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Abstract. In a typical real-world application of re-id, a watch-list (gallery
set) of a handful of target people (e.g. suspects) to track around a large
volume of non-target people are demanded across camera views, and this
is called the open-world person re-id. Diferent from conventional (closed-
world) person re-id, a large portion of probe samples are not from target
people in the open-world setting. And, it always happens that a non-
target person would look similar to a target one and therefore would
seriously challenge a re-id system. In this work, we introduce a deep
open-world group-based person re-id model based on adversarial learn-
ing to alleviate the attack problem caused by similar non-target people.
The main idea is learning to attack feature extractor on the target peo-
ple by using GAN to generate very target-like images (imposters), and in
the meantime the model will make the feature extractor learn to tolerate
the attack by discriminative learning so as to realize group-based verii-
cation. The framework we proposed is called the adversarial open-world
person re-identiication, and this is realized by our Adversarial PersonNet
(APN) that jointly learns a generator, a person discriminator, a target
discriminator and a feature extractor, where the feature extractor and
target discriminator share the same weights so as to makes the feature
extractor learn to tolerate the attack by imposters for better group-based
veriication. While open-world person re-id is challenging, we show for
the irst time that the adversarial-based approach helps stabilize person
re-id system under imposter attack more efectively.

1 Introduction

Person re-identiication (re-id), which is to match a pedestrian across disjoint
camera views in diverse scenes, is practical and useful for many ields, such as
public security applications and has gained increasing interests in recent years
[3, 4, 6, 10, 11, 22, 34, 36, 37, 40, 42, 45]. Rather than re-identifying every person in
a multiple camera network, a typical real-world application is to re-identify or
track only a handful of target people on a watch list (gallery set), which is called
⋆ corresponding author
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Fig. 1: Overview of adversarial open-world person re-identiication. The goal for
the generator is to generate target-like images, while we have two discriminators
here. The person discriminator is to discriminate whether the generated images
are from source dataset (i.e. being human-like). And the target discriminator
is to discriminate whether the generated images are of target people. By the
adversarial learning, we aim to generate images beneicial for training a better
feature extractor for telling target person images apart from non-target ones.

the open-world person re-id problem [4,42,46]. While target people will reappear
in the camera network at diferent views, a large volume of non-target people,
some of which could be very similar to target people, would appear as well.
This contradicts to the conventional closed-world person re-id setting that all
probe queries are belonging to target people on the watch list. In comparison,
the open-world person re-id is extremely challenging because both target and
non-target (irrelevant) people are included in the probe set.

However, the majority of current person re-identiication models are designed
for the closed-world setting [6, 33, 36–38, 40, 43, 45] rather than the open-world
one. Without consideration of discriminating target and non-target people dur-
ing learning, these approaches are not stable and could often fail to reject a query
image whose identity is not included in the gallery set. Zheng et al. [42] con-
sidered this problem and proposed open-world group-based veriication model.
Their model is based on hand-crafted feature and transfer-learning-based metric
learning with auxiliary data, but the results are still far from solving this chal-
lenge. More importantly, the optimal feature representation and target-person-
speciic information for open-world setting have not been learned.

In this work, we present an adversarial open-world person re-identiication
framework for 1) learning features that are suitable for open-world person re-id,
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and 2) learning to attack the feature extractor by generating very target-like im-
posters and make person re-id system learn to tolerate it for better veriication.
An end-to-end deep neural network is designed to realize the above two objec-
tives, and an overview of this pipeline is shown in Fig. 1. The feature learning
and the adversarial learning are mutually related and learned jointly, meanwhile
the generator and the feature extractor are learned from each other iteratively
to enhance both the eiciency of generated images and the discriminability of
the feature extractor. To use the unlabeled images generated, we further incor-
porate a label smoothing regularization for imposters (LSRI) for this adversarial
learning process. LSRI allocates equal probabilities of being any non-target peo-
ple and zero probabilities of being target people to the generated target-like
imposters, and it would further improve the discrimination ability of the feature
extractor for distinguishing real target people from fake ones (imposters).

While GAN has been attempted in Person re-id models recently in [8,43,44]
for generating images adapted from source dataset so as to enrich the training
dataset on target task. However, our objective is beyond this conventional us-
age. By sharing the weights between feature extractor and target discriminator
(see Fig. 2), our adversarial learning makes the generator and feature extractor
interact with each other in an end-to-end framework. This interaction not only
makes the generator produce imposters look like target people, but also more
importantly makes the feature extractor learn to tolerate the attack by imposters
for better group-based veriication.

In summary, our contributions are more on solving the open-world chal-
lenge in person re-identiication. It is the irst time to formulate the open-world
group-based person re-identiication under an adversarial learning framework.
By learning to attack and learning to defend, we realize four progresses in a
uniied framework, including generating very target-like imposters, mimicking
imposter attacking, discriminating imposters from target images and learning
re-id feature to represent. Our investigation suggests that adversarial learning is
a more efective way for stabilizing person re-id system undergoing imposters.

2 Related Work

Person Re-Identiication: Since person re-identiication targets to identify
diferent people, better feature representations are studied by a great deal of
recent research. Some of the research try to seek more discriminative/reliable
hand-crafted features [10, 17, 22, 23, 25, 26, 37]. Except that, learning the best
matching metric [5, 6, 14, 18, 27, 33, 40] is also widely studied for solving the
cross-view change in diferent environments. With the rapid development of deep
learning, learning to represent from images [1,7,9,20] is attracted for person re-
id, and in particular Xiao et al. [38] came up with domain guided drop out model
for training CNN with multiple domains so as to improve the feature learning
procedure. Also, recent deep approaches in person re-identiication are found
to unify feature learning and metric learning [1,31,36,45]. Although these deep
learning methods are expressive for large-scale datasets, they tend to be resistless
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for noises and incapable of distinguishing non-target people apart from the target
ones, and thus becomes unsuitable for the open-world setting. In comparison,
our deep model aims to model the efect of non-target people during training
and optimize the person re-id in the open-world setting.

Towards Open-World Person Re-Identiication: Although the majority
of works on person re-id are focusing on the closed-world setting, a few works
have been reported on addressing the open-world setting. The work of Candela
et al. [4] is based on Conditional Random Field (CRF) inference attempting to
build connections between cameras towards open-world person re-identiication.
But their work lacks the ability to distinguish very similar identities, and with
some deep CNN models coming up, features from multiple camera views can be
well expressed by joint camera learning. Wang et al. [34] worked out an approach
by proposing a new subspace learning model suitable for open-world scenario.
However, group-based setting and interference defense is not considered. Also,
their model requires a large volume of extra unlabeled data. Zhu et al. [46]
proposed a novel hashing method for fast search in the open-world setting. How-
ever, Zhu et al. aimed at large scale open-world re-identiication and eiciency
is considered primarily. Besides, noiseproof ability is not taken into account.
The most correlated work with this paper is formulated by Zheng et al. [41,42],
where the group-based veriication towards open-world person re-identiication
was proposed. They came up with a transfer relative distance comparison model
(t-LRDC), learning a distance metric and transferring non-target data to target
data in order to overcome data sparsity. Diferent from the above works, we
present the irst end-to-end learning model to unify feature learning and verii-
cation modeling to address the open-world setting. Moreover, our work does not
require extra auxiliary datasets to mimic attack of imposters, but integrates an
adversarial processing to make re-id model learn to tolerate the attack.

Adversarial Learning: In 2014, Szegedy et al. [32] have found out that tiny
noises in samples can lead deep classiiers to mis-classify, even if these adver-
sarial samples can be easily discriminated by human. Then many researchers
have been working on adversarial training. Seyed-Mohsen et al. [28] proposed
DeepFool, using the gradient of an image to produce a minimal noise that fools
deep networks. However, their adversarial samples are towards individuals and
the relation between target and non-target groups is not modelled. Thus, it does
not well it into the group-based setting. Nicolas Papernot et al. [29] formu-
lated a class of algorithms by using knowledge of deep neural networks (DNN)
architecture for crafting adversarial samples. However, rather than forming a
general algorithm for DNNs, our method is more speciic for group-based per-
son veriication and the imposter samples generated are more efective to this
scenario. Later, SafetyNet by Lu et al. [24] was proposed with an RBF-SVM
in full-connected layer to detect adversarial samples. However, we perform the
adversarial learning at feature level to better attack the learned features.
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3 Adversarial PersonNet

3.1 Problem Statement

In this work, we concentrate on open-world person re-id by group-based ver-
iication. The group-based veriication is to ensure a re-id system to identify
whether a query person image comes from target people on the watch list. In
this scenario, people out of this list/group are deined as non-target people.

Our objective is to unify feature learning by deep convolution networks and
adversarial learning together so as to make the extracted feature robust and
resistant to noise for discriminating between target people and non-target ones.
The adversarial learning is to generate target-like imposter images to attack the
feature extraction process and simultaneously make the whole model learn to
distinguish these attacks. For this purpose, we propose a novel deep learning
model called Adversarial PersonNet (APN) that suits open-world person re-id.

To better express our work under this setting in the following sections, we
suppose that NT target training images constitute a target sample set XT sam-
pled from CT target people. Let x

T
i indicate the ith target image and yTi ∈ YT

represents the corresponding person/class label. The label set YT is denoted by
YT = {yT1 , ..., y

T
NT

} and there are CT target classes in total. Similarly, we are
given a set of CS non-target training classes containing NS images, denoted as
XS = {xS

1 , ...,x
S
NS

}, where x
S
i ∈ XS is the ith non-target image. ySi is the class

of x
S
i and YS = {yS1 , ..., y

S
NS

}. Note that there is no identity overlap between
target people and non-target people. Under open-world setting, NS ≫ NT . The
problem is to better determine whether a person is on the target-list; that is
for a given image x without knowing its class y, determine if y ∈ YT . We use
f(x,θ) to represent the extracted feature from image x, and θ is the weight of
the feature extraction part of the CNN.

3.2 Learning to Attack by Adversarial Networks

Always, GANs are designed to generate images similar to those in the source
set, which is constituted by both target and non-target image sets. A generator
G and a discriminator Dp are trained adversarially. However the generator G

normally only generates images looking like the ones in the source set and the
discriminator Dp discriminates the generated images from the source ones. In
this case, our source datasets are all pedestrian images, so we call such Dp the
person discriminator in response to its ability of determining whether an image is
of pedestrian-like images. Dp is trained by minimizing the following loss function:

LDp
= −

1

m

m
∑

i=1

[logDp(x) + log (1−Dp(G(z)))], (1)

where m is the number of samples, x represents image from source dataset and
z is a noise randomly generated.
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Fig. 2: Adversarial PersonNet structure. Two discriminators Dp and Dt accept
samples from both datasets and generator G. Since Dt shares the same weights
with feature extractor f , we represent them as the same cuboid in this igure.

Suppose that there is a pre-trained feature extractor for person re-id task and
in an attempt to steer generator G to produce not only pedestrian-like but also
feature attacking images towards this feature extractor, we design a paralleled
discriminator Dt with the following deinition:

Dt(x) = fct(f(x,θ)). (2)

The discriminator Dt is to determine whether an image will be regarded as
target image by feature extractor. f(x,θ) indicates that part of Dt has the same
network structure as feature extractor f and shares the same weights θ (Actually,
the feature extractor can be regarded as a part of Dt.). fct means a full-connected
layer following the feature extractor apart from the one connected to original
CNN (with a fc layer used to pre-train the feature extractor). So Dt shares the
same ability of target person discrimination with the feature extractor. To induce
the generator G for producing target-like images for attacking and ensure the
discriminator Dt to tell the non-target and generated imposters apart from the
target ones, we formulate a paralleled adversarial training of G and Dt as

min
G

max
Dt

Vt(Dt, G) = E
x

T
∼XT

[logDt(x
T )]

+ E
x

S
∼XS

[log (1−Dt(x
S))]

+ E
z∼pz(z)[log (1−Dt(G(z)))].

(3)

We train Dt to maximize Dt(x) when passed by a target image but minimize it
when passed by a non-target image or a generated imposter image by G. Notice
that this process only trains the inal fct layer of Dt without updating the
feature extractor weights θ, to prevent the feature extractor from being afected
by discriminator learning when the generated images are not good enough. We
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Fig. 3: Examples of generated
images. Although images pro-
duced by the generator are
based on random noises, we
can tell that the imposters
generated by APN are very
similar to targets. These sim-
ilarities are mostly based on
clothes, colors and postures
(e.g. the ifth column). More-
over, surroundings are learned
by APN as shown in the sev-
enth column in the red circle.

call Dt the target discriminator. And we propose the loss function LDt
for the

training process of target discriminator Dt:










LDt
= − 1

m

∑m
i=1[logQt(x) + log (1−Dt(G(z)))],

Qt(x) =

{

Dt(x), x ∈ XT ;

1−Dt(x), x ∈ XS .

(4)

We integrate the above into a standard GAN framework as follows:

min
G

max
Dp

max
Dt

V ′(Dp, Dt, G) =

E
x

T
∼XT

[logDp(x
T ) + logDt(x

T )]

+ E
x

S
∼XS

[logDp(x
S) + log (1−Dt(x

S))]

+ E
z∼pz(z)[log (1−Dp(G(z))) + log (1−Dt(G(z)))].

(5)

The collaboration of generator and couple discriminators is illustrated in
Fig. 2. While GAN with only person discriminator will force the generator G to
produce source-like person images, with the incorporation of the loss of target
discriminator Dt, G is more guided to produce very much target-like imposter
images. The target-like imposters, generated based on the discriminating ability
of feature extractor, satisfy the usage of attacking the feature extractor. Exam-
ples of images generated by APN are shown in Fig. 3 together with the target
images and the images generated by controlled groups (APN without target
discriminator Dt and APN without person discriminator Dp) to indicate that
our network indeed has the ability to generate target-like images. The generator
G is trained to fool the target discriminator in the feature space, so that the
generated adversarial images can attack the re-id system. While the target dis-
criminator Dt is mainly to tell these attack apart from the target people so as
to defend the re-id system.
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3.3 Joint Learning of Feature Representation and Adversarial
Modelling

We inally aim to learn robust person features that are tolerant to imposter at-
tack for open-world group-based person re-id. For further utilizing the generated
person images to enhance the performance, we jointly learn feature representa-
tion and adversarial modelling in a semi-supervised way.

Although the generated images look similar to target images, they are re-
garded as imposter samples, and we wish to incorporate unlabeled generated
imposter samples. Inspired by the smoothing regularization [43], we modify the
LSRO [43] in order to make it more suitable for group-based veriication by set-
ting the probability of an unlabeled generated imposter sample G(z) belonging
to an existing known class k as follows:

qLSRI(k)(G(z)) =

{

1
CS

, k ∈ YS ;

0, k ∈ YT ,
(6)

Compared to LSRO, we do not allocate a uniform distribution on each unlabeled
data sample over all classes (including both target and non-target ones), but only
allocate a uniform distribution on non-target classes. This is signiicant because
we attempt to separate imposter samples from target classes. The modiication
is exactly for the defense towards the attack of imposter samples. By using this
regularization, the generated imposters are more trending to be far away from
target classes and have equal chances of being non-target. We call the modiied
regularization in Eq. (6) as label smoothing regularization for imposters (LSRI).

Hence for each input sample xi, we set its ground truth class distribution as:

q(k) =











1, k = yi and xi ∈ XT ∪XS ;

0, k ̸= yi and xi ∈ XT ∪XS , or xi ∈ XG and k ∈ YT ;
1
CS

, xi ∈ XG, and k ∈ YS ;

(7)

where yi is the corresponding label of xi, and we let x
G
i be the ith generated

image and denote XG = {xG
1 , ...,x

G
NG

} as the set of generated imposter sam-
ples. With Eq. (7), we can now learn together with our feature extractor (i.e.
weights θ). By such a joint learning, the feature learning part will become more
discriminative between target and target-like imposter images.

3.4 Network Structure

We now detail the network structure. As shown in Fig. 2, our network consists of
two parts: 1) learning robust feature representation, and 2) learning to attack by
adversarial networks. For the irst part, we train the feature extractor from source
datasets and generated attacking samples. In this part, features are trained to
be robust and resistant to imposter samples. LSRI is applied in this part to
diferentiate imposters from target people. Here, a full-connected layer fcr is
connected to feature extractor f at this stage, and we call it the feature fc
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layer. For the second part, as shown in Fig. 2, our learning attack by adversarial
networks is a modiication of DCGAN [36]. We combine modiied DCGAN with
couple discriminators to form an adversarial network. The generator G here
is modiied to produce target-like imposters speciically as an attacker. And the
target discriminator Dt defends as discriminating target from non-target people.
Of course, in this discriminator, a new fc layer is attached to the tail of feature
extractor f , and we mark it fct, also called target fc layer, used to discriminate
target from non-target images at the process of learning to attack by adversarial
networks. By Eq. (2), Dt is the combination of f and target fc layer fct.

4 Experiments

4.1 Group-based Veriication Setting

We followed the criterion deined in [42] for evaluation of open-world group-based
person re-id. The performance of how well a true target can be veriied correctly
and how badly a false target can be veriied as true incorrectly is indicated by
true target rate (TTR) and false target rate (FTR), which are deined as follows:

True Target Rate(TTR) = #TTQ/#TQ, False Target Rate(FTR) = #FNTQ/#NTQ,
(8)

where TQ is the set of query target images from target people, NTQ is the
set of query non-target images from non-target people, TTQ is the set of query
target images that are veriied as target people, and FNTQ is the set of query
non-target images that are veriied as target people.

To obtain TTR and FTR, we follow the two steps below: 1) For each target
person, there is a set of images S (single-shot or multi-shot) in gallery set. Given
a query sample x, the distance between sample x and a set S is the minimal
distance between that sample and any target sample of that set; 2) Whether
a query image is veriied as a target person is determined by comparing the
distance to a threshold r. By changing the threshold r, a set of TTR and FTR
values can be obtained. A higher TTR value is preferred when FTR is small.

In our experiments, we conducted two kinds of veriication as deined in [42]฀
namely Set Veriication (i.e. whether a query is one of the persons in the target
set, where the target set contains all target people.) and Individual Veriication
(i.e. whether a query is the true target person. For each target query image, the
target set contains only this target person). In comparison, Set Veriication is
more diicult. Although determining whether a person image belongs to a group
of target people seems easier, it also gives more chances for imposters to cheat
the classiier, producing more false matchings [42].

4.2 Datasets & Settings

We evaluated our method on three datasets including Market-1501 [39], CUHK01
[19], and CUHK03 [21]. For each dataset, we randomly selected 1% people as
target people and the rest as non-target. Similar to [42], for target people, we
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separated images of each target people into training and testing sets by half.
Since only four images are available in CUHK01, we chose one for training, two
for gallery (reduce to one in single-shot case) and one for probe. Our division
guaranteed that probe and gallery images are from diverse cameras for each
person. For non-target people, they were divided into training and testing sets
by half in person/class level to ensure there is no overlap on identity. In testing
phase, two images of each target person in testing set were randomly selected to
form gallery set, and the remaining images were selected to form query set. In
the default setting, all images of non-target people in testing set were selected
to form query set. The data split was kept the same for all evaluations on our
and the compared methods. Speciically, the data split is summarized below:

CUHK01 CUHK01 contains 3,884 images of 971 identities from two camera
views. In our experiment, 9 people were marked as target and 1,888 images of
472 people were selected to to form the non-target training set. The testing set
of non-target people contains 1,960 images of 490 people.
CUHK03 CUHK03 is larger than CUHK01 and some images were automati-
cally detected. A total of 1,360 identities were divided into 13 target people, 667
training non-target people and 693 testing non-target people. The numbers of
training and testing non-target images were 6,247 and 6,563 respectively.
Market-1501 Market-1501 is a large-scale dataset containing a total of 32,668
images of 1,501 identities. We randomly selected 15 people as target and 728
people as non-target to form the training set containing a total of 12,433 images,
and the testing non-target set contains 758 identities with 13,355 images.

Under the above settings, we evaluated our model together with selected
popular re-id models. Since APN is based on ResNet-50 and our evaluations
attempt to show our improvement on ResNet-50, metric learning methods such
as t-LRDC [42], XICE [46], XQDA [22] and CRAFT [6] are also applied to the
feature extracted by ResNet-50.

4.3 Implementation Details

In our APN, we used ResNet-50 [12] as the feature extractor in the target dis-
criminator. The generator and person discriminator is based on DCGAN [30].
At the irst step of our procedure, we pre-trained the feature extractor using
auxiliary datasets, 3DPeS [2], iLIDS [35], PRID2011 [13] and Shinpuhkan [15].
These datasets were only used in the pre-training stage for the feature extractor.
In pre-training, we used stochastic gradient descent with momentum 0.9. The
learning rate was 0.1 at the beginning and multiplied by 0.1 every 10 epochs.
Then, the adversarial part of APN was trained using ADAM optimizer [16] with
parameters β1 = 0.5 and β2 = 0.99. Using the target dataset for evaluation, the
person discriminator Dp and generator G were pre-trained for 30 epochs. Then,
the target discriminator Dt together with the person discriminator Dp, and the
generator G were trained jointly for k1 = 15 epochs, where G is optimized twice
in each iteration to prevent losses of discriminators from going to zero. Finally,
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Table 1: Comparison with typical person re-identiication: TTR (%) against FTR
Evaluation Market-1501 CHUK01 CUHK03

FTR 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30%
Dataset Set Veriication

APN 9.01 22.32 46.78 63.34 73.82 81.12 16.67 33.33 88.89 88.89 94.44 100 22.18 41.14 52.02 58.87 73.68 80.24
ResNet-50 [12] 3.43 20.79 43.35 57.43 71.24 79.83 0 11.11 33.33 55.56 72.22 83.33 9.27 18.95 30.65 39.52 47.98 58.47

DCGAN+LSRO [43] 6.77 20.60 42.06 58.80 72.49 80.11 3.14 22.22 66.67 72.22 88.89 94.44 11.75 23.02 35.15 43.77 50.04 63.46
ResNet+t-LRDC [42] 3.00 18.88 42.06 51.07 65.24 75.54 5.56 5.56 16.67 44.44 72.22 72.22 7.74 19.35 33.01 38.81 49.18 59.45
ResNet+XICE [46] 3.28 15.75 41.63 51.07 69.53 78.11 0 11.11 16.67 44.44 72.22 81.09 5.77 13.18 20.16 37.19 45.91 57.43
ResNet+XQDA [22] 3.86 21.89 44.64 62.23 74.68 81.12 0 5.56 22.22 44.44 72.22 83.33 6.05 15.32 27.02 36.29 46.37 59.68
ResNet+CRAFT [6] 1.29 15.02 34.76 46.35 64.81 79.83 5.56 5.56 27.78 55.56 72.22 88.89 9.27 20.97 31.45 39.92 47.58 59.27

JSTL-DGD [38] 6.67 18.03 35.62 60.52 73.09 79.39 16.67 27.53 44.44 66.67 77.78 94.44 19.35 34.67 45.22 53.64 58.25 68.23
DeepFool [28] 10.78 21.89 45.05 59.23 69.53 85.41 16.67 22.22 33.33 44.44 61.11 77.78 19.35 31.45 42.74 46.37 56.05 65.32

Dataset Individual Veriication
APN 32.71 63.18 80.32 87.68 95.54 97.30 41.67 72.22 97.22 100 100 100 43.13 58.58 76.14 83.09 90.08 93.65

ResNet-50 [12] 30.15 61.23 77.09 85.47 91.32 97.12 33.33 44.44 72.22 86.11 97.22 100 39.19 53.22 70.76 77.55 86.11 92.86
DCGAN+LSRO [43] 28.14 62.77 77.29 84.09 92.96 95.11 36.11 67.56 72.22 88.89 100 100 40.72 51.18 74.91 80.58 86.36 92.06
ResNet+t-LRDC [42] 10.70 25.41 44.31 57.26 66.29 80.32 5.56 16.67 20.14 55.56 80.56 91.67 16.57 32.86 45.73 53.22 68.23 83.68
ResNet+XICE [46] 11.71 39.64 53.10 68.74 77.29 90.21 36.11 48.51 79.23 81.72 91.67 97.22 23.51 39.19 51.18 64.93 77.85 82.54
ResNet+XQDA [22] 31.03 59.10 74.51 79.39 87.63 91.42 11.11 38.89 69.44 83.33 88.89 97.22 31.89 45.36 59.15 64.38 76.44 84.87
ResNet+CRAFT [6] 22.66 62.08 78.53 83.74 91.42 97.16 11.11 33.33 63.89 80.56 88.89 97.22 30.43 43.35 57.29 68.65 80.88 84.08

JSTL-DGD [38] 27.60 52.84 70.15 77.00 87.10 90.29 25.00 50.00 86.11 91.67 97.22 100 37.97 50.45 67.58 76.19 82.54 87.57
DeepFool [28] 31.30 64.43 83.31 91.89 95.85 96.73 33.82 48.51 79.23 95.71 98.15 100 32.86 53.22 68.23 75.10 83.68 89.88

the feature extractor was trained again for k2 = 20 epochs with a lower learn-
ing rate starting from 0.001 and multiplied by 0.1 every 10 epochs. The above
procedure was executed repeatedly as an adversarial process.

4.4 Comparison with Open-world Re-id Methods

Open-world re-id is still under studied, and t-LRDC [42] and XICE [46] are two
represented existing methods designed for the open-world setting in person re-id.
Since the original works of these two existing open-world methods use traditional
hand-crafted features, which are not comparable with deep learning models, we
applied these two methods to ResNet-50 features for better comparison. The
results are reported in Table 1. Our APN outperformed t-LRDC and XICE in
all cases, and the margin is especially large on CUHK03. Compared to t-LRDC
and XICE, our APN is an end-to-end learning framework and takes adversarial
learning into account for feature learning, so that APN is more tolerant to the
attack of samples of non-target people.

4.5 Comparison with Closed-world Re-id Methods

We compared our method with related popular re-id methods developed for
closed-world person re-identiication. We mainly evaluated ResNet-50 [12], XQDA
[22], CRAFT [6], and JSTL-DGD [38] for comparison. These methods were all
evaluated by following the same setting as our APN, where the deep features ex-
tracted by ResNet-50 were applied for all non-deep-learning methods. As shown
in Table 1, these approaches optimal for closed-world scenario cannot well adapt
to the open-world setting. In all cases, the proposed APN achieved overall better
performance, especially when tested on Set Veriication and when FTR is 1%
as compared to the others. On Market-1501, APN obtained 4.29 more match-
ing rate than the second place JSTL-DGD, a favorable deep model for re-id,
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Table 2: Diferent generated imposter sources
Dataset Market-1501 CUHK01 CUHK03

FTR 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30%
Evaluation Set Veriication

APN 9.01 22.32 46.78 63.34 73.82 81.12 16.67 33.33 88.89 88.89 94.44 100 22.18 41.14 52.02 58.87 73.68 80.24
APN w/o Dt 8.58 20.60 43.78 58.80 70.82 77.68 5.56 27.78 77.78 77.78 94.44 94.44 17.34 43.15 49.19 55.24 67.34 78.23
APN w/o Dp 7.13 18.21 39.65 56.65 68.49 75.54 3.14 17.34 50.00 66.67 83.33 94.44 16.53 41.14 47.98 54.03 65.32 75.41
APN w/o WS 3.43 19.30 40.52 50.18 65.24 73.22 0 13.85 37.12 53.20 77.78 86.33 16.53 32.49 39.01 46.15 55.24 64.31
No Imposter 8.58 20.60 45.05 56.65 69.53 78.97 0 22.22 77.78 77.78 88.89 94.44 16.53 38.71 48.39 54.03 69.76 78.23
Evaluation Individual Veriication

APN 32.71 63.18 80.32 87.68 95.54 97.30 41.67 72.22 97.22 100 100 100 43.13 58.58 76.14 83.09 90.08 93.65
APN w/o Dt 32.71 61.13 75.68 85.25 90.17 95.11 35.79 70.02 95.66 100 100 100 41.23 55.33 75.50 81.23 87.89 92.06
APN w/o Dp 28.62 53.37 75.68 83.81 88.05 94.65 33.21 68.76 94.44 100 100 100 37.18 55.33 69.64 79.44 85.08 89.21
APN w/o WS 25.32 50.74 72.14 81.26 87.63 93.10 21.42 57.69 79.44 96.51 100 100 32.86 47.29 68.23 72.15 79.42 90.10
No Imposter 26.20 57.03 77.11 84.63 91.48 93.71 38.89 69.72 94.44 100 100 100 40.87 56.57 75.50 82.09 89.29 92.06

Table 3: Number of shots on Set Veriication
Method APN ResNet-50

FTR 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30%
Dataset Market-1501

single-shot 5.15 15.45 41.63 51.93 64.38 72.10 3.00 13.73 32.19 42.49 61.37 66.09
multi-shot 9.01 22.32 46.78 63.34 73.82 81.12 3.43 20.79 43.35 57.43 71.24 79.83

Dataset CUHK01
single-shot 11.11 33.33 66.67 77.78 88.89 100 0 22.22 38.89 77.78 88.89 94.44
multi-shot 16.67 33.33 88.89 88.89 94.44 100 0 22.22 77.78 77.78 88.89 94.44

Dataset CUHK03
single-shot 20.97 38.31 45.56 52.42 63.31 69.76 16.53 36.29 44.35 50.63 61.69 66.53
multi-shot 22.18 41.14 52.02 58.87 73.68 80.24 16.53 38.71 48.39 54.03 69.76 78.23

Table 4: Number of shots on Individual Veriica-
tion

Method APN ResNet-50
FTR 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30%

Dataset Market-1501
single-shot 20.20 55.07 76.50 85.00 91.42 94.28 15.60 39.19 62.00 71.73 82.11 88.57
multi-shot 32.71 63.18 80.32 87.68 95.54 97.30 30.15 61.23 77.09 85.47 91.32 97.12

Dataset CUHK01
single-shot 39.61 72.22 91.67 100 100 100 31.11 44.44 68.45 85.14 97.22 100
multi-shot 41.67 72.22 97.22 100 100 100 33.33 44.44 72.22 86.11 97.22 100

Dataset CUHK03
single-shot 38.69 53.27 70.44 80.56 88.89 92.86 38.39 50.84 66.96 77.38 85.31 90.87
multi-shot 43.13 58.58 76.14 83.09 90.08 93.65 39.19 53.32 70.76 77.55 86.11 92.86

when FTR is 1% on Set Veriication, and as well outperformed JSTL-DGD on
all conditions on Individual Veriication. On CUHK01, APN gained 5.8 more
matching rate as compared to JSTL-DGD when FTR is 1% and 45 match-
ing rate more when FTR is 5% on Set Veriication. The compared closed-world
models were designed with the assumption that the same identities hold between
gallery and probe sets, while the relation between target and non-target people
is not modelled. Meanwhile our APN is designed for the open-world group-based
veriication for discriminating target from non-target people.

4.6 Comparison with Related Adversarial Generation

We compared our model with ine-tuned ResNet-50 with adversarial samples
generated by DeepFool [28], which is also a method using extra generated sam-
ples. DeepFool produced adversarial samples to fool the network by adding noise
computed by gradient. As shown in Table 1, our APN performed much better
than DeepFool especially on CUHK01 and CUHK03. DeepFool cannot adapt to
open-world re-id well because the adversarial samples generated are produced
with a separate learning from the classiier learning and thus the relation be-
tween the generated samples and target set is not modelled for group-based
veriication, while in our APN we aim to generate target-like samples so as to
make adversarial learning facilitate learning better features.

We also evaluated ResNet-50 trained with samples generated by DCGAN and
using LSRO as done in [43]. And APN outperformed it in all cases. The work
of [43] only used generated samples to enlarge the dataset and the group-based
veriication for open-world re-id is not taken into consideration.
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Table 5: Diferent target proportion of Market-
1501 on Set Veriication (TP. stands for Target
Proportion)

Method APN ResNet-50
FTR 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30%

TP. 0.5% 25.35 43.74 66.39 77.89 86.54 93.79 14.48 37.96 61.25 73.50 82.85 90.62
TP. 1% 9.01 22.32 46.78 59.23 73.82 81.12 3.43 18.79 40.35 57.43 70.24 77.83
TP. 3% 5.66 17.31 35.11 46.76 59.55 69.58 4.50 15.34 31.63 44.50 58.22 67.55
TP. 5% 5.38 15.77 31.36 42.11 56.43 68.09 5.02 12.31 30.08 39.02 53.97 64.99

Table 6: LSRI vs. LSRO
Evaluation Set Veriication Individual Veriication

FTR 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30%
Dataset Market-1501

LSRI 9.01 22.32 46.78 63.34 73.82 81.12 32.71 63.18 80.32 87.68 95.54 97.30
LSRO [43] 8.15 20.60 45.92 57.51 72.53 79.83 28.42 61.66 78.80 84.61 90.56 92.54

Dataset CUHK01
LSRI 16.67 33.33 88.89 88.89 94.44 100 41.67 72.22 97.22 100 100 100

LSRO [43] 16.67 27.78 77.78 88.89 88.89 94.44 36.11 68.23 97.22 100 100 100
Dataset CUHK03

LSRI 22.18 41.14 52.02 58.87 73.68 80.24 43.13 58.58 76.14 83.09 90.08 93.65
LSRO [43] 17.34 39.52 49.60 55.24 69.76 79.03 39.01 52.53 71.50 80.13 88.49 91.27

4.7 Further Evaluation of Our Method

Efect of Generated Imposters. We compared to the case without using the
generated imposters. We trained our network in the same way without inputting
the generated images in the training of feature extractor. The results are shown
in the rows indicated by “No Imposters” in Table 2. It can be observed that,
training with the imposters generated by APN can achieve large improvement as
compared to the case without it, because these imposters are target-like and can
improve the discriminating ability of the features. In details, on Set Veriication,
APN outperformed an average of 2.15 matching rate on Market-1501 and 3.23
matching rate on CUHK03, and for CUHK01 APN outperformed 16.67% when
FTR is 0.1%. On Individual Veriication, APN outperformed an average of 4.43
matching rate on Market-1501 and has better performance on all other cases.
Efect of Weight Sharing. The weight sharing between the target discrimi-
nator and the feature extractor aims to ensure that the generator can learn from
the feature extractor and generate more target-like attack samples. Without the
sharing, there is no connection between generation and feature extraction. Tak-
ing Individual Veriication on Market for instance, ours degrades from 63.18%
to 50.74% (no sharing฀indicated by “APN w/o WS”) when FTR=1% in Table
2.
Efect of Person Discriminator and Target Discriminator. Our APN is
based on GAN consisting of generator, person discriminator Dp and target dis-
criminator Dt. To further evaluate them, we compared with APN without person
discriminator (APN w/o Dp) and APN without target discriminator (APN w/o
Dt). APN without target discriminator can be regarded as two independent
components DCGAN and feature extraction network. To fairly compare these
cases, LSRI was also applied as in APN for the generated samples. The results
are reported in Table 2. It is obvious that our full APN is the most efective one
among the compared cases. Sometimes generating imposters by APN without
person discriminator Dp or target discriminator Dt even degrade the perfor-
mance as compared to the case of no imposter. When target discriminator is
discarded, although person-like images can be generated, they are not similar to
target people and thus are not serious attacks to the features for group-based
veriication. In the case without person discriminator, the generator even fails
to generate person-like images (see Fig. 3) so that the performance is largely
degraded. This indicates that the person discriminator plays an important role
in generating person-like images, and the target discriminator is signiicant for
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helping the generator to generate better target-like imposters, so that the feature
extractor can beneit more from distinguishing these imposters.
LSRI vs LSRO. We veriied that the modiication of LSRO, namely LSRI in
Eq. (6) is more suitable for optimizing the open-world re-id. The performance
of comparing our LSRI with the original LSRO is reported in Table 6. It shows
that the feature extractor is more likely to correctly discriminate target people
under the same FTR using LSRI on. It is proved that our modiication LSRI
is more appropriate for open-world re-id scenario, since the imposters are allo-
cated equal probabilities of being non-target for group-based towards modelling,
so they are more likely to be far away from target person samples, leading to
more discriminative feature representation for target people, while in LSRO, the
imposters are allocated equal probabilities of being non-target as well as target.
Efect of target proportion. The evaluation results on diferent target pro-
portion are reported in Table 5. We used diferent percentages of people marked
as target. This veriication was conducted on Market-1501, and we used original
ResNet-50 for comparison. While TTR declines with the growth of target pro-
portion due to more target people to verify, our APN can still outperformed the
original ResNet-50 in all cases.
Efect of the Number of Shots. The performance under multi-shot and
single-shot settings were also compared in our experiments. For multi-shot set-
ting, we randomly selected two images of each target person as gallery set, while
for single-shot setting, we only selected one. As shown in Table 3 and Table 4, on
both single-shot and multi-shot settings, our APN outperformed ResNet-50 on
all conditions of Market-1501, CUHK01, and CUHK03. Especially on Set Verii-
cation, for CUHK01, when FTR is 0.1%, APN outperformed ResNet-50 11.11%
under single-shot setting and 16.67% under multi-shot setting.

5 Conclusion

For the irst time, we demonstrate how adversarial learning can be used to solve
the open-world group-based person re-id problem. The introduced adversarial
person re-id enables a mutually related and cooperative progress among learning
to represent, learning to generate, learning to attack, and learning to defend. In
addition, this adversarial modelling is also further improved by a label smoothing
regularization for imposters under semi-supervised learning.
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