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Abstract. State-of-the-art face super-resolution methods leverage deep
convolutional neural networks to learn a mapping between low-resolution
(LR) facial patterns and their corresponding high-resolution (HR) coun-
terparts by exploring local appearance information. However, most of
these methods do not account for facial structure and suffer from degra-
dations due to large pose variations and misalignments. In this paper,
we propose a method that explicitly incorporates structural information
of faces into the face super-resolution process by using a multi-task con-
volutional neural network (CNN). Our CNN has two branches: one for
super-resolving face images and the other branch for predicting salien-
t regions of a face coined facial component heatmaps. These heatmaps
encourage the upsampling stream to generate super-resolved faces with
higher-quality details. Our method not only uses low-level information
(i.e., intensity similarity), but also middle-level information (i.e., face
structure) to further explore spatial constraints of facial components
from LR inputs images. Therefore, we are able to super-resolve very
small unaligned face images (16×16 pixels) with a large upscaling factor
of 8×, while preserving face structure. Extensive experiments demon-
strate that our network achieves superior face hallucination results and
outperforms the state-of-the-art.

Keywords: Face, super-resolution, hallucination, facial component lo-
calization, multi-task neural networks.

1 Introduction

Face images provide crucial clues for human observation as well as computer
analysis [1,2]. However, the performance of most existing facial analysis tech-
niques, such as face alignment [3,4] and identification [5], degrades dramatically
when the resolution of a face is adversely low. Face super-resolution (FSR) [8], al-
so known as face hallucination, provides a viable way to recover a high-resolution
(HR) face image from its low-resolution (LR) counterpart and has attracted in-
creasing interest in recent years. Modern face hallucination methods employ deep
learning [9,10,7,11,6,12,13,14,15,16] and achieve state-of-the-art performance.
These methods explore image intensity correspondences between LR and HR
faces from large-scale face datasets. Since near-frontal faces prevail in popular
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Fig. 1. Comparison of state-of-the-art face super-resolution methods on very low-
resolution (LR) face images. Columns: (a) Unaligned LR inputs. (b) Original HR im-
ages. (c) Nearest Neighbors (NN) of aligned LR faces. Note that image intensities are
used to find NN. (d) CBN [6]. (e) TDAE [7]. (f) TDAE†. We retrain the original TDAE
with our training dataset. (g) Our results.

large-scale face datasets [17,18], deep learning based FSR methods may fail to
super-resolve LR faces under large pose variations, as seen in the examples of
Fig. 1. In fact, in these examples, the face structure has been distorted and facial
details are not fully recovered by state-of-the-art super-resolution methods.

A naive idea to remedy this issue is to augment training data with large pose
variations (i.e., [19]) and then retrain the neural networks. As shown in Fig. 1(f),
this strategy still leads to suboptimal results where facial details are missing or
distorted due to erroneous localization of LR facial patterns. This limitation
is common in intensity-based FSR methods that only exploit local intensity
information in super-resolution and do not take face structure or poses into
account. We postulate that methods that explicitly exploit information about
the locations of facial components in LR faces have the capacity to improve
super-resolution performance.

Another approach to super-resolve LR face images is to localize facial com-
ponents in advance and then upsample them [20,6] progressively. However, lo-
calizing these facial components with high accuracy is generally a difficult task
in very LR images, especially under large pose variations. As shown in Fig. 1(e),
the method of Zhu et al. [6] fails to localize facial components accurately and
produces an HR face with severe distortions. Therefore, directly detecting facial
components or landmarks in LR faces is suboptimal and may lead to ghosting
artifacts in the final result.

In contrast to previous methods, we propose a method that super-resolves
LR face images while predicting face structure in a collaborative manner. Our
intuition is that, although it is difficult to accurately detect facial landmarks in
LR face images, it is possible to localize facial components (not landmarks) and
identify the visibility of the components on the super-resolved faces or the inter-
mediate upsampled feature maps because they can provide enough resolution for
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localization. Obtaining the locations of facial components can in turn facilitate
face super-resolution.

Driven by this idea, we propose a multi-task deep neural network to up-
sample LR images. In contrast to the state-of-the-art FSR methods [7,6,12,13],
our network not only super-resolves LR images but also estimates the spatial
positions of their facial components. Then the estimated locations of the facial
components are regarded as a guidance map which provides the face structure
in super-resolution. Here, face structure refers to the locations and visibility of
facial components as well as the relationship between them and we use heatmap-
s to represent the probability of the appearance of each component. Since the
resolution of the input faces is small, (i.e., 16× 16 pixels), localizing facial com-
ponents is also very challenging. Instead of detecting facial components in LR
images, we opt to localize facial components on super-resolved feature maps.
Specifically, we first super-resolve features of input LR images, and then employ
a spatial transformer network [21] to align the feature maps. The upsampled
feature maps are used to estimate the heatmaps of facial components. Since
the feature maps are aligned, the same facial components may appear at the
corresponding positions closely. This also provides an initial estimation for the
component localization. Furthermore, we can also largely reduce the training
examples for localizing facial components when input faces or feature maps are
pre-aligned. For instance, we only use 30K LR/HR face image pairs for training
our network, while a state-of-the-art face alignment method [4] requires about
230K images to train a landmark localization network.

After obtaining the estimated heatmaps of facial components, we concatenate
them with the upsampled feature maps to infuse the spatial and visibility infor-
mation of facial components into the super-resolution procedure. In this fashion,
higher-level information beyond pixel-wise intensity similarity is explored and
used as an additional prior in FSR. As shown in Fig. 1(g), our presented net-
work is able to upsample LR faces in large poses while preserving the spatial
structure of upsampled face images.

Overall, the contributions of our work can be summarized as:

– We present a novel multi-task framework to super-resolve LR face images
of size 16 × 16 pixels by an upscaling factor of 8×, which not only exploits
image intensity similarity but also explores the face structure prior in face
super-resolution.

– We not only upsample LR faces but also estimate the face structure in the
framework. Our estimated facial component heatmaps provide not only s-
patial information of facial components but also their visibility information,
which cannot be deduced from pixel-level information.

– We demonstrate that the proposed two branches, i.e., upsampling and fa-
cial component estimation branches, collaborate with each other in super-
resolution, thus achieving better face hallucination performance.

– Due to the design of our network architecture, we are able to estimate fa-
cial component heatmaps from the upsampled feature maps, which provides
enough resolutions and details for estimation. Furthermore, since the fea-
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ture maps are aligned before heatmap estimation, we can largely reduce the
number of training images to train the heatmap estimation branch.

To the best of our knowledge, our method is the first attempt to use a multi-
task framework to super-resolve very LR face images. We not only focus on
learning the intensity similarity mappings between LR and HR facial patterns,
similar to [7,13,22], but also explore the face structure information from images
themselves and employ it as an additional prior for super-resolution.

2 Related Work

Exploiting facial priors, such as spatial configuration of facial components, in
face hallucination is the key factor different from generic super-resolution tasks.
Based on the usage of the priors, face hallucination methods can be roughly
grouped into global model based and part based approaches.

Global model based approaches aim at super-resolving an LR input image by
learning a holistic appearance mapping such as PCA. Wang and Tang [23] learn
subspaces from LR and HR face images respectively, and then reconstruct an HR
output from the PCA coefficients of the LR input. Liu et al. [24] employ a global
model for the super-resolution of LR face images but also develop a markov
random field (MRF) to reduce ghosting artifacts caused by the misalignments
in LR images. Kolouri and Rohde [25] employ optimal transport techniques to
morph an HR output by interpolating exemplar HR faces. In order to learn
a good global model, LR inputs are required to be precisely aligned and to
share similar poses to the exemplar HR images. When large pose variations and
misalignments exit in LR inputs, these methods are prone to produce severe
artifacts.

Part based methods are proposed to super-resolve individual facial regions
separately. They reconstruct the HR counterparts of LR inputs based on ei-
ther reference patches or facial components in the training dataset. Baker and
Kanade [26] search the best mapping between LR and HR patches and then use
the matched HR patches to recover high-frequency details of aligned LR face
images. Motivated by this idea, [22,27,28,29] average weighted position patches
extracted from multiple aligned HR images to upsample aligned LR face images
in either the image intensity domain or sparse coding domain. However, patch
based methods also require LR inputs to be aligned in advance and may produce
blocky artifacts when the upscaling factor is too large. Instead of using position
patches, Tappen and Liu [30] super-resolve HR facial components by warping the
reference HR images. Yang et al. [20] localize facial components in the LR im-
ages by a facial landmark detector and then reconstruct missing high-frequency
details from similar HR reference components. Because facial component based
methods need to extract facial parts in LR images and then align them to ex-
emplar images accurately, their performance degrades dramatically when the
resolutions of input faces become unfavorably small.

Recently, deep learning techniques have been applied to the face hallucination
field and achieved significant progress. Yu and Porikli [10] present a discrimina-
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tive generative network to hallucinate aligned LR face images. Their follow-up
works [31,7] interweave multiple spatial transformer networks [21] with the de-
convolutional layers to handle unaligned LR faces. Xu et al. [32] employ the
framework of generative adversarial networks [33,34] to recover blurry LR face
images by a multi-class discriminative loss. Dahl et al. [13] leverage the frame-
work of PixelCNN [35] to super-resolve very low-resolution faces. Since the above
deep convolutional networks only consider local information in super-resolution
without taking the holistic face structure into account, they may distort face
structure when super-resolving non-frontal LR faces. Zhu et al. [6] present a cas-
cade bi-network, dubbed CBN, to localize LR facial components first and then
upsample the facial components, but CBN may produce ghosting faces when
localization errors occur. Concurrent to our work, the algorithms [15,14] also
employ facial structure in face hallucination. In contrast to their works, we pro-
pose a multi-task network which can be trained in an end-to-end manner. In
particular, our network not only estimates the facial heatmaps but also employs
them for achieving high-quality super-resolved results.

3 Our Proposed Method

Our network mainly consists of two parts: a multi-task upsampling network and
a discriminative network. Our multi-task upsampling network (MTUN) is com-
posed of two branches: an upsampling branch and a facial component heatmap
estimation branch (HEB). Figure 2 illustrates the overall architecture of our
proposed network. The entire network is trained in an end-to-end fashion.

3.1 Facial Component Heatmap Estimation

When the resolution of input images is too small, facial components will be even
smaller. Thus, it is very difficult for state-of-the-art facial landmark detectors to
localize facial landmarks in very low-resolution images accurately. However, we
propose to predict facial component heatmaps from super-resolved feature maps
rather than localizing landmarks in LR input images, because the upsampled
feature maps contain more details and their resolutions are large enough for
estimating facial component heatmaps. Moreover, since 2D faces may exhibit
a wide range of poses, such as in-plane rotations, out-of-plane rotations and
scale changes, we may need a large number of images for training HEB. For
example, Bulat and Tzimiropoulos [4] require over 200K training images to
train a landmark detector, and there is still a gap between the accuracy of [4]
and human labeling. To mitigate this problem, our intuition is that when the
faces are roughly aligned, the same facial components lie in the corresponding
positions closely. Thus, we employ a spatial transformer network (STN) to align
the upsampled features before estimating heatmaps. In this way, we not only
ease the heatmap estimation but also significantly reduce the number of training
images used for learning HEB.



6 X. Yu, B. Fernando, B. Ghanem, F. Porikli and R. Hartley

Fig. 2. The pipeline of our multi-task upsampling network. In the testing phase, the
upsampling branch (blue block) and the heatmap estimation branch (green block) are
used.

We use heatmaps instead of landmarks based on three reasons: (i) localiz-
ing each facial landmark individually is difficult in LR faces even for humans
and erroneous landmarks would lead to distortions in the final results. On the
contrary, it is much easier to localize each facial components as a whole. (ii)
Even state-of-the-art landmark detectors may fail to output accurate positions
in high-resolution images, such as in large pose cases. However, it is not difficult
to estimate a region represented by a heatmap in those cases. (iii) Furthermore,
our goal is to provide clues of the spatial positions and visibility of each com-
ponent rather than the exact shape of each component. Using heatmaps as a
probability map is more suitable for our purpose.

In this paper, we use four heatmaps to represent four components of a face,
i.e., eyes, nose, mouth and chain, respectively. We exploit 68 point facial land-
marks to generate the ground-truth heatmaps. Specifically, each landmark is
represented by a Gaussian kernel and the center of the kernel is the location
of the landmark. By adjusting the standard variance of Gaussian kernels in
accordance with the resolutions of feature maps or images, we can generate a
heatmap for each component. The generated ground-truth heatmaps are shown
in Fig. 3(c). Note that, when self-occlusions appear, some components are not
visible and they will not appear in the heatmaps. In this way, heatmaps not only
provides the locations of components but also their visibility in the original LR
input images.

In order to estimate facial component heatmaps, we employ the stacked hour-
glass network architecture [36]. It exploits a repeated bottom-up and top-down
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(a) (b) (c) (d) (e)

Fig. 3. Visualization of estimated facial component heatmaps. Columns: (a) Unaligned
LR inputs. (b) HR images. (c) Ground-truth heatmaps generated from the landmarks
of HR face images. (d) Our results. (e) The estimated heatmaps overlying over our
super-resolved results. Note that, we overlap four estimated heatmaps together and
upsample the heatmaps to fit our upsampled results.

fashion to process features across multiple scales and is able to capture various
spatial relationships among different parts. As suggested in [36], we also use the
intermediate supervision to improve the performance. The green block in Fig. 2
illustrates our facial component heatmap estimation branch. We feed the aligned
feature maps to HEB and then concatenate the estimated heatmaps with the
upsampled feature maps for super-resolving facial details. In order to illustrate
the effectiveness of HEB, we resize and then overlay the estimated heatmaps
over the output images as visible in Fig. 3(e). The ground-truth heatmaps are
shown in Fig. 3(c) for comparison.

3.2 Network Architecture

Multi-task Upsampling Network: Figure 2 illustrates the architecture of
our proposed multi-task upsampling network (MTUN) in the blue and green
blocks. MTUN consists of two branches: an upsampling branch (blue block) and
a facial component heatmap estimation branch (green block). The upsampling
branch firstly super-resolves features of LR input images and then aligns the
feature maps. When the resolution of the feature maps is large enough, the
upsampled feature maps are fed into HEB to estimate the locations and visibility
of facial components. Thus we obtain the heatmaps of the facial components of
LR inputs. The estimated heatmaps are then concatenated with the upsampled
feature maps to provide the spatial positions and visibility information of facial
components for super-resolution.

In the upsampling branch, the network is composed of a convolutional au-
toencoder, deconvolutional layers and an STN. The convolutional autoencoder is
designed to extract high-frequency details from input images while removing im-
age noise before upsampling and alignment, thus increasing the super-resolution
performance. The deconvolutional layers are employed to super-resolve the fea-
ture maps. Since input LR faces undergo in-plane rotations, translations and
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Comparisons of different losses for the super-resolution. Columns: (a) Unaligned
LR inputs. (b) Original HR images. (c) Lp. (d) Lp+Lf . (e) Lp+Lf +LU . (f) Lp+Lh.
(g) Lp+Lf +Lh. (h) Lp+Lf +LU +Lh. For simplicity, we omit the trade-off weights.

scale changes, STN is employed to compensate for those affine transformations,
thus facilitating facial component heatmap estimation.

After obtaining aligned upsampled feature maps, those feature maps are used
to estimate facial component heatmaps by an HEB. We construct our HEB
by a stacked hourglass architecture [36], which consists of residual blocks and
upsampling layers, as shown in the green block of Fig. 2.

Our multi-task network aims at super-resolving input face images as well as
predicting heatmaps of facial components in the images. As seen in Fig. 4(c),
when we only use the upsampling branch to super-resolve faces without using
HEB, the facial details are blurred and some facial components, e.g., mouth and
nose, are distorted in large poses. Furthermore, the heatmap supervision also
forces STN to align the upsampled features more accurately, thus improving
super-resolution performance. Therefore, these two tasks collaborate with each
other and benefit from each other as well. As shown in Fig. 4(f), our multi-task
network achieves better super-resolved results.
Discriminative Network: Recent works [10,7,32,37] demonstrate that only
using Euclidean distance (ℓ2 loss) between the upsampled faces and the ground-
truth HR faces tends to output over-smoothed results. Therefore, we incorporate
a discriminative objective into our network to force super-resolved HR face im-
ages to lie on the manifold of real face images.

As shown in the red block of Fig. 2, the discriminative network is constructed
by convolutional layers and fully connected layers similar to [34]. It is employed
to determine whether an image is sampled from real face images or hallucinated
ones. The discriminative loss, also known as adversarial loss, is back-propagated
to update our upsampling network. In this manner, we can super-resolve more
authentic HR faces, as shown in Fig. 4(h).

3.3 Loss Function

Pixel-wise Loss: Since the upsampled HR faces should be similar to the input
LR faces in terms of image intensities, we employ the Euclidean distance, also
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known as pixel-wise ℓ2 loss, to enforce this similarity as follows:

Lp(w) = E(ĥi,hi)∼p(ĥ,h)‖ĥi − hi‖
2
F = E(li,hi)∼p(l,h)‖Uw(li)− hi‖

2
F , (1)

where ĥi and Uw(li) both represent the upsampled faces by our MTUN, w is
the parameters of MTUN, li and hi denote the LR input image and its HR
ground-truth counterpart respectively, p(l, h) represents the joint distribution

of the LR and HR face images in the training dataset, and p(ĥ, h) indicates
the joint distribution of the upsampled HR faces and their corresponding HR
ground-truths.
Feature-wise Loss: As mentioned in [10,37,32], only using pixel-wise ℓ2 loss
will produce over-smoothed super-resolved results. In order to achieve high-
quality visual results, we also constrain the upsampled faces to share the same
features as their HR counterparts. The objective function is expressed as:

Lf (w)=E(ĥi,hi)∼p(ĥ,h)‖ψ(ĥi)−ψ(hi)‖
2
F =E(li,hi)∼p(l,h)‖ψ(Uw(li))−ψ(hi)‖

2
F , (2)

where ψ(·) denotes feature maps of a layer in VGG-19 [38]. We use the layer
ReLU32, which gives good empirical results in our experiments.
Discriminative Loss: Since super-resolution is inherently an under-determined
problem, there would be many possible mappings between LR and HR images.
Even imposing intensity and feature similarities may not guarantee that the
upsampling network can output realistic HR face images. We employ a discrimi-
native network to force the hallucinated faces to lie on the same manifold of real
face images, and our goal is to make the discriminative network fail to distin-
guish the upsampled faces from real ones. Therefore, the objective function for
the discriminative network D is formulated as:

LD(d) = E(ĥi,hi)∼p(ĥ,h)

[

logDd(hi) + log(1−Dd(ĥi))
]

(3)

where d represents the parameters of the discriminative network D, p(h), p(l)

and p(ĥ) indicate the distributions of the real HR, LR and super-resolved faces

respectively, and Dd(hi) and Dd(ĥi) are the outputs of D. To make our discrimi-
native network distinguish the real faces from the upsampled ones, we maximize
the loss LD(d) and the loss is back-propagated to update the parameters d.

In order to fool the discriminative network, our upsampling network should
produce faces as much similar as real faces. Thus, the objective function of the
upsampling network is written as:

LU (w) = E(ĥi)∼p(ĥ)

[

logDd(ĥi)
]

= Eli∼p(l) [logDd(Uw(li))] . (4)

We minimize Eqn. 4 to make our upsampling network generate realistic HR face
images. The loss LU (w) is back-propagated to update the parameters w.
Face Structure Loss: Unlike previous works [7,32,10], we not only employ
image pixel information (i.e., pixel-wise and feature-wise losses) but also explore
the face structure information during super-resolution. In order to achieve spatial
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relationships between facial components and their visibility, we estimate the
heatmaps of facial components from the upsampled features as follows:

Lh(w) = E(li,hi)∼p(l,h)
1

M

M
∑

k=1

1

N

N
∑

j=1

‖Hk
j (hi)−Hk

j (Ũw(li))‖
2
2, (5)

where M is the number of the facial components, N indicates the number of
Gaussian kernels in each component, Ũw(li) is the intermediate upsampled fea-
ture maps by U , Hk

j represents the j-th kernel in the k-th heatmap, and Hk
j (hi)

and Hk
j (Ũw(li)) denote the ground-truth and estimated kernel positions in the

heatmaps. Due to self-occlusions, some parts of facial components are invisible
and thus N varies according to the visibility of those kernels in the heatmaps.
Note that, the parameters w not only refer to the parameters in the upsampling
branch but also those in the heatmap estimation branch.
Training Details: In training our discriminative network D, we only use the
loss LD(d) in Eqn. 3 to update the parameters d. Since the discriminative net-
work aims at distinguishing upsampled faces from real ones, we maximize LD(d)
by stochastic gradient ascent.

In training our multi-task upsampling network U , multiple losses, i.e., Lp,
Lf , LU and Lh, are involved to update the parameters w. Therefore, in order to
achieve authentic super-resolved HR face images, the objective function LT for
training the upsampling network U is expressed as:

LT = Lp + αLf + βLU + Lh, (6)

where α, β are the trade-off weights. Since our goal is to recover HR faces in terms
of appearance similarity, we set α and β to 0.01. We minimize LT by stochastic
gradient descent. Specifically, we use RMSprop optimization algorithm [39] to
update the parameters w and d. The discriminative network and upsampling
network are trained in an alternating fashion. The learning rate r is set to 0.001
and multiplied by 0.99 after each epoch. We use the decay rate 0.01 in RMSprop.

3.4 Implementation Details

In our multi-task upsampling network, we employ similarity transformation es-
timated by STN to compensate for in-plane misalignments. In Fig. 2, STN is
built by convolutional and ReLU layers (Conv+ReLU), max-pooling layers with
a stride 2 (MP2) and fully connected layers (FC). Specifically, our STN is com-
posed of MP2, Conv+ReLU (k5s1p0n20), MP2, Conv+ReLU (k5s1p0n20), MP2,
FC+ReLU (from 80 to 20 dimensions) and FC (from 20 to 4 dimensions), where
k, s and p indicate the sizes of filters, strides and paddings respectively, and n rep-
resents the channel number of the output feature maps. Our HEB is constructed
by stacking four hourglass networks and we also apply intermediate supervision
to the output of each hourglass network. The residual block is constructed by
BN, ReLU, Conv (k3s1p1nNi), BN, ReLU and Conv (k1s1p0nNo), where Ni and
No indicate the channel numbers of input and output feature maps.
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In the experimental part, some algorithms require alignment of LR inputs,
e.g., [22]. Hence, we employ an STN0 to align the LR face images to the upright
position. STN0 is composed of Conv+ReLU (k5s1p0n64), MP2, Conv+ReLU
(k5s1p0n20), FC+ReLU (from 80 to 20 dimensions), and FC (from 20 to 4
dimensions).

4 Experimental Results

In order to evaluate the performance of our proposed network, we compare
with the state-of-the-art methods [40,37,22,6,7] qualitatively and quantitatively.
Kim et al. [40] employ a very deep convolutional network to super-resolve generic
images, known as VDSR. Ledig et al.’s method [37], dubbed SRGAN, is a generic
super-resolution method, which employs the framework of generative adversar-
ial networks and is trained with pixel-wise and adversarial losses. Ma et al.’s
method [22] exploits position patches in the dataset to reconstruct HR images.
Zhu et al.’s method [6], known as CBN, first localizes facial components in LR
input images and then super-resolves the localized facial parts. Yu and Porik-
li [7] upsample very low-resolution unaligned face images by a transformative
discriminative autoencoder (TDAE).

4.1 Dataset

Although there are large-scale face datasets [17,18], they do not provide struc-
tural information, i.e., facial landmarks, for generating ground-truth heatmaps.
In addition, we found that most of faces in the celebrity face attributes (CelebA)
dataset [17], as one of the largest face datasets, are near-frontal. Hence, we use
images from the Menpo facial landmark localization challenges (Menpo) [19] as
well as images from CelebA to generate our training dataset. Menpo [19] pro-
vides face images in different poses and their corresponding 68 point landmarks
or 39 point landmarks when some facial parts are invisible. Because Menpo only
contains about 8K images, we also collect another 22K images from CelebA.
We crop the aligned faces and then resize them to 128×128 pixels as our HR
ground-truth images hi. Our LR face images li are generated by transforming
and downsampling the HR faces to 16×16 pixels. We choose 80 percent of image
pairs for training and 20 percent of image pairs for testing.

4.2 Qualitative Comparisons with SoA

Since [22] needs to align input LR faces before super-resolution and [7] auto-
matically outputs upright HR face images, we align LR faces by a spatial trans-
former network STN0 for a fair comparison and better illustration. The upright
HR ground-truth images are also shown for comparison.

Bicubic interpolation only upsamples image intensities from neighboring pix-
els instead of generating new contents for new pixels. As shown in Fig. 5(c),
bicubic interpolation fails to generate facial details.
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Table 1. Quantitative comparisons on the entire test dataset

Methods Bicubic VDSR[40] SRGAN[37] Ma[22] CBN[6] TDAE[7] TDAE† Ours† Ours‡ Ours

PSNR 18.83 18.65 18.57 18.66 18.49 18.87 21.39 22.69 22.83 23.14

SSIM 0.57 0.57 0.55 0.53 0.55 0.52 0.62 0.66 0.65 0.68

VDSR only employs a pixel-wise ℓ2 loss in training and does not provide an
upscaling factor 8×. We apply VDSR to an LR face three times by an upscaling
factor 2×. As shown in Fig. 5(d), VDSR fails to generate authentic facial details
and the super-resolved faces are still blurry.

SRGAN is able to super-resolve an image by an upscaling factor of 8× di-
rectly and employs an adversarial loss to enhance details. However, SRGAN
does not take the entire face structure into consideration and thus outputs ring-
ing artifacts around facial components, such as eyes and mouth, as shown in
Fig. 5(e).

Ma et al.’s method is sensitive to misalignments in LR inputs because it
hallucinates HR faces by position-patches. As seen in Fig. 5(f), obvious blur
artifacts and ghosting facial components appear in the hallucinated faces. As
the upscaling factor increases, the correspondences between LR and HR patches
become inconsistent. Thus, the super-resolved face images suffer severe blocky
artifacts.

CBN first localizes facial components in LR faces and then super-resolves
facial details and entire face images by two branches. As shown in Fig. 5(g), CBN
generates facial components inconsistent with the HR ground-truth images in
near-frontal faces and fails to generate realistic facial details in large poses. This
indicates that it is difficult to localize facial components in LR faces accurately.

TDAE employs ℓ2 and adversarial losses and is trained with near-frontal
faces. Due to various poses in our testing dataset, TDAE fails to align faces in
large poses. For a fair comparison, we retrain the decoder of TDAE with our
training dataset. As visible in Fig. 5(h), TDAE still fails to realistic facial details
due to various poses and misalignments.

Our method reconstructs authentic facial details as shown in Fig. 5(i). Our
facial component heatmaps not only facilitate alignment but also provide spa-
tial configuration of facial components. Therefore, our method is able to produce
visually pleasing HR facial details similar to the ground-truth faces while pre-
serving face structure. (More results are shown in the supplementary materials.)

4.3 Quantitative Comparisons with SoA

We also evaluate the performance of all methods quantitatively on the entire
test dataset by the average PSNR and the structural similarity (SSIM) scores.
Table 1 indicates that our method achieves superior performance compared to
other methods, i.e., outperforming the second best with a large margin of 1.75
dB in PSNR. Note that, the average PSNR of TDAE for its released model is
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 5. Comparisons with the state-of-the-art methods. (a) Unaligned LR inputs. (b)
Original HR images. (c) Bicubic interpolation. (d) Kim et al.’s method [40] (VDSR).
(e) Ledig et al.’s method [37] (SRGAN). (f) Ma et al.’s method [22]. (g) Zhu et al.’s
method [6] (CBN). (h) Yu and Porikli’s method [7] (TDAE). Since TDAE is not trained
with near-frontal face images, we retrain it with our training dataset. (i) Our method.

only 18.87 dB because it is trained with near-frontal faces. Even after retaining
TDAE, indicated by TDAE†, its performance is still inferior to our results. It
also implies that our method localizes facial components and aligns LR faces
more accurately with the help of our estimated heatmaps.

5 Analysis and Discussion

Effectiveness of HEB: As shown in Fig. 4(c), Fig. 4(d) and Fig. 4(e), we
demonstrate that the visual results without HEB suffer from distortion and blur
artifacts. By employing HEB, we can localize the facial components as seen
in Fig. 3, and then recover realistic facial details. Furthermore, HEB provides
the spatial locations of facial components and an additional constraint for face
alignments. Thus we achieve higher reconstruction performance as shown in
Tab. 3.
Feature Sizes for HEB: In our network, there are several layers which can be
used to estimate facial component heatmaps, i.e., feature maps of sizes 16, 32,
64 and 128, respectively. We employ HEB at different layers and demonstrate
the influence of the sizes of feature maps. Due to GPU memory limitations,
we only compare the super-resolution performance of using features of sizes
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Table 2. Ablation study of HEB

Position Depth

R16 R32 S1 S2 S3 S4

PSNR 21.97 21.98 22.32 22.91 22.93 23.14

SSIM 0.63 0.64 0.64 0.67 0.67 0.68

Table 3. Ablation study on the loss

w/o Lh w/ Lh

Lp Lp+f Lp+f+U Lp Lp+f Lp+f+U

PSNR 21.43 21.57 21.55 23.23 23.35 23.14

SSIM 0.66 0.66 0.65 0.69 0.69 0.68

16 (R16), 32 (R32) and 64 (S4) to estimate heatmaps. As shown in Tab. 2,
as the resolution of feature maps increases, we obtain better super-resolution
performance. Therefore, we employ the upsampled feature maps of size 64×64
to estimate heatmaps.

Depths of HEB: Table 2 demonstrates the performance influenced by the stack
number of hourglass networks. Due to the limitation of GPU memory, we only
conduct our experiments on the stack number ranging from 1 to 4. As indicated
in Tab. 2, the final performance improves as the stack number increases. Hence,
we set the stack number to 4 for our HEB.

Loss Functions: Table 3 also indicates the influences of different losses on the
super-resolution performance. As indicated in Tab. 3 and Fig. 4, using the face
structure loss improves the super-resolved results qualitatively and quantitative-
ly. The feature-wise loss improves the visual quality and the discriminative loss
makes the hallucinated faces sharper and more realistic, as shown in Fig. 4(h).

Skip Connection and Autoencoder: Considering there are estimation errors
in the heatmaps, fusing feature maps with erroneous heatmaps may lead to
distortions in the final outputs. Hence, we employ a skip connection to correct
the errors in Fig. 2. As indicated in Tab. 1, using the skip connection, we can
improve the final quantitative result by 0.45 dB in PSNR. The result without
using skip connection is indicated by Ours†. We also remove our autoencoder
and upsample LR inputs directly and the result is denoted as Ours‡. As shown
in Tab. 1, we achieve 0.31 dB improvement with the help of the autoencoder.

6 Conclusion

We present a novel multi-task upsampling network to super-resolve very small
LR face images. We not only employ the image appearance similarity but also
exploit the face structure information estimated from LR input images them-
selves in the super-resolution. With the help of our facial component heatmap
estimation branch, our method super-resolves faces in different poses without
distortions caused by erroneous facial component localization in LR inputs.
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