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Abstract. We present a method to populate an unknown environment
with models of previously seen objects, placed in a Euclidean reference
frame that is inferred causally and on-line using monocular video along
with inertial sensors. The system we implement returns a sparse point
cloud for the regions of the scene that are visible but not recognized as
a previously seen object, and a detailed object model and its pose in
the Euclidean frame otherwise. The system includes bottom-up and top-
down components, whereby deep networks trained for detection provide
likelihood scores for object hypotheses provided by a nonlinear filter,
whose state serves as memory. Additional networks provide likelihood
scores for edges, which complements detection networks trained to be in-
variant to small deformations. We test our algorithm on existing datasets,
and also introduce the VISMA dataset, that provides ground truth pose,
point-cloud map, and object models, along with time-stamped inertial
measurements.

1 Introduction

We aim to detect, recognize, and localize objects in the three-dimensional (3D)
scene. We assume that previous views of the object are sufficient to construct a
dense model of its shape, in the form of a closed and water-tight surface, and
its appearance (a texture map). So, as soon as an object is detected from a
monocular image, and localized in the scene, the corresponding region of space
can be mapped with the object model, including the portion not visible in the
current image (Fig. 4 and 5).

While single monocular images provide evidence of objects in the scene – in
the form of a likelihood score for their presence, shape and pose – they should
not be used to make a decision. Instead, evidence should be accumulated over
time, and the likelihood at each instant combined into a posterior estimate of
object pose and identity. This is often referred to as “semantic mapping,” an
early instance of which using depth sensors (RGB-D images) was given in [1].
Our method aims at the same goal, but using a monocular camera and inertial
sensors, rather than a range sensor.

Inertial sensors are increasingly often present in sensor suites with monocu-
lar cameras, from cars to phones, tablets, and drones. They complement vision
naturally, in an information-rich yet cheap sensor package. Unlike RGB-D, they
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can operate outdoor; unlike stereo, they are effective at far range; unlike lidar,
they are cheap, light, and provide richer photometric signatures. Inertial sen-
sors provide a globally consistent orientation reference (gravity) and scale up to
some drift. This allows reducing pose space to four dimensions instead of six.
We leverage recent developments in visual-inertial sensor fusion, and its use for
semantic mapping, an early instance of which was given in [2], where objects
were represented by bounding boxes in 3D. Our method extends that work to
richer object models, that allow computing fine-grained visibility and estimating
accurate pose.

Contributions We focus on applications to (indoor and outdoor) navigation,
where many objects of interest are rigid and static: parked cars, buildings, furni-
ture. Our contribution is a method and system that produces camera poses and
a point-cloud map of the environment, populated with 3D shape and appearance
models of objects recognized. It is semantic in the sense that we have identities
for each object instance recognized. Also, all geometric and topological relations
(proximity, visibility) are captured by this map.

We achieve this by employing some tools from the literature, namely visual-
inertial fusion, and crafting a novel likelihood model for objects and their pose,
leveraging recent developments in deep learning-based object detection. The
system updates its state (memory) causally and incrementally, processing only
the current image rather than storing batches.

Another contribution is the introduction of a dataset for testing visual-
inertial based semantic mapping and 3D object detection. Using inertials is
delicate as accurate time-stamp, calibration and bias estimates are needed. To
this date, we are not aware of any dataset for object detection that comes with
inertials.

We do not address intra-class variability. Having said that, the method is
somewhat robust to modest changes in the model. For instance, if we have a
model Aeron chair (Fig. 2) with arm rests, we can still detect and localize an
Aeron chair without them, or with them raised or lowered.

Organization In Sect. 2, we describe our method, which includes top-down (fil-
ter) and bottom-up (likelihood/proposals) components. In particular, Sect. 2.4
describes the novel likelihood model we introduce, using a detection and edge
scoring network. Sect. 3 describes our implementation, which is tested in Sect. 4,
where the VISMA dataset is described. We discuss features and limitations of
our method in Sect. 5, in relation to prior related work.

2 Methodology

To facilitate semantic analysis in 3D, we seek to reconstruct a model of the
scene sufficient to provide a Euclidean reference where to place object models.
This cannot be done with a single monocular camera. Rather than using li-
dar (expensive, bulky), structured light (fails outdoors), or stereo (ineffective at



Visual-Inertial Object Detection and Mapping 3

large distances), we exploit inertial sensors frequently co-located with cameras in
many modern sensor platforms, including phones and tablets, but also cars and
drones. Inertial sensors provide a global and persistent orientation reference from
gravity, and an estimate of scale, sufficient for us to reduce Euclidean motion
to a four-dimensional group. In the next section we describe our visual-inertial
simultaneous localization and mapping (SLAM) system.

2.1 Gravity-referenced and scaled mapping

We wish to estimate p(Zt, Xt|y
t) the joint posterior of the state of the sensor

platform Xt and objects in the scene Zt
.
= {z}Nt given data yt = {y0, y1, · · · , yt}

that consists of visual (image It) and inertial (linear acceleration αt and rota-
tional velocity ωt) measurements, i.e., yt

.
= {It, αt, ωt}. The posterior can be

factorized as
p(Zt, Xt|y

t) ∝ p(Zt|Xt, y
t)p(Xt|y

t) (1)

where p(Xt|y
t) is typically approximated as a Gaussian distribution whose den-

sity is estimated recursively with an EKF [3] in the visual-inertial sensor fusion
literature [4,5]. Upon convergence where the density p(Xt|y

t) concentrates at the
mode X̂t, the joint posterior can be further approximated using a point estimate
of X̂t.

Visual-inertial SLAM has been used for object detection by [2], whose nota-
tion we follow here. The state of a visual-inertial sensor platform is represented
as

Xt
.
= [Ω⊤

ib , T
⊤
ib , Ω

⊤
bc, T

⊤
bc , v

⊤, α⊤
bias, ω

⊤
bias, γ

⊤, τ ]⊤

where gib(t)
.
= (Ωib, Tib) ∈ SE(3) is the transformation of the body frame to

the inertial frame, gbc(t)
.
= (Ωbc, Tbc) ∈ SE(3) is the camera-to-body alignment,

v ∈ R
3 is linear velocity, αbias, ωbias ∈ R

3 are accelerometer and gyroscope biases
respectively, γ ∈ R

3 is the direction of gravity and τ ∈ R is the temporal off-
set between visual and inertial measurements. The transformation from camera
frame to inertial frame is denoted by gic

.
= gibgbc. The implementation details

of the visual-inertial SLAM system adopted are in Sect. 3. Next, we focus on
objects.

2.2 Semantic Mapping

For each object zt ∈ Zt in the scene, we simultaneously estimate its pose
g ∈ SE(3) and identify shape S ⊂ R

3 over time. We construct beforehand a
database of 3D models, which covers objects of interest in the scene. Thus the
task of estimating shape of objects is converted to the task of determining shape
label k ∈ {1, 2, · · · ,K} of objects, which is a discrete random variable. Once
the shape label k is estimated, its shape S(k) can be simply read off from the
database. Furthermore, given an accurate estimate of gravity direction γ from
visual-inertial SLAM, the 6DoF (degrees of freedom) object pose can be reduced
to a four-dimensional group element g

.
= (t, θ): Translation t ∈ R

3 and rotation
around gravity (azimuth) θ ∈ [0, 2π).
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We formulate the semantic mapping problem as estimating the posterior
p(zt = {k, g}t|X̂t, I

t) conditioned on mode X̂t, which can be computed in a
hypothesis testing framework, of which the hypothesis space is the Cartesian
product of shape label and pose {k} × {g}. To facilitate computation and avoid
cluttered notations, we drop X̂t behind the condition bar and introduce an aux-
iliary discrete random variable: Category c ∈ {1, 2, · · · , C}.

p({k, g}t|I
t) =

∑

ct

p({k, g, c}t|I
t) (2)

∝
∑

ct

p(It|{k, g, c}t)

∫
p({k, g, c}t|{k, g, c}t−1)dP ({k, g, c}t−1|I

t−1) (3)

where marginalization is performed over all possible categories. By noticing that
category ct is a deterministic function of shape label kt, i.e. p(ct|kt) = δ(ct −
c(kt)), the posterior p({k, g}t|I

t) can be further simplified as follows:

∑

ct

δ(ct − c(kt))p(It|{k, g, c}t)

∫
p({k, g}t|{k, g}t−1)dP ({k, g}t−1|I

t−1) (4)

where the first term in the summation is the likelihood (Sect. 2.4) and the
second term can be approximated by numerical integration of weighted particles
(Sect. 3).

2.3 Parameterization and Dynamics

Each object is parametrized locally and attached to a reference camera frame at
time tr with pose gic(tr) and the translational part of object pose is parameter-
ized by a bearing vector [xc, yc]

⊤ ∈ R
2 in camera coordinates and a log depth

ρc ∈ R where zc = exp(ρc) ∈ R+. Log depth is adopted because of the posi-
tivity and cheirality it guarantees. Inverse depth [6], though often used by the
SLAM community, has singularities and is not used in our system. The object
centroid is then Tco = exp(ρc) · [xc, yc, 1]

⊤ in the reference camera frame and
Tio = gic(tr)Tco in the inertial frame. For azimuth θ, we parameterize it in the
inertial frame and obtain the rotation matrix via Rodrigues’ formula:

Rio(θ) = I+ sin θγ̂ + (1− cos θ)γ̂2

where γ is the direction of gravity and the hat operator ·̂ constructs a skew-
symmetric matrix from a vector. Therefore the object pose in the inertial frame
is gio = [Rio|Tio] ∈ SE(3). Although the pose parameters are unknown constants
instead of time varying quantities, we treat them as stochastic processes with
trivial dynamics as a common practice: [ẋc, ẏc, ρ̇c, θ̇]

⊤ = [nx, ny, nρ, nθ]
⊤ where

nx, ny, nρ and nθ are zero-mean Gaussian noises with small variance.

2.4 Measurement Process

In this section, we present our approximation to the log-likelihood L({k, g, c}t|It)
.
=

log p(It|{k, g, c}t) of the posterior (4). Given the prior distribution p({k, g}t−1|I
t−1),
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a hypothesis set {k, g}t can be constructed by a diffusion process around the prior
{k, g}t−1. To validate the hypothesis set, we use a log-likelihood function which
consists of two terms:

L({k, g, c}t|It) = α · ΦCNN({k, g, c}t|It) + β · Φedge({k, g}t|It) (5)

where α and β are tuning parameters. The first term in the log-likelihood is a
convolutional neural network which measures the likelihood of an image region
is to contain a certain object. The second term scores the likelihood of an edge
in the image. We describe them in order.

CNN as Likelihood Mechanism Given a hypothesis {k, g}t in the reference
frame, we first bring it to the current camera frame by applying a relative trans-
formation and then project it to the current image plane via a rendering process.
A minimal enclosing bounding box of the projection is found and then fed into
an object detection network. The score of the hypothesis is simply read off from
the network output (Fig. 1).

ΦCNN(k, g, c; I) = Score
(
I
|b=π

(
g
−1

ic
(t)gio(tr)S(k)

), c
)

(6)

where π(·) denotes the process to render the contour map of the object of which
the minimal enclosing bounding box b is found; gio(tr) is the transformation
to bring the object from local reference frame at time tr to the inertial frame
and g−1

ic (t) is the transformation to bring the object from the inertial frame to
current camera frame.

Either a classification network or a detection network can be used as our
scoring mechanism. However, due to the size of the hypothesis set at each time
instant, which is then mapped to bounding boxes sitting on the same support,
it is more efficient to use a detection network where the convolutional features
are shared by object proposals via ROI pooling: Once predicted, all the box
coordinates are fed to the second stage of Faster R-CNN as object proposals in
a single shot, where only one forward pass is carried out.

Edge likelihood An object detection network is trained to be invariant to
viewpoint change and intra-class variabilities, which makes it ill-suited for pose
estimation and shape identification. To that end, we train a network to measure
the likelihood of edge correspondence:

Φedge(k, g; I) = h
(
π
(
g−1
ic (t)gio(tr)S(k)

)
,EdgeNet(I)

)
(7)

where h(·, ·) is some proximity function which measures the proximity of edge
map constructed from pose and shape hypothesis via rendering (first argument
of h) and edge map extracted from the image (second argument of h).

A popular choice for proximity function h is one-dimensional search [7,8,9],
which we adopt (see Sup. Mat. for details). Such a method is geometric and
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more robust than appearance based methods which are photometric and sub-
ject to illumination change. However, due to its nature of locality, this method
is also sensitive to background clutter and can be distracted by texture-rich
image regions. Fortunately, these weaknesses are easily compensated by ΦCNN

which has a large receptive field and is trained on semantics. Also, instead of
using Canny [10] or other non-learning-based edge features, we design an edge
detection network (Sect. 3) on semantically relevant training sets. Fig. 5 shows
examples illustrating background distraction.

3 Implementation Details

System Overview An overview of the system is illustrated in the system
flowchart (Fig. 1). We perform Bayesian inference by interleaving bottom-up
(the green pathway) and top-down (the blue pathway) processing over time,
which both rely on CNNs. Faster R-CNN as a bottom-up proposal generation
mechanism takes input image It and generates proposals for initialization of new
objects. In the top-down hypothesis validation process, both geometric (edge net,
takes object contour π(S) and outputs likelihood Φedge) and semantic (Fast R-
CNN, takes predicted bounding box b and class label c and outputs likelihood
ΦCNN) cues are used. Faster R-CNN consists of a region proposal network (RPN)
and a Fast R-CNN, which share weights at early convolutional layers. RPN is
only activated in the bottom-up phase to feed Fast R-CNN object proposals
of which bounding box coordinates are regressed and class label is predicted.
During top-down phase, proposals needed by Fast R-CNN are generated by first
sampling from the prior distribution p(z|yt−1) followed by a diffusion and then
mapping each sample to a bounding box b and a class label c. Fig. 1b illustrates
the scoring process. The semantic filter (yellow box) is a variant of bootstrap
algorithm [11] and recursively estimates the posterior p(z|yt) as a set of weighted
particles. Point estimates of gravity γ and camera pose g are from the SLAM
module.

Faster R-CNN

SLAM

��
{�, �}�

Shared 
weights

Fast
R-CNN

RPN

predict

initialize

updateEdge
Net

state� | �ො�, ො�
, Φ���

� � Φ �

Semantic Filter

(a) System flowchart

Faster R-CNN

�� Shared 
weights

Fast
R-CNN

RPN

bounding box 

Φ���
category label 

Scores

(b) Scoring process

Fig. 1: Left System flowchart. Green pathway: Faster R-CNN as a bottom-up proposal
generation mechanism. Blue pathway: Top-down hypothesis validation process. Pink
box: Faster R-CNN. Yellow box: Semantic filter. Right CNN as scoring mechanism.
Dashed pathway (proposal generation) is inactive during hypothesis testing. See system
overview of Sect. 3 for details.
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SLAM and Network ModulesWe implement the system in C++ and OpenGL
Shading Language (GLSL, for rendering) and follow a modular design princi-
ple: Each major module runs in its own process and communicates via a pub-
lish/subscribe message transport system, which enables expandability and pos-
sible parallelism in the future. The visual-inertial SLAM is based on [5] which
produces gravity-referenced and scaled camera pose estimates needed by the
semantic mapping module. An off-the-shelf Faster R-CNN implementation [12]
with weights pre-trained on Microsoft COCO is turned into a service running
constantly in the background. Note we take the most generic object detector
as it is without fine-tuning on specific object instances, which differs from other
object instance detection systems. The benefit is scalability: No extra training is
required when novel object instances are spotted. For the weakly semantic-aware
edge detection network, we adapt SegNet [13] to the task of edge detection: The
last layer of SegNet is modified to predict the probability of each pixel being an
edge pixel. Weights pre-trained on ImageNet are fine-tuned on BSDS [14]. Fig. 4
shows sample results of our edge detection network.
Occlusion and Multiple Objects We turn to some heuristics to handle occlu-
sion due to its combinatorial nature. Fortunately, this is not a problem because
we explicitly model the shape of objects, of which a Z-Buffer of the scene can
be constructed with each object represented as its most likely shape at expected
pose (Fig. 4 and 5). Only the visible portion of the edge map is used to measure
the edge likelihood while Faster R-CNN still runs on the whole image, because
object detectors should have seen enough samples with occlusion during the
training phase and thus robust to occlusion.
Initialization An object proposal from Faster R-CNN is marked as “explained”
if it overlaps with the predicted projection mask by a large margin. For those
“unexplained” proposals, we initialize an object attached to the current camera
frame by spawning a new set of particles. For each particle: The bearing vector
[xc, yc]

⊤ is initialized as the direction from the optical center to the bounding
box center with a Gaussian perturbation. The log depth is initialized at a nom-
inal depth value with added Gaussian noise. Both the azimuth and the shape
label are sampled from uniform priors. More informative priors enabled by data-
driven approaches are left for future investigation.
The Semantic Filter We summarize our joint pose estimation and shape iden-
tification algorithm in Alg. 1, which is a hybrid bootstrap filter [11] with Gaussian
kernel for dynamics and a discrete proposal distribution for shape identification:
The shape label stays the same with high probability and jumps to other labels
equally likely to avoid particle impoverishment. A breakdown of the computa-
tional cost of each component can be found in the Sup. Mat.

4 Experiments

We evaluate our system thoroughly in terms of mapping and object detection.
While there are several benchmarks for each domain, very few allow measuring
simultaneously localization and reconstruction accuracy, as well as 3D object
detection.
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Algorithm 1 Semantic Filter

1. Initialization

When an unexplained bottom-up proposal is found at time t = tr, sample {k, g}(i)tr
∼

p({k, g}tr ) and attach object to camera frame tr. (Sect. 3, Initialization)
2. Importance Sampling

At time t ≥ tr, sample {k, g}(i)t ∼ q(k
(i)
t |k

(i)
t−1)N (g

(i)
t ; g

(i)
t−1, Σt−1) and compute

weights w
(i)
t = exp

(

α · ΦCNN + β · Φedge

)

. (Sect. 2.4)
3. Resampling

Resample particles {k, g}(i)t with respect to the normalized importance weights w
(i)
t

to obtain equally weighted particles {k, g}(i)t .
4. Occlusion handling

Construct Z-Buffer at mean state to explain away bottom-up object proposals.
(Sect. 3, Occlusion)
Set t← t+ 1 and go to step 1.

In particular, [15,16] are popular for benchmarking RGB-D SLAM: one is
real, the other synthetic. KITTI [17] enables benchmarking SLAM as well as
object detection and optical flow. Two recent visual-inertial SLAM benchmarks
are [18] and [19]. Unfortunately, we find these datasets unsuitable to evalu-
ate the performance of our system: Either there are very few objects in the
dataset [15,16,18,19], or there are many, but no ground truth shape annotations
are available [17].

On the other hand, object detection datasets [20,21,22] focus on objects as
regions of the image plane, rather than on the 3D scene. [23,24] are among the
few exploring object attributes in 3D, but are single-image based. Not only does
our method leverage video imagery, but it requires a Euclidean reference, in our
case provided by inertial sensors, making single-image benchmarks unsuitable.

Therefore, to measure the performance of our method, we had to construct a
novel dataset, aimed at measuring performance in visual-inertial semantic map-
ping. We call this the VISMA set, which will be made publicly available upon
completion of the anonymous review process, together with the implementation
of our method.

VISMA contains 8 richly annotated videos of several office scenes with multi-
ple objects, together with time-stamped inertial measurements. We also provide
ground truth annotation of several objects (mostly furniture, such as chairs,
couches and tables) (Sect. 4.2). Over time we will augment the dataset with ad-
ditional scanned objects, including moving ones, and outdoor urban scenes. The
reason for selecting indoors at first is because we could use RGB-D sensors for
cross-modality validation, to provide us with pseudo-ground truth. Nevertheless,
to demonstrate the outdoor-applicability of our system, we provide illustrative
results on outdoor scenes in Fig. 3.

We also looked for RGB-D benchmarks and datasets, where we could com-
pare our performance with independently quantified ground truth. SceneNN [25]
is a recently released RGB-D dataset, suitable for testing at least the semantic
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mapping module of our system, even though originally designed for deep learn-
ing. Sect. 4.3 describes the experiments conducted on SceneNN.

4.1 VISMA Dataset

A customized sensor platform is used for data acquisition: An inertial measure-
ment unit (IMU) is mounted atop camera equipped with a wide angle lens. The
IMU produces time-stamped linear acceleration and rotational velocity readings
at 100Hz. The camera captures 500 × 960 color images at 30Hz. We have col-
lected 8 sequences in different office settings, which cover ∼ 200m in trajectory
length and consist of ∼ 10K frames in total.

To construct the database of 3D models, we rely on off-the-shelf hardware
and software, specifically an Occipital Structure Sensor 1 on an iPad, to recon-
struct furniture objects in office scenes with the built-in 3D scanner application.
This is a structured light sensor that acts as an RGB-D camera to yield water-
tight surfaces and texture maps. We place the 3D meshes in an object-centric
canonical frame and simplify the meshes via quadratic edge collapse decimation
using MeshLab 2. Top row of Fig. 2 shows samples from our database. While the
database will eventually be populated by numerous shapes, we use a small dictio-
nary of objects in our experiments, following the setup of [1]. An optional shape
retrieval [26] process can be adopted for larger dictionaries, but this is beyond
the scope of this paper and not necessary given the current model library.

Fig. 2: Top Sample objects in the VISMA dataset. Each mesh has ∼5000 faces and
is placed in an object-centric canonical frame, simplified, and texture-mapped. Bot-

tom (Pseudo) ground truth from different viewpoints with the last panel showing an
augmented view with models aligned to the original scene.

4.2 Evaluation

Comparing dense surface reconstruction is non-trivial, and several approaches
have been proposed for RGB-D SLAM: Sturm et al. [15] use pose error (RPE)

1 http://www.structure.io
2 http://www.meshlab.net

http://www.structure.io
http://www.meshlab.net
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and absolute trajectory error (ATE) to evaluate RGB-D odometry. To ease the
difficulty of ground truth acquisition, Handa et al. [16] synthesized a realistic
RGB-D dataset for benchmarking both pose estimation and surface reconstruc-
tion, according to which, the state of the art RGB-D SLAM systems have typical
ATE of 1.1 ∼ 2.0cm and average surface error of 0.7 ∼ 2.8cm [27], which renders
RGB-D SLAM a strong candidate as our (pseudo) ground truth for the purpose
of evaluating visual-inertial-semantic SLAM system.

Ground Truth To obtain (pseudo) ground truth reconstruction of experimental
scenes, we run ElasticFusion [27], which is at state-of-the-art in RGB-D SLAM,
on data collected using a Kinect sensor. In cases where only partial reconstruc-
tion of objects-of-interest was available due to failures of ElasticFusion, we align
meshes from our database to the underlying scene via the following procedure:
Direction of gravity is first found by computing the normal to the ground plane
which is manually selected from the reconstruction. Ground truth alignment of
objects is then found by rough manual initialization followed by orientation-
constrained ICP [28] where only rotation around gravity is allowed. Bottom row
of Fig. 2 shows a reconstructed scene from different viewpoints where the last
panel shows an augmented view.

Metrics and Results We adopt the surface error metric proposed by [16] for
quantitative evaluation. First, a scene mesh is assembled by retrieving 3D mod-
els from the database according to the most likely shape label, to which the pose
estimate is applied. A point cloud is then densely sampled from the scene mesh
and aligned to the ground truth reconstruction from RGB-D SLAM via ICP,
because both our reconstructed scene and the ground truth scene are up to an
arbitrary rigid-body transformation. Finally, for each point in the aligned scene
mesh, the closest triangle in the ground truth scene mesh is located and the
normal distance between the point and the closest triangle is recorded. Follow-
ing [16], four standard statistics are computed over the distances for all points
in the scene mesh: Mean, median, standard deviation, and max (Table 1). In
addition to surface error, Table 1 also includes pose estimation error which con-
sists of translational and rotational part. Fig. 4 shows how common failures
of an image-based object detector have been resolved by memory (state of the
semantic filter) and inference in a globally consistent spatial frame.

Table 1: Surface error and pose error measured over 4 sequences from the VISMA
dataset. Qualitative results on the other 4 sequences with coarse annotations can be
found in the Sup. Mat. Translational error reads ‖Tgt− T̂‖2 and rotational error reads
‖ log∨(R̂⊤Rgt)‖2, where log : SO(3) 7→ so(3) and ∨ : so(3) 7→ R

3. (Rgt, Tgt) and (R̂, T̂ )
are ground truth and estimated object pose respectively.

Error Metric Clutter1 Clutter2 Occlusion1 Occlusion2

Surface

Median(cm) 1.37 1.11 1.30 2.01
Mean(cm) 1.99 1.39 1.73 2.79
Std.(cm) 1.96 1.12 1.45 2.54
Max(cm) 17.6 9.88 14.3 17.9

Pose
Mean Trans. (cm) 4.39 2.42 3.94 13.64
Mean Rot. (degree) 6.16 4.66 4.86 9.12
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Fig. 3: Exemplary outdoor results. (best in color at 5×) In each panel, top inset shows
(left to right): edge map, Z-buffer, projection masks; bottom shows input RGB with
predicted mean object boundary and CNN detection. Rightmost panel shows a visual
comparison of ours (top) against Fig. 1 of [2] (bottom), where we capture the bound-
aries of the cars better. Though only generic models from ShapeNet are used in these
examples, pose estimates are fairly robust to shape variations.

4.3 Experiments on SceneNN Dataset

For independent validation, we turn to recent RGB-D scene understanding datasets
to test at least the semantic mapping part of our system. Although co-located
monocular and inertial sensors are ubiquitous, hence our choice of sensor suite,
any SLAM alternative can be used in our system as the backbone localization
subsystem as long as reliable metric scale and gravity estimation are provided.
This makes SceneNN suitable for testing the semantic mapping part of our sys-
tem, although originally designed for RGB-D scene understanding. It provides
ground truth camera trajectories in a gravity-aligned reference frame. Raw RGB-
D streams and ground truth meshes reconstructed from several object-rich real
world scenes are provided in SceneNN.

To test the semantic mapping module on SceneNN, we take the ground truth
camera trajectory and color images as inputs. Note the depth images are not

used in our experiments. The database is constructed by manually selecting and
cropping object meshes from the ground truth scene mesh. A subset scenes of
SceneNN with various chairs is selected for our experiments. Except the fact that
the camera trajectory and gravity are from the ground truth instead of from our
visual-inertial SLAM, the rest of the experiment setup are the same as those in
the experiment on our own dataset. Table 2 shows statistics of surface error of
our semantic mapping on SceneNN. Typical mean surface error is around 3cm.
Fig. 5 shows some qualitative results on SceneNN.

Table 2: Surface error measured on a subset of the SceneNN dataset.
Sequence 005 025 032 036 043 047 073 078 080 082 084 096 273 522 249
Median(cm) 1.84 0.726 3.08 2.25 3.66 3.10 2.59 3.04 2.82 2.35 1.29 0.569 2.06 1.31 0.240
Mean(cm) 3.47 0.756 6.28 4.10 4.24 4.11 3.04 3.51 3.15 3.32 1.70 0.684 2.15 1.69 0.299
Std.(cm) 3.48 0.509 6.95 5.10 3.11 3.52 2.17 2.60 2.09 2.99 1.51 0.518 1.24 1.39 0.217
Max(cm) 13.7 3.07 36.3 34.3 11.9 18.5 8.72 17.4 13.9 22.7 8.33 4.41 5.75 5.60 1.27

5 Discussion

Our method exploits monocular images and time-stamped inertial measurements
to construct a point-cloud model of the environment, populated by object models
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Clutter2 Occlusion1 Occlusion2

Fig. 4: Qualitative results. (best in color at 5×) Each column shows (top to bottom):
One frame of the input video with CNN bounding box proposals with confidence > 0.8;
Extracted edge map; Frame overlaid with predicted instance masks shaded according to
Z-Buffer – darker indicates closer; Background reconstruction augmented with camera
trajectory (orange dots) and semantic reconstruction from our visual-inertial-semantic
SLAM; Ground truth dense reconstruction. Missed detections due to heavy occlu-
sion (middle column) and indistinguishable background (right column) are resolved by
memory and inference in a globally consistent spatial frame.
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025 (motion blur) 043 (distraction) 036 (missed detection) 096 (duplicate)

Fig. 5: Qualitative results on SceneNN. (best in color at 5×) Each panel has the same
meaning as Fig. 4. Last row shows estimated shape & pose (green) overlaid on ground
truth mesh (gray). Partial projections due to broken models provided by SceneNN.
1st col: Moderate motion blur does not affect edge extraction. 2nd col: Background
distraction does not affect shape & pose inference thanks to the holistic and semantic
knowledge injected into low-level edge features. 3rd col: Missed detections due to trun-
cation resolved by memory. 4th col: Duplicate detection from Faster R-CNN eliminated
by memory and inference in a consistent spatial frame.

that were recognized, along with the camera trajectory in an Euclidean frame.
We target indoor and outdoor mobility scenarios, and focus on indoor for eval-
uation due to the availability of benchmark. Yet no benchmark has inertial and
semantic ground truth, so we have introduced VISMA.

We believe most mapping and navigation methods in the near future will
utilize this modality as it is ubiquitous (e.g., in every smart phone or car, even
some vacuum cleaners). Yet, at present, ours is one of few methods to exploit
inertials for semantic mapping in the literature.

Our method has several limitations: It is limited to rigid objects and static
scenes; it is susceptible to failure of the low-level processing modules, such as
the detection or edge networks. It works for object instances, but cannot handle
intra-class variability. It is not operating in real time at present, although it has
the potential to.

Future extensions of this work include expansions of the VISMA dataset, the
addition of synthetic scenes with rich ground truth. Extensions to independently
moving objects, and deforming objects, is also an open area of investigation.
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Relation to the Prior ArtMany efforts have been made to incorporate seman-
tics into SLAM, and vice versa. Early attempts [29,30] rely on feature matching
to register 3D objects to point clouds, which are sensitive to illumination and
viewpoint changes, and most importantly, cannot handle texture-less objects.
These issues are resolved by considering both semantic and geometric cues in
our method (Fig. 4 and 5). In [31], voxel-wise semantic labeling is achieved by
fusing sparse reconstruction and pixel-wise semantic segmentation with a CRF
model over voxel grids. The same scheme has been adopted by [32,33,34] which
explore different sensors to get better reconstruction. Although these methods
produce visually pleasing semantic labeling at the level of voxels, object-level
semantic understanding is missing without additional steps to group together
the potentially over-segmented voxels. Our method treats objects in the scene
as first-class citizens and places objects in the scene directly and immediately
without post-processing. The works that are closest to ours are RGB-D based
SLAM++ [1] and visual-inertial based [2] and [35], where the former models
objects as generic parallelepipeds and the latter focuses on the data association
problem and only estimates translation of objects, while ours estimates precise
object shape and 6DoF pose.

This work is related to visual-inerital sensor fusion [4] and vision-only monoc-
ular SLAM [36] in a broader sense. While classic SLAM outputs a descriptor-
attached point cloud for localization, ours also populates objects in the scene to
enable augmented reality (AR) and robotic tasks.

This work, by its nature, also relates to recent advances in object detection,
either in two stages [37,38,39], which consist of a proposal generation and a re-
gression/classification step, or in a single shot [40,41], where pre-defined anchors
are used. Though single-shot methods are in general faster than two-stage meth-
ods, the clear separation of the architecture in the latter suits our hypothesis
testing framework better (Fig. 1). Image-based object detectors have encour-
aged numerous applications, however they are insufficient to fully describe the
3D attributes of objects. Efforts in making 2D detectors capable of 6DoF pose
estimation include [23,24], which are single image based and do not appreciate a
globally consistent spatial reference frame, in which evidence can be accumulated
over time as we did in our system.

The idea of using edge as a likelihood to estimate object pose dates back to
the RAPiD algorithm [8] followed by [9,42]. [43] is a recent survey on model-based
tracking, which is a special and simplistic case of our system: In model-based
tracking, the 3D model being tracked is selected and its pose initialized manu-
ally while in our setting, such quantities are found by the algorithm. Another
line of work [44,45] on model-based tracking relies on level-set and appearance
modeling, which we do not adopt because appearance is subject to illumination
and viewpoint changes while edges are geometric and more robust.
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