of {X1, · · · ,XN}
outputted by the current version of the DCNN model (i.e., fi = f(Xi; θ)). We
define the proximity value di for Xi as follows:

di =
∑

fj∈N (fi)

‖fi − fj‖2, (5)
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where N (fi) is the set of k-nearest neighbors (kNN) of fi. Clearly, a small di
corresponds to a sample Xi that is located in a densely populated region, and is
more likely to receive the correct label, and vice versa. Therefore, the confidence
level ri of Xi can be defined as:

ri = 1−
di

dmax

, dmax = max{d1, · · · , dN} . (6)

Note that each loop when the network parameter set θ is updated, the learned
feature descriptor set {f1, · · · , fN} will be changed. Therefore, we need to recom-
pute the confidence level set R = {ri}

N
i=1 using the renewed feature descriptors

after each loop of the training process.

3.3 Learning Robust Min-Max Features (RMMF)

Another main component of the proposed TSSDL method is to make the given
DCNN model learn the Robust Min-Max Features (RMMF) to further improve
the image classification accuracies. This goal is accomplished by adding two
regularization terms to the loss function Eq. (3), one for learning the Min-Max
Features, and the other for learning the Robust Features. The following part of
this section provides detailed descriptions of the two regularization terms.

The Min-Max Feature (MMF) regularization aims to accomplish such prop-
erties that in the learned feature space: (i) the distances of images within the
same class are minimized; and (ii) the distances of images between different
classes are larger than a predefined margin. Based on this statement, we can
define the MMF regularization term as follows:

RMMF(X , Ỹ; θ,R) =
N
∑

i,j=1

rirj
(

‖fi − fj‖
2δ(ỹi, ỹj)−min(0, ‖fi − fj‖

2 − h)(1− δ(ỹi, ỹj))
)

, (7)

where δ(ỹi, ỹj) = 1 if ỹi = ỹj , and 0 otherwise. h is the predefined margin, and
all other symbols have the same meanings as in Eq. (3).

As briefly explained in Section 2, the Robust Feature (RF) regularization
turns out to be useful for improving image classification accuracies [24, 25,
49]. The main idea is as follows: For each sample Xi, its two perturbed versions
Xi+ηi,Xi+η

′
i are generated by adding two different random data perturbations

ηi, η
′
i to Xi, and we require that the difference between the feature descriptors

of Xi + ηi,Xi + η′i be minimized. Translating this statement into equation, we
have:

RRF(X ; θ) =
N
∑

i=1

‖f(Xi + ηi; θ)− f(Xi + η′i; θ)‖
2 . (8)

Note that since Xi + ηi,Xj + η′i are the two perturbed versions of Xi, as they
pass forward along the DCNN with dropout enabled, the dropout for Xi + ηi is
mostly different from the dropout for Xi + η′i. Thus the perturbations include
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data augmentation and dropout within the network. This is a stronger effect and
leads to a stronger robustness.

In summary, by combining the above two regularization terms, we enforce
the DCNN model to learn the Robust Min-Max Features:

RRMMF(X , Ỹ; θ,R) = λ1R
MMF(X , Ỹ; θ,R) + λ2R

RF(X ; θ) , (9)

where λ1 and λ2 are the parameters to control the tradeoff between the two
terms. The overall loss function of the proposed TSSDL method takes the fol-
lowing form:

ℓTSSDL(X , Ỹ; θ,R) =

N
∑

i=1

ri · CEsoftmax(Wf(Xi; θ), ỹi) +RRMMF(X , Ỹ; θ,R).

(10)

3.4 Optimization of TSSDL Method

Next, we describe the optimization of the loss function Eq. (10). The entire
training algorithm for the proposed TSSDL method is shown in Algorithm 3.1.
In the following, we provide details of the Steps 4 and 5 in Algorithm 3.1,

Step 4. Fixing the network parameter θ and the confidence level set R, we
wish to obtain the optimal label vector set Ỹ. In fact, we only need to obtain the
optimal solution of ỹi for each unlabeled sample Xi, (i = L+1, · · · , N). For sim-
plicity without any confusion, we use yi instead of ỹi. Let pi = [p1i, p2i, · · · , pKi]
be the prediction score vector of imageXi (i.e., pi is the softmax normalization of
the output of the DCNN model’s last layer), where pji represents the prediction
score of image Xi on the jth class.

The relevant term in Eq. (10) is the first term, which can be expressed as:

∑

Xi∈U

ri · CEsoftmax(Wf(Xi; θ), ỹi) = − log
∏

Xi∈U

(

p
y1

i

1i p
y2

i

2i · · · p
yK
i

Ki

)ri
, (11)

where we express yi = [y1i , · · · , y
K
i ] in the component form. Clearly, different

data instances i decouple, thus the optimization for Eq. (11) becomes |U| inde-
pendent subproblems:

max
yi

log
(

p
y1

i

1i p
y2

i

2i · · · p
yK
i

Ki

)ri
(12)

Since ri ≥ 0, this optimization becomes:

max
y1

i
···yK

i

K
∑

k=1

yki log(pki) (13)

subject to

K
∑

k=1

yki = 1, yki ≥ 0 (14)
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Algorithm 3.1 Training algorithm for our proposed TSSDL method.

Input: Training set D = L
⋃

U , parameters λ1, λ2, the number of loops Tmax (we set
Tmax = 3).
Output: Network parameter set θ of the DCNN.

1: Train the DCNN on labeled data L using a supervised learning way.
2: for loop = 1 to Tmax do

3: Fixing θ, update the confidence level set R = {ri}
N

i=1 using Eq. (6).
4: Fixing θ and R, optimize Ỹ.
5: Fixing R and Ỹ, optimize θ on the entire training set D with the loss function

Eq. (10) using mini-batch based stochastic gradient descent from scratch, until
the trained DCNN has converged.

6: end for

The optimal solution to this problem is given by ysi = 1 if s = argmaxk pki,
ysi = 0 otherwise (s = 1, · · · ,K). Thus the optimal solution to Eq.(12) is given
by

{

ysi = 1 if s = argmaxk pki
ysi = 0 otherwise

(15)

In summary, the optimal solution to Step 4 is given by Eq.(15).
Step 5. This is the DCNN back-propagation (BP) algorithm using stochastic

gradient. The gradient of first term of Eq. (10) is computed in standard way.
The gradient of RRF is readily computed in terms of ∂fi

∂θ
. Gradient of RMMF can

be easily computed numerically: ∂RMMF

∂θ
=

∑N
i=1

∂RMMF

∂fi

∂fi
∂θ

and

∂RMMF

∂fi
=

N
∑

j=1

rirj2(fi − fj)
[

δ(ỹi, ỹj)− ψ(‖fi − fj‖
2 − h)(1− δ(ỹi, ỹj))

]

, (16)

where ψ(a) = 1 if a < 0. Otherwise ψ(a) = 0. ∂fi
∂θ

is part of the CNN back-
propagation, thus easily handled.

3.5 TSSDL Mean-Teacher (TSSDL-MT) Method

In our experiment, we also implemented a TSSDL variant that is the combination
of TSSDL and the Mean Teacher methods (TSSDL-MT in short) [26]. Its loss
function is defined as:

ℓTSSDL-MT(X , Ỹ; θ,R) =

N
∑

i=1

ri · CEsoftmax(Wf(Xi; θ), ỹi)+

λ1R
MMF(X , Ỹ; θ,R) + λ2

N
∑

i=1

‖f(Xi + ηi; θ)− f(Xi + η′i; θ
′)‖2 , (17)

where θ′t = αθ′t−1+(1−α)θt, α is an exponential moving average (EMA) param-
eter.The base model using θ is the student model, and θ′ is the teacher model.
The optimization of the TSSDL-MT method is similar to that of the TSSDL
method, and we abide by the same setting of α as that of [26].
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4 Experiments

4.1 Experimental Setups

We evaluate the proposed TSSDL method on two benchmark datasets CIFAR10 [50]
and SVHN [51]. We choose these two datasets because many recent SSL methods
also used them for performance evaluations, which makes it possible to compare
TSSDL with these methods. For fair comparison, we use the same 13-layer D-
CNN architecture, perturbations, and hyper-parameters (such as weight decay,
learning rate, drop ratio, etc) as the Π model [25] and the Mean Teacher mod-
el [26]. We conduct all the experiments using TensorFlow [52], and all the models
under comparisons are trained from scratch without pre-training. Based on our
experiments, we set the margin h = 1, λ1 = 10−3, λ2 = 100 for the TSSDL
model, and λ2 = 1 for the TSSDL-MT model.

To further reveal how the two regularization terms RMMF, RRF contribute
to the performance improvement, in addition to the TSSDL and TSSDL-MT,
we also implement the following four variants of the proposed TSSDL method:

– TDCNN: The network is trained without using the two regularization terms
RMMF and RRF.

– TMMF: The network is trained without using the regularization term RRF.

– TRF: The network is trained without using the regularization term RMMF.

– Fully Supervised: The network is trained using the standard fully supervised
training algorithm with the loss function ℓSL(X ,Y; θ) in Eq. (2) instead of
ℓTSSDL(X , Ỹ; θ,R) in Eq. (3).

4.2 Datasets

The details of the CIFAR10 [50] and SVHN [51] datasets, and their usages for
the experimental evaluations are explained as follows.

CIFAR10 dataset. It contains 10 classes of 60000 natural images, which are
split into 50000, 10000 images to form the training and test sets, respectively.
All the images are 32×32 RGB images. We followed the same training and
testing protocols as [26] in the experimental evaluations, where 1000, 2000, 4000,
and all the 50000 images (i.e., 100, 200, 400, and 5000 samples per class) are
selected from the training set as the labeled training samples, respectively, and
the remaining samples in the training set are used as the unlabeled training
samples.

SVHN dataset. It contains 73257 training and 26032 test images. All im-
ages are 32×32 RGB images. In each image, there can be multiple digits, but
the task is to recognize the digit in the image center. Again, following the same
training and testing protocols as [26], we select 250, 500, 1000 (i.e., 25, 50, 100
samples per class), and all the 73257 images from the training set as the labeled
training samples, respectively, and use the remaining samples in the training set
as the unlabeled ones in the experimental evaluations.
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Table 1. Top-1 error rates (%) on CIFAR10 test set, averaged over 10 runs.

Method
No. of labeled samples (L)

1000 2000 4000 50000 (all)

Ladder Networks [47] −− −− 20.40± 0.47 −−
Entropy [37] −− −− 20.3± 0.5 −−
GAN [42] 21.83± 2.01 19.61± 2.09 18.63± 2.32 −−
Sajjadi et al. [46] −− −− 11.29± 0.24 −−
VAT [27] −− −− 11.36 5.81
Π model [25] −− −− 12.36± 0.31 5.56± 0.10
TempEns [25] −− −− 12.16± 0.24 5.60± 0.10
Mean Teacher [26] 21.55± 1.48 15.73± 0.31 12.31± 0.28 5.94± 0.15

Fully Supervised [26] 46.43± 1.21 33.94± 0.73 20.66± 0.57 6.45± 0.15

TDCNN 32.67± 1.93 22.99± 0.79 16.17± 0.37 6.45± 0.15
TMMF 26.73± 1.11 17.48± 0.66 13.11± 0.33 5.80± 0.17
TRF 27.36± 1.30 18.02± 0.60 13.30± 0.27 6.16± 0.11
TSSDL 21.13± 1.17 14.65± 0.33 10.90± 0.23 5.20± 0.14

TSSDL-MT 18.41± 0.92 13.54± 0.32 9.30± 0.55 5.19± 0.14

4.3 Comparison to state-of-the-art Methods

Tables 1 and 2 report the experimental results of all the evaluated methods on
the CIFAR10 and SVHN test sets, respectively. The four data columns in the
righthand side of Table 1 correspond to the top-1 error rates of the respective
models trained using 1000, 2000, 4000, and all the labeled training samples in
the CIFAR10 training set, respectively, while the four data columns in Table 2
correspond to the top-1 error rates of the respective models trained using 250,
500, 1000, and all the labeled training samples in the SVHN training set, re-
spectively. All the results are averaged over 10 runs with different seeds for data
splits. The two tables also include the results of the state-of-the-art SSL methods
described in Section 2. We use the same abbreviations for these SSL methods as
in Section 2 to report their results. The experimental results in the two tables
can be summarized as follows.

– TSSDL and all its variants dramatically outperform the “Fully Supervised”
counterpart, proving that the proposed TSSDL method is effective for us-
ing the unlabeled samples to improve image classification accuracies of the
DCNN model.

– Compared with the baseline TDCNN, adding either the MMF or the RF
regularization terms to the loss function can remarkably reduce the error
rates on the two test sets.

– TMMF and TRF produce compatible error rates. Combining them together
(i.e., TSSDL) achieves the second best performance accuracies on CIFAR10
and compatible results on SVHN with the Mean Teacher method. This is
a strong evidence that the proposed MMRF regularization is quite effective
for making the DCNN model learn better feature descriptors for the image
classification task.
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Table 2. Top-1 error rates (%) on SVHN test set, averaged over 10 runs.

Method
No. of labeled samples (L)

250 500 1000 73257 (all)

GAN [42] −− 18.44± 4.8 8.11± 1.3 −−
VAT [27] −− −− 5.42 −−
Haeusser et al. [41] −− 6.25± 0.32 5.14± 0.17 3.09± 0.06
Π model [25] −− 6.65± 0.53 4.82± 0.17 2.54± 0.04
TempEns [25] −− 5.12± 0.13 4.42± 0.16 2.74± 0.06
Mean Teacher [26] 4.35± 0.50 4.18± 0.27 3.95± 0.19 2.50± 0.05

Fully Supervised [28] 42.65± 2.68 22.08± 0.73 14.46± 0.71 2.81± 0.07

TDCNN 22.90± 1.91 13.79± 1.24 8.77± 0.82 2.81± 0.07
TMMF 12.99± 1.02 7.23± 0.76 4.25± 0.33 2.30± 0.06
TRF 9.93± 1.15 6.83± 0.66 4.95± 0.26 2.65± 0.04
TSSDL 5.02± 0.26 4.32± 0.30 3.80± 0.27 2.42± 0.05

TSSDL-MT 4.09± 0.42 3.90± 0.27 3.35± 0.27 2.10± 0.07

Table 3. Top-1 error rates (%) on SVHN test set with extra unlabeled training data,
averaged over 10 runs. The number of labeled samples is 500. Nu = 73257− 500 is the
number of unlabeled samples in the original training set.

Method
No. of unlabeled samples

Nu Nu + 100000 Nu + 500000

TSSDL-MT 3.90± 0.27 2.96± 0.22 2.27± 0.09

– The TSSDL-MT method that combines TSSDL with the Mean Teacher
method remarkably outperforms all the methods under comparisons.

4.4 Increasing Extra Unlabeled Samples for SVHN

Tables 1 and 2 indicate that the proposed TSSDL method can effectively use
massive unlabeled training samples to improve image classification accuracies.
Here, we make an additional experiment on SVHN to test whether TSSDL can
achieve a better image classification accuracy by using more unlabeled training
samples. Apart from the original training set, SVHN also contains an extra set
of 531131 images. Similar to [26], we pick only 500 images from the original
training set as the labeled samples, and use the rest of the original training set
together with the entire extra set to form the pool of unlabeled samples. Let
Nu = 73257 − 500 be the number of unlabeled samples in the original training
set. We run experiments with TSSDL-MT by using 0, 100000, and 500000 extra
unlabeled samples (plus 500 labeled samples and Nu unlabeled samples in the
primary training set), respectively. Table 3 shows that: (i) TSSDL-MT does
further improve the classification accuracy by using extra unlabeled samples;
and (ii) the degree of improvement is positively related to the number of extra
unlabeled samples.
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(a) TDCNN (b) TMMF

(c) TRF (d) TSSDL

Fig. 1. Feature visualization of the CIFAR10 test set with (a) TDCNN, (b) TMMF,
(c) TRF and (d) TSSDL, respectively. Each dot in the figure corresponds to an image,
and different colors represent different classes.

4.5 Feature Visualization

We utilize t-SNE [53] to visualize the learned feature descriptors extracted by the
TDCNN, TMMF, TRF and TSSDL methods (L = 4000) on the CIFAR10 test
set, respectively (see Figure 1). It can be observed that: (i) feature descriptors
learned by TMMF are better than that of TDCNN, and (ii) feature descriptors
learned by TSSDL are the best in terms of between-class separability and within-
class compactness. This agrees with the evaluation results in Tables 1 and 2,
serving as another evidence for the effectiveness of the proposed TSSDL method.

4.6 Ablation Study

Table 4 lists the ablation study results on CIFAR10 and SVHN. It shows that
TSSDL without the confidence levels yields much worse results, especially when
the number of labeled samples (L) is small. Indeed, transductive learning togeth-
er with confidences are an inseparable combination for DCNN application. The
proposed TSSDL method is not a simple application of transductive learning
to DCNNs. Transductive learning relies on computing distances between feature
vectors. Traditional transductive learning requires fixed, high-quality features,
while with DCNN, features are of low quality at the beginning and evolve over
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Table 4. Top-1 error rates (%) on CIFAR10 and SVHN test sets.

Method
L for CIFAR10 L for SVHN

1000 2000 4000 250 500 1000

Fully Supervised 46.43 33.94 20.66 42.65 22.08 14.46

TSSDL-No confidence 50.38 35.67 18.10 46.74 19.10 10.10
TSSDL 21.13 14.65 10.90 5.02 4.32 3.80

time during training. We introduce confidence estimates on inferred labels to
avoid the training process from getting into a wrong direction. Table 4 shows
that the confidences play an essential role for successful transductive learning
application to DCNNs.

5 Conclusions

In this paper, we propose Transductive Semi-Supervised Deep Learning (TSS-
DL) method that is effective for training Deep Convolutional Neural Network
(DCNN) models. The method applies transductive learning principle to DCN-
N training, introduces confidence levels on unlabeled data samples to overcome
unreliable label estimates on outliers and uncertain samples, and uses the Min-
Max Feature (MMF) regularization that encourages DCNN to learn features of
same-class images be close, and features of different classes be separated by a
predefined margin. Extensive experiments on the benchmark datasets CIFAR10
and SVHN have shown that the DCNN model trained by the proposed TSSDL
method can produce image classification accuracies that are compatible to the
state-of-the-art SSL methods, and that combining TSSDL with the Mean Teach-
er method can produce the best classification accuracies on the two benchmark
datasets. Experiments (Tables 1, 2) show that as the number of labeled data
increase, TSSDL performance improves consistently. Experiments (Table 3) also
show that as number of unlabeled data increases while the number of labeled
data is fixed, TSSDL performance improves consistently. Feature visualization-
s (Figure 1) show that the Min-Max feature regularization enforces TSSDL to
learn feature descriptors with better between-class separability and within-class
compactness, thus better discriminative ability.
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