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Fig. 1. Our model performs rectification given a single fisheye image.

Abstract. Images captured by fisheye lenses violate the pinhole camera
assumption and suffer from distortions. Rectification of fisheye images is
therefore a crucial preprocessing step for many computer vision applica-
tions. In this paper, we propose an end-to-end multi-context collaborative
deep network for removing distortions from single fisheye images. In con-
trast to conventional approaches, which focus on extracting hand-crafted
features from input images, our method learns high-level semantics and
low-level appearance features simultaneously to estimate the distortion
parameters. To facilitate training, we construct a synthesized dataset
that covers various scenes and distortion parameter settings. Experi-
ments on both synthesized and real-world datasets show that the pro-
posed model significantly outperforms current state of the art methods.
Our code and synthesized dataset will be made publicly available.

Keywords: Fisheye image rectification, Distortion parameter estima-
tion, Collaborative deep network

1 Introduction

Fisheye cameras have been widely used in varieties of computer vision tasks,
including virtual reality [1, 2], video surveillance [3, 4], automotive applications
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[5, 6] and depth estimation [7], due to their large field of view. Images captured by
such cameras however suffer from lens distortion, and thus it is vital to perform
rectification as a fundamental pre-processing step for subsequent tasks. In recent
years, active research work has been conducted on automatic rectification of
fisheye images. In spite of the remarkable progress, most existing rectification
approaches focus on handcrafted features [8–15], which have limited expressive
power and sometimes lead to unsatisfactory results.

We devise, to our best knowledge, the first end-to-end trainable deep con-
volutional neural network (CNN) for fisheye image rectification. Given a single
fisheye image as input, our approach outputs the rectified image with distor-
tions corrected, as shown in Fig. 1. Our method explicitly models the formation
of fisheye images by first estimating the distortion parameters, during which
step the semantic information is also incorporated. The warped images are then
produced using the obtained parameters.

We show the proposed model architecture in Fig. 2. We construct a deep CNN
model to extract image features and feed the obtained features to a scene parsing
network and a distortion parameter estimation network. The former network
aims to learn a high-level semantic understanding of the scene, which is then
provided to the latter network with the aim of boosting estimation performance.
The obtained distortion parameters, together with the input fisheye image and
the corresponding scene parsing result, are then fed to a distortion rectification
layer to produce the final rectified image and rectified scene parsing result. The
whole network is trained end-to-end.

Our motivation for introducing the scene parsing network into the rectifi-
cation model is that the learned high-level semantics can guide the distortion
estimation. Previous methods usually rely on the assumption that straight lines
in the 3D space have to be straight after rectification. Nevertheless, given an
input image, it is difficult to determine which curved line should be straight in
the 3D space. The semantics could help to provide complementary information
for this problem. For example, in the case of Fig. 5, semantic segmentation may
potentially provide the knowledge that the boundaries of skyscrapers should be
straight after rectification but those of the trees should not, and guide the rec-
tification to produce plausible results shown in the last column of Fig. 5. Such
high-level semantic supervision is, however, missing in the CNN used for extract-
ing low-level features. By incorporating the scene parsing branch, our model can
therefore take advantage of both low-level features and high-level semantics for
the rectification process.

To train the proposed deep network, we construct a synthesized dataset of
visually high-quality images using the ADE20K [16] dataset. Our dataset consists
of fisheye images and corresponding scene parsing labels, as well as rectified
images and rectified scene parsing labels from ADE20K. We synthesize both the
fisheye images and the corresponding scene parsing labels. Samples are further
augmented by adjusting distortion parameters to cover a higher diversity.

We conduct extensive experiments to evaluate the proposed model on both
the synthesized and real-world fisheye images. We compare our method with
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state of the art approaches on our synthesized dataset and also on real-world
fisheye images using our model trained on the synthesized dataset. Our proposed
model quantitatively and qualitatively outperforms state of the art methods and
runs fast.

Our contribution is therefore the first end-to-end deep learning approach
for single fisheye image rectification. This is achieved by explicitly estimating
the distortion parameters using the learned low-level features and under the
guidance of high-level semantics. Our model yields results superior to the current
state of the art. More results are provided in the supplementary material. Our
synthesized dataset and code will be made publicly available.

2 Related Work

We first briefly review existing fisheye image rectification and other distortion
correction methods, and then discuss recent methods for low-level vision tasks
with semantic guidance, which we also rely on in this work.

2.1 Distortion Rectification

Previous work has focused on exploiting handcrafted features from distorted
fisheye images for rectification. The most commonly used strategy is to utilize
lines[8–15, 17], the most prevalent entity in man-made scenes, for the correction.
The key idea is to recover the curvy lines caused by distortion to straight lines
so that the pinhole camera model can be applied.

In the same vein, many methods follow the so-called plumb line assumption.
Bukhari et al. [10] proposed a method for radial lens distortion correction using
an extended Hough transform of image lines with one radial distortion parame-
ter. Melo et al. [11], on the other hand, used non-overlapping circular arcs for the
radial estimation. However, in some cases especially for wide-angle lenses, these
approaches yielded unsatisfactory results. Hughes et al. [12] extracted vanishing
points from distorted checkerboard images and estimated the image center and
distortion parameters. This was, however, unsuitable for images of real-world
scenes.

Rosten and Loveland [13] proposed a method that transformed the edges of a
distorted image to a 1-D angular Hough space and then optimized the distortion
correction parameters by minimizing the entropy of the corresponding normal-
ized histogram. The rectified results were, however, limited by hardware capacity.
Ying et al. [14] introduced a universal algorithm for correcting distortion in fish-
eye images. In this approach, distortion parameters were estimated using at least
three conics extracted from the input fisheye image. Brand et al. [17] used a cal-
ibration grid to compute the distortion parameters. However, in many cases, it
is difficult to obtain feature points whose world coordinates are known a priori.
Zhang et al. [15] proposed a multi-label energy optimization method to merge
short circular arcs sharing the same or approximately the same circular param-
eters and selected long circular arcs for camera rectification. These approaches
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relied on line extractions in the first step, allowing errors to propagate to the
final distortion estimation and compromise the results.

The work most related to our method is [18], where CNN was employed for
radial lens distortion correction. However, the learning ability of this network was
restricted to simulating a simple distortion model with only one parameter, which
is not suitable for the more complex fisheye image distortion model. Moreover,
this model only estimated the distortion model parameter and could not produce
the final output in an end-to-end manner.

All the aforementioned approaches lack semantic information in the finer
reconstruction level. Such semantics are, however, important cues for accurate
rectification. By contrast, our model explicitly and jointly learns high-level se-
mantics and low-level image features, and incorporates both streams of informa-
tion in the fisheye image rectification process. The model directly outputs the
rectified image and is trainable end-to-end.

2.2 Semantic Guidance

Semantic guidance has been widely adopted in low-level computer vision tasks.
Liu et al. [19] proposed a deep CNN solution for image denoising by integrat-
ing the modules of image denoising and high-level tasks like segmentation into
a unified framework. Semantic information can thus flow into the optimization
of the denoising network through a joint loss in the training process. Tsai et
al. [20] adopted a joint training scheme to capture both the image context and
semantic cues for image harmonization. In their approach, semantic guidance
was propagated to the image harmonization decoder, making the final harmo-
nization results more realistic. Qu et al. [21] introduced an end-to-end deep
neural network with multi-context architecture for shadow removal from single
images, where information from different sources were explored. In their model,
one network was used to extract shadow features from a global view, while two
complementary networks were used to generate features to obtain both the fine
local details and semantic understanding of the input image, leading to state of
the art performance.

Inspired by these works, we propose to integrate semantic information to im-
prove fisheye image rectification performance, which has, to our best knowledge,
yet to be explored.

3 Methods

In this section, we describe our proposed model in detail. We start by providing
a brief review of the fisheye camera model in Section 3.1, describe our network
architecture in Section 3.2, and finally provide the definition of our loss function
and training process in Section 3.3.
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3.1 General Fisheye Camera Model

We start with the pinhole camera projection model, given as:

r = f tan(θ), (1)

where θ denotes the angle between the incoming ray and the optical axis, f is
the focal length, and r is the distance between the image point and the principal
point.

Unlike the pinhole perspective projection model, images captured by fisheye
lenses follow varieties of projections, including stereographic, equidistance, eq-
uisolid and orthogonal projection [12, 22]. A general model is used for different
types of fisheye lenses [22]:

r(θ) = k1θ + k2θ
3, (2)

where {ki} (i = 1, 2) are the coefficients. We adopt the simplified version of the
general model. Although Eq. (2) contains few parameters, it is able to approxi-
mate all the projection models with high accuracy.

Given pixel coordinates (x, y) in the pinhole projection image, the corre-
sponding image coordinates (x′, y′) in the fisheye image can be computed: x′ =
r(θ) cos(ϕ), y′ = r(θ) sin(ϕ), where ϕ = arctan((y − y0)/(x − x0)), and (x0, y0)
are the coordinates of the principal point in the pinhole projection image.

The image coordinates (x′, y′) are then transformed to pixel coordinates
(xf, yf): xf = x′ + u0, yf = y′ + v0, where (u0, v0) are the coordinates of
the principal point in the fisheye image. We define Pd = [k1, k2, u0, v0] as the
parameters to be estimated, and describe the proposed model as follows.

3.2 Network Architecture

The proposed deep network is shown in Fig. 2. It aims to learn a mapping
function from the input fisheye image to the rectified image in an end-to-end
manner. Our basic idea is to exploit both the local image features and the con-
textual semantics for the rectification process. To this end, we build our model
by constructing a composite architecture consisting of four cooperative compo-
nents as shown in Fig. 2: a base network (green box), a distortion parameter
estimation network (gray box), a distortion rectification layer (red box) and a
scene parsing network (yellow box).

In this unified network architecture, the base network is first used to extract
low-level local features from the input image. The obtained features are then
fed to the scene parsing network and the distortion parameter estimation net-
work. The scene parsing network decodes the high-level semantic information
to generate a scene parsing result for the input fisheye image. Next, the learned
semantics are propagated to the distortion parameter estimation network to pro-
duce the estimated parameters. Finally, the estimated parameters, together with
the input fisheye image and corresponding scene parsing result, are fed to the
distortion rectification layer to generate the final rectified image and rectified
scene parsing result. The whole network is trained end-to-end. In what follows,
we discuss each component in detail.
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Fig. 2. The overview of the proposed joint network architecture. This composite archi-
tecture consists of four cooperative components: a base network, a distortion estimation
network, a distortion rectification layer, and a scene parsing network. The distortion
parameter estimation network takes as input a concatenation of multiple feature maps
from the base network and generates corresponding distortion parameters. Meanwhile,
the scene parsing network extracts high-level semantic information to further improve
the accuracy of distortion parameter estimation as well as rectification. The estimated
parameters are then used by the distortion rectification layer to perform rectification
on both the input fisheye image and the corresponding scene parsing results.

Base Network The base network is built to extract both low- and high-level
features for the subsequent fisheye image rectification and scene parsing tasks.
Recent work suggests that CNNs trained with large amounts of data for image
classification are generalizable to other tasks such as semantic segmentation and
depth prediction. To this end, we adopt the VGG-net [23] model for our base
network, which is pre-trained on ImageNet for the object recognition task and
fine-tuned under the supervision of semantic parsing and rectification.

Distortion Parameter Estimation Network Our distortion parameter es-
timation network aims to estimate the distortion parameters Pd discussed in
section 3.1. This network takes as input a concatenation of multiple features
maps: (1) The output of conv3-3 layer in the base network. Note that a decon-
volution step is performed to raise the spatial resolution of feature maps; (2)
The input image convolved with 3 × 3 learnable filters, which aims to preserve
raw image information; and (3) The output of the scene parsing network. As
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shown in Section 4, we find that semantic priors help to eliminate the errors in
distortion parameters.

In this distortion parameter estimation network, each convolutional layer is
followed by a ReLU and a batch normalization [24]. We construct 8 convolutional
layers with 3×3 learnable filters, where the number of filters is set as 64, 64, 128,
128, 256, 256, 512, and 512, respectively. Pooling layers with kernel size 2 × 2
and stride 2 are adopted after every two convolutions. A fully-connected layer
with 1024 units is added at the end of the network to produce the parameters.
To alleviate over-fitting, drop-out [25] is adopted after the final convolutional
layer with a drop probability of 0.5.

Distortion Rectification Layer The distortion rectification layer takes as in-
put the estimated distortion parameters Pd, the fisheye image, as well as the
scene parsing result. It computes the corresponding pixel coordinates and gen-
erates the rectified image and the rectified scene parsing result. This makes the
network end-to-end trainable. Details of the distortion rectification layer are
described as follows.

In the forward propagation, given pixel location (x, y) in the rectified image
Ir, the corresponding coordinates (xf , yf ) in the input fisheye image If are
computed according to the aforementioned fisheye image model:







xf = u0 +
x√

x2+y2
(
∑2

i=1 kiθ
2i−1)

yf = v0 +
y√

x2+y2
(
∑2

i=1 kiθ
2i−1).

(3)

The pixel value of location (x, y) in the rectified image is then obtained using
the bilinear interpolation:

Irx,y = ωxωyIf (⌊xf⌋ , ⌊yf⌋) + ωxωyIf (⌈xf⌉ , ⌊yf⌋)
+ωxωyIf (⌊xf⌋ , ⌈yf⌉) + ωxωyIf (⌈xf⌉ , ⌈yf⌉),

(4)

where the coefficients are computed as: ωx = xf − ⌊xf⌋, ωy = yf − ⌊yf⌋ and
ωx = 1− ωx, ωy = 1− ωy.

In the back propagation, we need to calculate the derivatives of rectified
image with respect to the estimated distortion parameters. For each pixel Irx,y,
derivatives with respect to the estimated parameters Pd are computed as follows:

∂Irx,y
∂Pi

=
∂Irx,y
∂xf

· ∂xf

∂Pi

+
∂Irx,y
∂yf

· ∂yf
∂Pi

, (5)

where
∂Irx,y
∂xf

= −ωyIf (⌊xf⌋ , ⌊yf⌋) + ωyIf (⌈xf⌉ , ⌊yf⌋)

−ωyIf (⌊xf⌋ , ⌈yf⌉) + ωyIf (⌈xf⌉ , ⌈yf⌉),
(6)

and ∂xf/∂Pi is obtained according to:






∂xf

∂ki
= xθ2i−1√

x2+y2
(i = 1, 2)

∂xf

∂u0

= 1.
(7)
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Similarly, we can calculate ∂Irx,y/∂yf and ∂yf/∂Pi.

Scene Parsing Network The scene parsing network takes as input the learned
local features and is provided with the scene parsing labels for training. Our mo-
tivation for introducing this network is that, in many tasks, semantic supervision
may benefit low-vision tasks as discussed in Section 2.2. In our case, the scene
parsing network outputs the semantic segmentations to provide high-level clues
including the object contours in the image. Such segmentations provide much
richer information compared to straight lines, which are treated as the only clue
in many conventional distortion rectification methods. The output scene pars-
ing results are fed to both the distortion paramter estimation network and the
distortion rectification layer to provide semantic guidance.

In our implementation, we construct a decoder structure based on the out-
puts of VGG-Net. The decoder network consists of 5 convolution-deconvolution
pairs with kernel size 3 × 3 for convolution layers and 2 × 2 for deconvolutions
layers. The number of filters is set as 512, 256, 128, 64 and 32. As parts of the
fisheye image are compressed due to distortion, the scene parsing results may
lose some local details. We find that adding a refinement network can further
improve the scene parsing accuracy. This refinement network takes the fisheye
image and the initial scene parsing results as input and further refines the final
results according to the details in the input image. Three convolutional layers are
contained in the refinement network, with number of filters 32,32,16 and kernel
size 3×3. Note that the architecture of scene parsing module is not restricted to
the proposed one. Other scene parsing approaches based on VGG can be applied
in our method.

As we will show in Section 4, in fact even without the scene parsing network,
our deep learning-based fisheye rectification approach already outperforms cur-
rent state of the art approaches. With the scene parsing network turned on,
our semantic-aware rectification yields even higher accuracy. Since we feed to
the network distorted segmentations as well as rectified ones, our network can
take advantage of such explicit segment-level supervision and potentially learn
a segment-to-segment mapping, which helps to achieve better rectification.

3.3 Training Process

We aim to minimize the L2 reconstruction loss Lr between the output rectified
image Ir and the ground truth image Igt:

Lr =
∑

x

∑

y

∥

∥Igtx,y − Irx,y
∥

∥

2

2
. (8)

In addition to this rectification loss, we also adopt the loss Lsp for the scene pars-
ing task introduced by [16] and L2 loss Lp for distortion parameter estimation.
The final combined loss for the entire network is:

L = λ0Lp + λ1Lr + λ2Lsp, (9)
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where λ0, λ1 and λ2 are the weights to balance the losses of distortion paramters
estimation, fisheye image rectification and scene parsing, respectively.

We implement our model in Caffe [26] and apply the adaptive gradient al-
gorithm (ADAGRAD) [27] to optimize the entire network. During the training
process, we first pretrain our model using the labels of distortion parameters and
scene parsing. We start with training data from the ADE20K dataset to obtain
an initial solution for both distortion parameter estimation and scene parsing
tasks. Then we add the image reconstruction loss and fine-tune the network in
an end-tp-end manner to achieve an optimal solution for fisheye image rectifica-
tion. We set the initial learning rate as 1e-4 to and reduce it by a factor of 10
every 100K iterations.

Note that, the scene parsing module propagates learned semantic informa-
tion to the distortion parameter estimation network. By integrating the scene
parsing model, the proposed network learns high-level contextual semantics like
boundary features and semantic category layout and provides this knowledge to
the distortion parameter estimation.

4 Experiments

In this section, we discuss our experimental setup and results. We first introduce
our data generation strategies in Section 4.1 and then compare our rectification
results with those of the state of the art methods quantitatively in Section 4.2
and qualitatively in Section 4.3. We further show some scene parsing results in
Section 4.4 and compare the runtime of our method and others in Section 4.5.
We provide more results in the supplementary material.

4.1 Data Generation

To train the proposed deep network for fisheye image rectification, we must
first build a large-scale dataset. Each training sample should consist of a fisheye
image, a rectification ground truth, and the scene parsing labels. To this end, we
select a subset of the ADE20K dataset [16] with scene parsing labels and then
follow the fisheye image model in Section 3.1 to create both the fisheye images
and the corresponding scene parsing labels. During training, training samples are
further augmented by randomly adjusting distortion parameters. The proposed
dataset thus covers various scenes and distortion parameter settings, providing
a wide range of diversities that potentially prevent over-fitting.

Our training dataset includes 19011 unique simulated fisheye images gener-
ated with various distortion parameter settings. Our test dataset contains 1000
samples generated using a similar strategy. We will make our dataset publicly
available.

4.2 Quantitative Evaluation

The dataset we constructed enables us to quantitatively assess our method. We
run the proposed model and the state of the art ones on our dataset and evaluate
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them using standard metrics including PSNR and SSIM. All the baseline models
were realized according to the implementation details provided in corresponding
papers. The model [18] was trained on our simulated dataset, as done for ours.

We show the quantitative comparisons in Tab. 1. Our method significantly
outperforms existing methods in terms of both PSNR and SSIM. To further
verify the semantic guidance, we add two experiments for the proposed method:
1) removing both the scene parsing network and the semantic loss, denoted as
“Proposed method - SPN - SL”, and 2) removing the semantic loss, but keeping
the scene parsing network, denoted as “Proposed method - SL”. The networks are
trained using the same settings. The results indicate that the explicit semantic
supervision does play an important role. Robust feature extraction and semantic
guidance contribute to more accurate rectification results.

Table 1. PSNR and SSIM scores of different algorithms on our test dataset.

Methods PSNR SSIM

Bukhari [10] 11.60 0.2492

Rong [18] 13.12 0.3378

Zhang [15] 12.55 0.2984

Proposed method -SPN -SL 14.43 0.3912

Proposed method - SL 14.56 0.3965

Proposed method 15.02 0.4151

4.3 Qualitative Evaluation

The qualitative rectification results on our synthesized dataset obtained by our
method and the others are shown in Fig. 3. Our method produces results that
are overall the most visually plausible and most similar to the ground truths,
as evidenced by the fact that we restore the curvy lines to straight, which the
other methods fail to do well.

To show the effectiveness of our method on real fisheye images, we exam-
ine a test set of 650 real fisheye images captured using multiple fisheye cameras
with different distortion parameter settings. Samples of different projection types
are collected, including stereographic, equidistance, equisolid angle and orthog-
onal [22]. To cover a wide variety of scenarios, we collect samples from various
indoor and outdoor scenes. Selective comparative results are shown in Fig. 4.
Our method achieves the most promising visual performance, which indicates
our model trained on simululated dataset generalize well to real fisheye images.

The results of [10, 15] are fragile to the hand-crafted feature extraction. In
addition, the rectification of [15] is very sensitive to the initial value provided
for the Levenberg-Marquardt (LM) iteration process, making it difficult to be
deployed in real-world applications. The approach of [18], on the other hand, is
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Fisheye Image Rectifcation
Ground Truth 

Bukhari[10] Rong[18] Zhang[15] Proposed Method

Fig. 3. Qualitative results on our synthesized datasets. From left to right, we show the
input, the ground truth, results of three state of the art methods ([10, 15, 18]), and the
result of our proposed approach. Our method achieves the best overall visual quality
of all the compared methods.

limited to a simple distortion model with one parameter only, and thus it often
fails to deal with more complex fisheye image distortion model with multiple
types of paramters. Our method, by contrast, is a fully end-to-end trainable
approach for fisheye image rectification that learns robust features under the
guidance of semantic supervision.

The results from both the synthesized dataset and the real fisheye dataset
validate the effectiveness of our model, which uses synthesized data to learn how
to perform fisheye image rectification given corresponding ground truth-rectified
images. Our network learns both low-level local and high-level semantic features
for rectification, which is, to our best knowledge, the first attempt at fisheye
distortion rectification.
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Fisheye Image Bukhari[10] Rong[18] Zhang[15] Proposed Method

Fig. 4. Qualitative results on real fisheye images. From left to right: the input image,
results of three state of the art methods ([10, 15, 18]), and results using our proposed
method.

4.4 Scene Parsing Results

As shown in Table 1, even without the scene parsing module, our method already
outperforms the other methods. With the guidance of the semantics, our method
yields even better results in terms of PSNR and SSIM as shown in Table 1.
To provide more insights into the scene parsing module, we show the parsing
results obtained by the network in Fig. 5. It can be seen that the obtained
parsing results are visually plausible, indicating that the network can produce
semantic segmentation on distorted images, which may be further utilized by
the rectification that takes place at a later stage.

We further show in Fig. 5 the rectified images produced by our model without
and with the semantic guidance. The results without semantics are generated
by removing the scene parsing network from the entire architecture. Our model
without semantics, in spite of its already superior performance to other state of
the art methods, still produces erroneous results like the distorted boundaries of
the skyscraper and the vehicle shown in Fig. 5. With the help of explicit semantic
supervision, our final model can potentially learn a segment-to-segment mapping
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for each semantic category, like the skyscraper or the car, and better guide the
rectification during testing.

Regarding the influence of segmentation quality, despite that we indeed ob-
serve some erroneous parsings in our experiments, the imperfect segmentation
results do help improve rectification for over 90% of the cases. We expect the
improvement to be even more significant with better segmentations. As for the
model generalization, since the ADE20K benchmark [16] comprises objects of
150 classes and covers most semantic categories in daily life, our model is able to
handle most common objects. Handling unseen classes is left for further work.

4.5 Runtime

The run times of our methods and others are compared in Tab. 2. The methods
of [10, 15] rely on a minimazing complex objective function and time-consuming
iterative optimization. Therefore, these approaches are difficult to accelerate
by hardware-based parallelization and require much longer processing time on
a 256 × 256 test image. On the contrary, our method can benefit from non-
iterative forward process implemented on GPU. For example, when running the
experiments on an Intel i5-4200U CPU, methods of [10, 15] take over 60 seconds
to generate one rectified result. Although our model is slower than [18], the
rectification performance is much better in terms of PSNR and SSIM.

Fisheye image Scene parsing result Rectification without   
semantic guidance

Rectification with 
semantic guidance

Fig. 5. Qualitative rectification results obtained by our model without and with se-
mantic guidance. With semantic supervision, the model can correct distortions that are
otherwise neglected by the one without semantics. For example, the straight boundaries
of the skyscraper and the shape of the vehicle can be better recovered.
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Table 2. Run times of different algorithms on our test dataset.

Methods Average run time (seconds)

Bukhari [10] 62.53 (Intel i5-4200U CPU)

Zhang [15] 80.07 (Intel i5-4200U CPU)

Rong [18] 0.87 (K80 GPU)

Proposed method 1.26 (K80 GPU)

5 Conclusions

We devise a multi-context collaborative deep network for single fisheye image rec-
tification. Unlike existing methods that mainly focus on extracting hand-crafted
features from the input distorted images, which have limited expressive power
and are often unreliable, our method learns both high-level semantic and low-
level appearance information for distortion parameter estimation. Our network
consists of three collaborative sub-networks and is end-to-end trainable. A dis-
tortion rectification layer is designed to perform rectification on both the input
fisheye image and corresponding scene parsing results. For training, we construct
a synthesized dataset covering a wide range of scenes and distortion parameters.
We demonstrate that our approach outperforms state of the art models on the
synthesized and real fisheye images, both qualitatively and quantitatively.

In our further work, we will extend this framework to handle other distortion
correction tasks like the general radial lens distortion correction. Also, we will
explore to handle unseen semantic classes for rectification.
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