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Abstract. The aim of image captioning is to generate captions by ma-
chine to describe image contents. Despite many efforts, generating dis-
criminative captions for images remains non-trivial. Most traditional
approaches imitate the language structure patterns, thus tend to fall
into a stereotype of replicating frequent phrases or sentences and ne-
glect unique aspects of each image. In this work, we propose an image
captioning framework with a self-retrieval module as training guidance,
which encourages generating discriminative captions. It brings unique
advantages: (1) the self-retrieval guidance can act as a metric and an
evaluator of caption discriminativeness to assure the quality of gener-
ated captions. (2) The correspondence between generated captions and
images are naturally incorporated in the generation process without hu-
man annotations, and hence our approach could utilize a large amount
of unlabeled images to boost captioning performance with no additional
annotations. We demonstrate the effectiveness of the proposed retrieval-
guided method on COCO and Flickr30k captioning datasets, and show
its superior captioning performance with more discriminative captions.
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1 Introduction

Image captioning, generating natural language description for a given image, is
a crucial task that has drawn remarkable attention in the field of vision and
language [2, 5, 14, 21, 22, 26, 35, 41, 43, 47, 49]. However, results by existing image
captioning methods tend to be generic and templated. For example, in Fig. 1,
although for humans there are non-neglectable differences between the first and
second images, the captioning model gives identical ambiguous descriptions “A
vase with flowers sitting on a table”, while the ground-truth captions contain
details and clearly show the differences between those images. Moreover, about
fifty percent of the captions generated by conventional captioning methods are
exactly the same as ground-truth captions from the training set, indicating that
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Conventional: A 
vase with 
flowers sitting on 
a table.

GT: A vase filled 
with flowers and 
lemons on a 
table.

Conventional: A 
vase with flowers 
sitting on a table.

GT: Creative 
centerpiece floral 
arrangement at 
an outdoor table.

Conventional:  A 
bird is sitting on 
top of a bird 
feeder.

Most similar GT in 
training: A bird is 
on top of a bird 
feeder.

Fig. 1. Examples of generated captions by conventional captioning models. The gen-
erated captions are templated and generic.

the captioning models only learn a stereotype of sentences and phrases in the
training set, and have limited ability of generating discriminative captions. The
image on the right part of Fig. 1 shows that although the bird is standing on a
mirror, the captioning model generates the caption “A bird is sitting on top of
a bird feeder”, as a result of replicating patterns appeared in the training set.

Existing studies working on the aforementioned problems either used Gener-
ative Adversarial Networks (GAN) to generate human-like descriptions [8,36], or
focused on enlarging the diversity of generated captions [40,42,44]. Those meth-
ods improve the diversity of generated captions but sacrifice overall performance
on standard evaluation criteria. Another work [38] generates discriminative cap-
tions for an image in context of other semantically similar images by an inference
technique on both target images and distractor images, which cannot be applied
to generic captioning where distractor images are not provided.

In this study, we wish to show that with the innovative model design, both
the discriminativeness and fidelity can be effectively improved for caption gen-
eration. It is achieved by involving a self-retrieval module to train a captioning
module, motivated from two aspects: (1) the discriminativeness of a caption can
be evaluated by how well it can distinguish its corresponding image from other
images. This criterion can be introduced as a guidance for training, and thus
encourages discriminative captions. (2) Image captioning and text-to-image re-
trieval can be viewed as dual tasks. Image captioning generates a description of
a given image, while text-to-image retrieval retrieves back the image based on
the generated caption. Specifically, the model consists of a Captioning Mod-

ule and a Self-retrieval Module. The captioning module generates captions
based on given images, while the self-retrieval module conducts text-to-image re-
trieval, trying to retrieve corresponding images based on the generated captions.
It acts as an evaluator to measure the quality of captions and encourages the
model to generate discriminative captions. Since generating each word of a cap-
tion contains non-differentiable operations, we take the negative retrieval loss as
self-retrieval reward and adopt REINFORCE algorithm to compute gradients.

Such retrieval-guided captioning framework can not only guarantee the dis-
criminativeness of captions, but also readily obtain benefits from additional un-
labeled images, since a caption naturally corresponds to the image it is generated
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from, and do not need laborious annotations. In detail, for unlabeled images, only
self-retrieval module is used to calculate reward, while for labeled images, both
the ground-truth captions and self-retrieval module are used to calculate reward
and optimize the captioning model. Mining moderately hard negative samples
from unlabeled data further boost both the fidelity and discriminativeness of
image captioning.

We test our approach on two image captioning datasets, COCO [6] and
Flickr30k [51], in fully-supervised and semi-supervised settings. Our approach
achieves state-of-the-art performance and additional unlabeled data could fur-
ther boost the captioning performance. Analysis of captions generated by our
model shows that the generated captions are more discriminative and achieve
higher self-retrieval performance than conventional methods.

2 Related Work

Image captioning methods can be divided into three categories [49]. Template-

based methods [20, 29, 48] generate captions based on language templates.
Search-based methods [11, 13] search for the most semantically similar cap-
tions from a sentence pool. Recent works mainly focus on language-based

methods with an encoder-decoder framework [7,14–17,28,41,43,46,47], where a
convolutional neural network (CNN) encodes images into visual features, and an
Long Short Term Memory network (LSTM) decodes features into sentences [41].
It has been shown that attention mechanisms [5, 26, 31, 47] and high-level at-
tributes and concepts [14, 16,49,50] can help with image captioning.

Maximum Likelihood Estimation (MLE) was adopted for training by many
previous works. It maximizes the conditional likelihood of the next word condi-
tioned on previous words. However, it leads to the exposure bias problem [33],
and the training objective does not match evaluation metrics. Training image
captioning models by reinforcement learning techniques [37] solves those prob-
lems [24,34,35] and significantly improves captioning performance.

A problem of current image captioning models is that they tend to replicate
phrases and sentences seen in the training set, and most generated captions fol-
low certain templated patterns. Many recent works aim at increasing diversity
of generated captions [40, 42, 44]. Generative adversarial networks (GAN) can
be incorporated into captioning models to generate diverse and human-like cap-
tions [8,36]. Dai et al . [9] proposed a contrastive learning technique to generate
distinctive captions while maintaining the overall quality of generated captions.
Vedantam et al . [38] introduced an inference technique to produce discriminative
context-aware image captions using generic context-agnostic training data, but
with a different problem setting from ours. It requires context information, i.e.,
a distractor class or a distractor image, for inference, which is not easy to obtain
in generic image captioning applications.

In this work, we improve discriminativeness of captions by using a self-
retrieval module to explicitly encourage generating discriminative captions dur-
ing training. Based on the intuition that a discriminative caption should be able
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Fig. 2. Overall Framework of our proposed method. The captioning module (left) and
the self-retrieval module (right) shares the same image encoder. Dotted lines mean
that the reward for each sampled caption is back-propagated by REINFORCE algo-
rithm. The captioning performance is improved by training the captioning module
with text-to-image self-retrieval reward. Unlabeled images are naturally handled by
our framework.

to successfully retrieve back the image corresponding to itself, the self-retrieval
module performs text-to-image retrieval with the generated captions, serving
as an evaluator of the captioning module. The retrieval reward for generated
captions is back-propagated by REINFORCE algorithm. Our model can also
be trained with partially labeled data to boost the performance. A concurrent
work [27] by Luo et al . also uses a discriminability objective similar to that of
ours to generate discriminative captions. However, our work differs from it in
utilizing unlabeled image data and mining moderately hard negative samples to
further encourage discriminative captions.

3 Methodology

Given an image I, the goal of image captioning is to generate a caption C =
{w1, w2, . . . , wT }, where wi denotes the ith word, and we denote the ground-
truth captions by C∗ = {w∗

1 , w
∗
2 , . . . , w

∗
T }.

The overall framework, as shown in Fig. 2, comprises of a captioning module
and a self-retrieval module. The captioning module generates captions for given
images. A Convolutional Neural Network (CNN) encodes images to visual fea-
tures, and then a Long Short Term Memory network (LSTM) decodes a sequence
of words based on the visual features. The self-retrieval module is our key con-
tribution, which is able to boost the performance of the captioning module with
only partially labeled images. It first evaluates the similarities between generated
captions with their corresponding input images and other distractor images. If
the captioning module is able to generate discriminative enough descriptions,
the similarity between the corresponding generated-caption-image pairs should
be higher than those of non-corresponding pairs. Such constraint is modeled as a
text-to-image retrieval loss and is back-propagated to the improve the captioning
module by REINFORCE algorithm.
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3.1 Image Captioning with Self-retrieval Reward

Captioning module. The captioning module, aiming at generating captions
for given images, is composed of a CNN image encoder Ei(I) and an LSTM
language decoder Dc(v). The image encoder Ei encodes an image I to obtain its
visual features v, and the language decoder Dc decodes the visual features v to
generate a caption C that describes the contents of the image,

v = Ei(I), C = Dc(v). (1)

For conventional training by maximum-likelihood estimation (MLE), given
the ground-truth caption words up to time step t−1, {w∗

1 , . . . , w
∗
t−1}, the model

is trained to maximize the likelihood of w∗
t , the ground-truth word of time step

t. Specifically, the LSTM outputs probability distribution of the word at time
step t, given the visual features and ground-truth words up to time step t − 1,
and is optimized with the cross-entropy loss,

LCE(θ) = −
T∑

t=1

log(pθ(w
∗
t |v, w

∗
1 , . . . , w

∗
t−1)), (2)

where θ represents learnable weights of the captioning model.

For inference, since the ground-truth captions are not available, the model
outputs the distribution of each word conditioned on previous generated words
and visual features, pθ(wt|v, w1, . . . , wt−1). The word at each time step t is chosen
based on the probability distribution of each word by greedy decoding or beam
search.

Self-retrieval module. A captioning model trained by MLE training often
tends to imitate the word-by-word patterns in the training set. A common prob-
lem of conventional captioning models is that many captions are templated and
generic descriptions (e.g . “A woman is standing on a beach”). Reinforcement
learning with evaluation metrics (such as CIDEr) as reward [24, 35] allows the
captioning model to explore more possibilities in the sample space and gives a
better supervision signal compared to MLE. However, the constraint that dif-
ferent images should not generate the same generic captions is still not taken
into account explicitly. Intuitively, a good caption with rich details, such as “A
woman in a blue dress is walking on the beach with a black dog”, should be
able to distinguish the corresponding image in context of other distractor im-
ages. To encourage such discriminative captions, we introduce the self-retrieval
module to enforce the constraint that the generated captions should match its
corresponding images better than other images.

We therefore model the self-retrieval module to conduct text-to-image re-
trieval with the generated caption as a query. Since retrieving images from the
whole dataset for each generated caption is time-consuming and infeasible during
each training iteration, we consider text-to-image matching in each mini-batch.
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We first encode images and captions into features in the same embedding space
a CNN encoder Ei and a Gated Recurrent Unit (GRU) encoder Ec for captions,

v = Ei(I), c = Ec(C), (3)

where I and C denote images and captions, and v and c denote visual features
and caption features, respectively. Then the similarities between the embedded
image features and caption features are calculated. The similarities between the
features of a caption ci and the features of the jth image vj is denoted as s(ci, vj).
For a mini-batch of images {I1, I2, · · · , In} and a generated caption Ci of the ith
image, we adopt the triplet ranking loss with hardest negatives (VSE++ [12])
for text-to-image retrieval,

Lret(Ci, {I1, I2, · · · , In}) = max
j 6=i

[m− s(ci, vi) + s(ci, vj)]+, (4)

where [x]+ = max(x, 0). For a query caption Ci, we compare the similarity
between the positive feature pair {ci, vi} with the negative pairs {ci, vj}, where
j 6= i. This loss forces the similarity of the positive pair to be higher than the
similarity of the hardest negative pair by a margin m. We also explore other
retrieval loss formulations in Sec. 4.4.

The self-retrieval module acts as a discriminativeness evaluator of the cap-
tioning module, which encourages a caption generated from a given image by the
captioning module to be the best matching to the given image among a batch
of distractor images.

Back-propagation by REINFORCE algorithm. For each input image,
since self-retrieval is performed based on the complete generated caption, and
sampling a word from a probability distribution is non-differentiable, we cannot
back-propagate the self-retrieval loss to the captioning module directly. There-
fore, REINFORCE algorithm is adopted to back-propagate the self-retrieval loss
to the captioning module.

For image captioning with reinforcement learning, the LSTM acts as an
“agent”, and the previous generated words and image features are “environ-
ment”. The parameters θ define the policy pθ and at each step the model chooses
an “action”, which is the prediction of the next word based on the policy and
the environment. Denote Cs = {ws

1, . . . , w
s
T } as the caption sampled from the

predicted word distribution. Each sampled sentence receives a “reward” r(Cs),
which indicates its quality. Mathematically, the goal of training is to minimize
the negative expected reward of the sampled captions,

LRL(θ) = −ECs∼pθ
[r(Cs)]. (5)

Since calculating the expectation of reward over the policy distribution is in-
tractable, we estimate it by Monte Carlo sampling based on the policy pθ. To
avoid differentiating r(Cs) with respect to θ, we calculate the gradient of the
expected reward by REINFORCE algorithm [45],

∇θLRL(θ) = −ECs∼pθ
[r(Cs)∇θ log pθ(C

s)]. (6)



Show, Tell and Discriminate 7

To reduce the variance of the gradient estimation, we subtract the reward with a
baseline b, without changing the expected gradient [37]. b is chosen as the reward
of greedy decoding captions [35].

∇θLRL(θ) = −ECs∼pθ
[(r(Cs)− b)∇θ log pθ(C

s)]. (7)

For calculation simplicity, the expectation is approximated by a single Monte-
Carlo sample from pθ,

∇θLRL(θ) ≈ −(r(Cs)− b)∇θ log pθ(C
s). (8)

In our model, for each sampled caption Cs
i , we formulate the reward as a

weighted summation of its CIDEr score and the self-retrieval reward, which is
the negative caption-to-image retrieval loss.

r(Cs
i ) = rcider(C

s
i ) + α · rret(C

s
i , {I1, · · · , In}), (9)

where rcider(C
s
i ) denotes the CIDEr score of Cs

i , rret = −Lret is the self-retrieval
reward, and α is the weight to balance the rewards. The CIDEr reward ensures
that the generated captions are similar to the annotations, and the self-retrieval
reward encourages the captions to be discriminative. By introducing this reward
function, we can optimize the sentence-level reward through sampled captions.

3.2 Improving Captioning with Partially Labeled Images

Training with partially labeled data. The self-retrieval module compares
a generated caption with its corresponding image and other distractor images
in the mini-batch. As the caption-image correspondence is incorporated natu-
rally in caption generation, i.e., a caption with the image it is generated from
automatically form a positive caption-image pair, and with other images form
negative pairs, our proposed self-retrieval reward does not require ground-truth
captions. So our framework can generalize to semi-supervised setting, where a
portion of images do not have ground-truth captions. Thus more training data
can be involved in training without extra annotations.

We mix labeled data and unlabeled data with a fixed proportion in each
mini-batch. Denote the labeled images in a mini-batch as {I l1, I

l
2, · · · , I

l
nl
}, and

their generated captions as {Cl
1, C

l
2, · · · , C

l
nl
}. Denote unlabeled images in the

same mini-batch as {Iu1 , I
u
2 , · · · , I

u
nu

} and the corresponding generated captions
as {Cu

1 , C
u
2 , · · · , C

u
nu

}. The reward for labeled data is the composed of the CIDEr
reward and self-retrieval reward computed in the mini-batch for each generated
caption,

r(Cl
i) = rcider(C

l
i) + α · rret(C

l
i , {I

l
1, · · · , I

l
nl
} ∪ {Iu1 , · · · , I

u
nu

}). (10)

The retrieval reward rret compares the similarity between a caption and the
corresponding image, with those of all other labeled and unlabeled images in
the mini-batch, to reflect how well the generated caption can discriminate its
corresponding image from other distractor images.
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Fig. 3. Moderately hard negative mining. The left part shows a ground-truth caption
and its top hard negatives mined from unlabeled images. The right part shows the
process of moderately hard negative mining. The circles of different sizes stand for the
similarities between each image and the query caption.

As CIDEr reward cannot be computed without ground-truth captions, the
reward for unlabeled data is only the retrieval reward computed in the mini-
batch,

r(Cu
i ) = α · rret(C

u
i , {I

l
1, · · · , I

l
nl
} ∪ {Iu1 , · · · , I

u
nu

}). (11)

In this way, the unlabeled data could also be used in training without captioning
annotations, to further boost the captioning performance.

Moderately Hard Negative Mining in Unlabeled Images. As described
before, the self-retrieval reward is calculated based on the similarity between
positive (corresponding) caption-image pairs and negative (non-corresponding)
pairs. The training goal is to maximize the similarities of positive pairs and
minimize those of negative pairs. To further encourage discriminative captions,
we introduce hard negative caption-image pairs in each mini-batch. For example,
in Fig. 1, although the first two images are similar, humans are not likely to
describe them in the same way. We would like to encourage captions that can
distinguish the second image from the first one (e.g ., “Creative centerpiece floral
arrangement at an outdoor table”), instead of a generic description (e.g ., “A vase
sitting on a table”).

However, an important observation is that choosing the hardest negatives
may impede training. This is because images and captions do not always follow
strictly one-to-one mapping. In the left part of Fig. 3, we show a ground-truth
caption and its hard negatives mined from unlabeled images. The top negative
images from the unlabeled dataset often match well with the ground-truth cap-
tions from the labeled dataset. For example, when the query caption is “A long
restaurant table with rattan rounded back chairs”, some of the retrieved top
images can also match the caption well. So directly taking the hardest negative
pairs is not optimal. Therefore, we propose to use moderately hard negatives of
the generated captions instead of the hardest negatives.

We show moderately hard negative mining in the right part of Fig. 3. We
encode a ground-truth caption C∗ from the labeled dataset into features c∗ and
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all unlabeled images {Iu1 , · · · , I
u
nu

} into features {vu1 , · · · , v
u
nu

}. The similarities
{s(c∗, vu1 ), · · · , s(c

∗, vunu
)} between the caption and each unlabeled image are

derived by the retrieval model. Then we rank the unlabeled images by the sim-
ilarities between each image and the query caption C∗ in a descending order.
Then the indexes of moderately hard negatives are randomly sampled from a
given range [hmin, hmax]. The sampled hard negatives from unlabeled images
and the captions’ corresponding images from the labeled dataset together form
a mini-batch.

By moderately hard negative mining, we select proper samples for training,
encouraging the captioning model to generate captions that could discriminate
the corresponding image from other distractor images.

3.3 Training Strategy

We first train the text-to-image self-retrieval module with all training images
and corresponding captions in the labeled dataset. The captioning module shares
the image encoder with the self-retrieval module. When training the captioning
module, the retrieval module and CNN image encoder are fixed.

For captioning module, we first pre-train it with cross-entropy loss, to provide
a stable initial point, and reduce the sample space for reinforcement learning.
The captioning module is then trained by REINFORCE algorithm with CIDEr
reward and self-retrieval reward with either fully labeled data or partially labeled
data. The CIDEr reward guarantees the generated captions to be similar to
ground-truth captions, while the self-retrieval reward encourages the generated
captions to be discriminative. For labeled data, the reward is the weighted sum
of CIDEr reward and self-retrieval reward (Eq. (10)), and for unlabeled data,
the reward is only the self-retrieval reward (Eq. (11)). The unlabeled data in
each mini-batch is chosen by moderately hard negative mining from unlabeled
data. Implementation details can be found in Sec. 4.2.

4 Experiments

4.1 Datasets and Evaluation Criteria

We perform experiments on COCO and Flickr30k captioning datasets. For fair
comparison, we adopt the widely used Karpathy split [17] for COCO dataset,
which uses 5,000 images for validation, 5,000 for testing, and the rest 82,783
for training. For data preprocessing, we first convert all characters into lower
case and remove the punctuations. Then we replace words that occur less than
6 times with an ‘UNK’ token. The captions are truncated to be no more than
16 words during training. When training with partially labeled data, we use the
officially released COCO unlabeled images as additional data without annota-
tions. The widely used BLEU [30], METEOR [10], ROUGE-L [23], CIDEr-D [39]
and SPICE [1] scores are adopted for evaluation.
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4.2 Implementation Details

Self-retrieval module. For the self-retrieval module, each word is embed-
ded into a 300-dimensional vector and inputted to the GRU language encoder,
which encodes a sentence into 1024-dimensional features. The image encoder is
a ResNet-101 model, which encodes an image into 2048-dimensional visual fea-
tures. Both the encoded image features and sentence features are projected to
the joint embedding space of dimension 1024. The similarity between image fea-
tures and sentence features is the inner product between the normalized feature
vectors. We follow the training strategy in [12].

Captioning module. The captioning module shares the same image encoder
with the self-retrieval module. The self-retrieval module and image encoder are
fixed when training the captioning module. We take the 2048 × 7 × 7 features
before the average pooling layer from ResNet-101 as the visual features. For the
language decoder, we adopt a topdown attention LSTM and a language LSTM,
following the Top-Down attention model in [2]. We do not use Up-Down model
in the same paper, because it involves an object detection model and requires
external data and annotations from Visual Genome [19] for training.

The captioning module is trained with Adam [18] optimizer. The model
is first pre-trained by cross-entropy loss, and then trained by REINFORCE.
Restart technique [25] is used improve the model convergence. We use scheduled
sampling [3] and increase the probability of feeding back a sample of the word
posterior by 0.05 every 5 epochs, until the feedback probability reaches 0.25. We
set the weight of self-retrieval reward α to 1. For training with partially labeled
data, the proportion of labeled and unlabeled images in a mini-batch is 1:1.

Inference. For inference, we use beam search with beam size 5 to generate
captions. Specifically, we select the top 5 sentences with the highest probability at
each time step, and consider them as the candidates based on which to generate
the next word. We do not use model ensemble in our experiments.

4.3 Results

Quantitative results. We compare our captioning model performance with
existing methods on COCO and Flickr30k datasets in Table 1 and Table 2. The
models are all pre-trained by cross-entropy loss and then trained with REIN-
FORCE algorithm. The baseline model is the captioning module only trained
with only CIDEr reward. The SR-FL model is our proposed framework trained
with fully labeled data, with both CIDEr and self-retrieval rewards. The SR-
PL model is our framework trained with partially labeled data (all labeled data
and additional unlabeled data), with both rewards for labeled images and only
self-retrieval reward for unlabeled images. It is shown from the results that the
baseline model without self-retrieval module is already a strong baseline. In-
corporating the self-retrieval module with fully-labeled data (SR-FL) improves
most metrics by large margins. Training with additional unlabeled data (SR-PL)
further enhances the performance. The results validate that discriminativeness is
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Table 1. Single-model performance by our proposed method and state-of-the-art meth-
ods on COCO standard Karpathy test split.

Methods CIDEr SPICE BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Hard-attention [47] - - 71.8 50.4 35.7 25.0 23.0 -
Soft-attention [47] - - 70.7 49.2 34.4 24.3 23.9 -

VAE [32] 90.0 - 72.0 52.0 37.0 28.0 24.0 -
ATT-FCN [50] - - 70.9 53.7 40.2 30.4 24.3 -

Att-CNN+RNN [46] 94.0 - 74.0 56.0 42.0 31.0 26.0 -
SCN-LSTM [14] 101.2 - 72.8 56.6 43.3 33.0 25.7 -
Adaptive [26] 108.5 - 74.2 58.0 43.9 33.2 26.6 -
SCA-CNN [5] 95.2 - 71.9 54.8 41.1 31.1 25.0 53.1

SCST-Att2all [35] 114.0 - - - - 34.2 26.7 55.7
LSTM-A [49] 100.2 18.6 73.4 56.7 43.0 32.6 25.4 54.0

DRL [34] 93.7 - 71.3 53.9 40.3 30.4 25.1 52.5
Skeleton Key [43] 106.9 - 74.2 57.7 44.0 33.6 26.8 55.2
CNNL+RHN [16] 98.9 - 72.3 55.3 41.3 30.6 25.2 -
TD-M-ATT [4] 111.6 - 76.5 60.3 45.6 34.0 26.3 55.5

ATTN+C+D(1) [27] 114.25 21.05 - - - 36.14 27.38 57.29

Ours-baseline 112.7 20.0 79.7 62.2 47.1 35.0 26.7 56.4
Ours-SR-FL 114.6 20.5 79.8 62.3 47.1 34.9 27.1 56.6
Ours-SR-PL 117.1 21.0 80.1 63.1 48.0 35.8 27.4 57.0

Table 2. Single-model performance by our proposed method and state-of-the-art meth-
ods on Flickr30k.

Methods CIDEr SPICE BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Hard-attention [47] - - 66.9 43.9 29.6 19.9 18.5 -
Soft-attention [47] - - 66.7 43.4 28.8 19.1 18.5 -

VAE [32] - - 72.0 53.0 38.0 25.0 - -
ATT-FCN [50] - - 64.7 46.0 32.4 23.0 18.9 -

Att-CNN+RNN [46] - - 73.0 55.0 40.0 28.0 - -
SCN-LSTM [14] - - 73.5 53.0 37.7 25.7 21.0 -
Adaptive [26] 53.1 67.7 49.4 35.4 25.1 20.4 -
SCA-CNN [5] - - 66.2 46.8 32.5 22.3 19.5 -

CNNL+RHN [16] 61.8 15.0 73.8 56.3 41.9 30.7 21.6 -
Ours-baseline 57.1 14.2 72.8 53.4 38.0 27.1 20.7 48.5
Ours-SR-FL 61.7 15.3 72.0 53.4 38.5 27.8 21.5 49.4
Ours-SR-PL 65.0 15.8 72.9 54.5 40.1 29.3 21.8 49.9

crucial to caption quality, and enforcing this constraint by self-retrieval module
leads to better captions.

Qualitative results. Fig. 4 shows some examples of our generated captions
and ground-truth captions. Both the baseline model and our model with self-
retrieval reward can generate captions relevant to the images. However, it is
easy to observe that our model can generate more discriminative captions, while
the baseline model generates generic and templated captions. For example, the
first and the second images in the first row share slightly different contents.
The baseline model fails to describe their differences and generates identical
captions “A vase with flowers sitting on a table”. But our model captures the
distinction, and expresses with sufficient descriptive details “red flowers”, “white
vase” and “in a garden” that help to distinguish those images. The captions for
the last images in both rows show that the baseline model falls into a stereotype
and generates templated captions, because of a large number of similar phrases
in the training set. However, captions generated by our model alleviates this
problem, and generates accurate descriptions for the images.
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BS : A vase with 
flowers sitting on 
a table.

Ours: A vase 
filled with red 
flowers on a 
table.

BS : A vase with 
flowers sitting on a 
table.

Ours: A white vase 
with pink flowers 
sitting in a garden.

BS : A group of 
people standing in a 
room.

Ours: A group of 
people standing 
around a table with 
food.

BS : A kitchen 
with a stove and 
oven in the.

Ours: A white 
stove top oven in 
the kitchen.

BS : A kitchen with 
a stove and oven in 
the.

Ours: A kitchen 
with a stove and 
stainless steel 
appliances.

BS : Two children are 
playing tennis on a 
tennis court.
Ours: Two young 
children standing at 
the tennis court 
holding tennis 
rackets.

Fig. 4. Qualitative results by baseline model and our proposed model.

Table 3. Ablation study results on COCO.

Experiment Settings CIDEr SPICE BLEU-3 BLEU-4 METEOR ROUGE-L
Baseline 112.7 20.0 47.1 35.0 26.7 56.4

Retrieval Loss
VSE++ 117.1 21.0 48.0 35.8 27.4 57.0

VSE0 116.9 20.9 47.7 35.7 27.4 56.8
softmax 114.5 20.5 46.8 34.6 27.1 56.5

Weight of
Self-retrieval
Reward α

0 112.7 20.0 47.1 35.0 26.7 56.4
1 117.1 21.0 48.0 35.8 27.4 57.0

4 113.7 20.5 46.5 34.3 27.0 56.5

Ratio between labeled
and unlabeled

1:2 115.4 20.5 46.8 34.7 27.2 56.6
1:1 117.1 21.0 48.0 35.8 27.4 57.0

2:1 115.0 20.5 46.8 34.7 27.2 56.7

Hard Negative
Index Range

no hard mining 114.6 20.7 46.7 34.6 27.3 56.7
top 100 114.1 20.3 46.6 34.5 27.0 56.4

top 100-1000 117.1 21.0 48.0 35.8 27.4 57.0

4.4 Ablation Study

Formulation of self-retrieval loss. As described in Sec. 3.1, the self-retrieval
module requires a self-retrieval loss to measure the discriminativeness of the
generated captions. Besides VSE++ loss (Eq. (4)), we explore triplet ranking
loss without hard negatives, denoted by VSE0,

Lret(Ci, {I1, I2, · · · , In}) =
∑

j 6=i

[m− s(ci, vi) + s(ci, vj)]+, (12)

and softmax classification loss, denoted by softmax,

Lret(Ci, {I1, I2, · · · , In}) = − log
exp (s(ci, vi)/T )∑n

j=1 exp (s(ci, vj)/T )
, (13)

where T is the temperature parameter that normalizes the caption-image sim-
ilarity to a proper range. We show the results trained by the three loss formu-
lations in Table 3.∗ All of those loss formulations lead to better performance

∗ For the reported results in all experiments and ablation study, we tuned hyper-
parameters on the validation set and directly used validations best point to report
results on the test set.
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Table 4. Text-to-image retrieval performance, and uniqueness and novelty of generated
captions by different methods on COCO.

Methods
Generated-caption-to-image retrieval Uniqueness and novelty evaluation
recall@1 recall@5 recall@10 unique captions novel captions

Skeleton Key [43] - - - 66.96% 52.24%
Ours-baseline 27.5 59.3 74.0 61.56% 51.38%
Ours-SR-PL 33.0 66.4 80.1 72.34% 61.52%

compared to the baseline model, demonstrating the effectiveness of our pro-
posed self-retrieval module. Among them, vse++ loss performs slightly better,
which is consistent with the conclusion in [12] that vse++ loss leads to better
visual-semantic embeddings.
Balance between self-retrieval reward and CIDEr reward. During train-
ing by REINFORCE algorithm, the total reward is formulated as the weighted
summation of CIDEr reward and self-retrieval reward, as shown in Eq. (10). To
determine how much each of them should contribute to training, we investigate
how the weight between them should be set. As shown in Table 3, we investi-
gate {0, 1, 4} for the weight of self-retrieval reward α, and the results indicate
that α = 1 leads to the best performance. Too much emphasis on self-retrieval
reward will harm the model performance, because it fails to optimize the evalua-
tion metric CIDEr. This shows that both CIDEr and our proposed self-retrieval
reward are crucial and their contributions need to be balanced properly.
Proportion of labeled and unlabeled data. When training with partially
labeled data, we use a fixed proportion between labeled and unlabeled images.
We experiment on the proportion of forming a mini-batch with labeled and
unlabeled data. We try three proportions, 1:2, 1:1 and 2:1, with the same self-
retrieval reward weight α = 1. The results in Table 3 show that the proportion
of 1:1 leads to the best performance.
Moderately Hard Negative Mining. In Sec. 3.2, we introduce how to mine
semantically similar images from unlabeled data to provide moderately hard
negatives for training. We analyze the contribution of moderately hard negative
mining in Table 3. Firstly, the performance gain is relatively low without hard
negative mining, demonstrating the effectiveness of this operation. Secondly,
after ranking unlabeled images based on the similarity between the given ground-
truth caption and unlabeled images in the descending order, the index range
[hmin, hmax] of selecting hard negatives also impacts results. There are cases
that an unlabeled image is very similar to an image in the training set, and
a caption may naturally correspond to several images. Therefore, selecting the
hardest negatives is very likely to confuse the model. In our experiments, we
found that setting the hard negative index range [hmin, hmax] to [100, 1000] for
the ranked unlabeled images is optimal.

4.5 Discriminativeness of Generated Captions

Retrieval performance by generated captions. Since the self-retrieval mod-
ule encourages discriminative captions, we conduct an experiment to retrieve im-
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ages with the generated captions as queries, to validate that captions generated
by our model are indeed more discriminative than those generated by the model
without self-retrieval module. Different from the self-retrieval study in [9], which
uses the conditional probabilities of generated captions given images to obtain
a ranked list of images, we perform self-retrieval by our self-retrieval module.
More precisely, we rank the images based on the similarities between the images
and a generated query sentence calculated by our retrieval module. We compute
the recall of the corresponding image that appears in the top-k ranked images.
The retrieval performance is an indicator of the discriminativeness of generated
captions. In Table 4, we report retrieval results on COCO Karpathy test split.
It can be clearly seen that the our model improves the retrieval performance by
a large margin.
Uniqueness and novelty evaluation. A common problem for captioning mod-
els is that they have limited ability of generating captions that have not been
seen in the training set, and generates identical sentences for similar images [11].
This demonstrates that the language decoder is simply repeating the sequence
patterns it observed in the training set. Although our approach is not directly
designed to improve diversity or encourage novel captions, we argue that by
encouraging discriminative captions, we can improve the model’s ability to gen-
erate unique and novel captions. Following the measurements in [43], we evalu-
ate the percentage of unique captions (captions that are unique in all generated
captions) and novel captions (captions that have not been seen in training) on
COCO Karpathy test split. It is shown in Table 4 that our framework signifi-
cantly improves uniqueness and novelty of the generated captions.

5 Conclusions

In this work, we address the problem that captions generated by conventional
approaches tend to be templated and generic. We present a framework that
explicitly improves discriminativeness of captions via training with self-retrieval
reward. The framework is composed of a captioning module and a novel self-
retrieval module, which boosts discriminativeness of generated captions. The self-
retrieval reward is back-propagated to the captioning module by REINFORCE
algorithm. Results show that we obtain more discriminative captions by this
framework, and achieve state-of-the-art performance on two widely used image
captioning datasets.
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