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Abstract. In this paper, we propose a novel encoder-decoder network,
called Scale Aggregation Network (SANet), for accurate and efficient
crowd counting. The encoder extracts multi-scale features with scale
aggregation modules and the decoder generates high-resolution density
maps by using a set of transposed convolutions. Moreover, we find that
most existing works use only Euclidean loss which assumes indepen-
dence among each pixel but ignores the local correlation in density maps.
Therefore, we propose a novel training loss, combining of Euclidean loss
and local pattern consistency loss, which improves the performance of
the model in our experiments. In addition, we use normalization layers to
ease the training process and apply a patch-based test scheme to reduce
the impact of statistic shift problem. To demonstrate the effectiveness of
the proposed method, we conduct extensive experiments on four major
crowd counting datasets and our method achieves superior performance
to state-of-the-art methods while with much less parameters.

Keywords: Crowd Counting · Crowd Density Estimation · Scale Ag-
gregation Network · Local Pattern Consistency

1 Introduction

With the rapid growth of the urban population, crowd scene analysis [1,2] has
gained considerable attention in recent years. In this paper, we focus on the
crowd density estimation which could be used in crowd control for public safety
in many scenarios, such as political rallies and sporting events. However, pre-
cisely estimating crowd density is extremely difficult, due to heavy occlusions,
background clutters, large scale and perspective variations in crowd images.

Recently, CNN-based methods have been attempted to address the crowd
density estimation problem. Some works [3,4,5,6] have achieved significant im-
provement by addressing the scale variation issue with multi-scale architecture.
They use CNNs with different field sizes to extract features which are adaptive
to the large variation in people size. The success of these works suggests that
the multi-scale representation is of great value for crowd counting task. Besides,
the crowd density estimation based approaches aim to incorporate the spatial
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information of crowd images. As the high-resolution density maps contain finer
details, we hold the view that it is helpful for crowd density estimation to gen-
erate the high-resolution and high-quality of density maps.

However, there exists two main drawbacks in recent CNN-based works. On
the one hand, crowd density estimation benefits from the multi-scale representa-
tion of multi-column architecture, which uses multiple sub-networks to extract
features at different scales. But the scale diversity is completely restricted by
the number of columns (e.g. only three branches in multi-column CNN in [3]).
On the other hand, only pixel-wise Euclidean loss is used in most works, which
assumes each pixel is independent and is known to result in blurry images on
image generation problems [7]. In [6], adversarial loss [8] has been applied to
improve the quality of density maps and achieved good performance. Neverthe-
less, density maps may contain little high-level semantic information and the
additional discriminator sub-network increases the computation cost.

To address these issues, we follow the two points discussed above and propose
a novel encoder-decoder network, named Scale Aggregation Network (SANet).
The architecture of SANet is shown in Fig. 1. Motived by the achievement of
Inception [9] structure in image recognition domain, we employ scale aggregation
modules in encoder to improve the representation ability and scale diversity of
features. The decoder is composed of a set of convolutions and transposed con-
volutions. It is used to generate high-resolution and high-quality density maps,
of which the sizes are exactly same as input images. Inspired by [10], we use a
combination of Euclidean loss and local pattern consistency loss to exploit the
local correlation in density maps. The local pattern consistency loss is computed
by SSIM [11] index to measure the structural similarity between the estimated
density map and corresponding ground truth. The extra computation cost is
negligible and the result shows it availably improves the performance.

We use Instance Normalization (IN) [12] layers to alleviate the vanishing
gradient problem. Unfortunately, our patch-based model achieves inferior result
when tested with images due to the difference between local (patch) and global
(image) statistics. Thus, we apply a simple but effective patch-based training and
testing scheme to diminish the impact of statistical shifts. Extensive experiments
on four benchmarks show that the proposed method outperforms recent state-
of-the-art methods.

To summarize, the main contributions of our work as follows:

– We propose a novel network, dubbed as Scale Aggregation Network (SANet)
for accurate and efficient crowd counting, which improves the multi-scale
representation and generates high-resolution density maps. The network can
be trained end-to-end.

– We analyze the statistic shift problem caused by IN layers which are used to
ease the training process. Then we propose a simple but effective patch-based
train and test scheme to reduce its influence.

– We propose a novel training loss, combining Euclidean loss and local pattern
consistency loss to utilize the local correlation in density maps. The former
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Fig. 1: The architecture of the SANet. A convolutional layer is denoted as
“Conv(kernel size) (number of channels)”.

loss limits the pixel-wise error and the latter one enforces the local structural
similarity between predicted results and corresponding ground truths.

– Extensive experiments conducted on four challenging benchmarks demon-
strate that our method achieves superior performance to state-of-the-art
methods with much less parameters.

2 Related Works

A variety of methods have been proposed to deal with crowd counting task. They
can be briefly summarized into traditional methods and CNN-based approaches.

2.1 Traditional Approaches

Most of the early works [13,14] estimate crowd count via pedestrian detection
[15,16,17], which use body or part-based detector to locate people in the crowd
image and sum them up. However, these detection-based approaches are limited
by occlusions and background clutters in dense crowd scenes. Researchers at-
tempted regression-based methods to directly learn a mapping from the feature
of image patches to the count in the region [18,19,20]. With similar approaches,
Idrees et al. [21] proposed a method which fuses features extracted with Fourier
analysis, head detection and SIFT [22] interest points based counting in local
patches. These regression-based methods predicted the global count but ignored
the spatial information in the crowd images. Lempitsky et al. [23] proposed a
method to learn a linear mapping between features and object density maps in
local region. Pham et al. [24] observed the difficulty of learning a linear mapping
and used random forest regression to learn a non-linear mapping between local
patch features and density maps.



4 Cao et al.

2.2 CNN-based Approaches

Due to the excellent representation learning ability of CNN, CNN-based works
have shown remarkable progress for crowd counting. [25] introduced a compre-
hensive survey of CNN-based counting approaches. Wang et al. [26] modified
AlexNet [27] for directly predicting the count. Zhang et al. [28] proposed a con-
volutional neural network alternatively trained by the crowd density and the
crowd count. When deployed into a new scene, the network is fine-tuned using
training samples similar to the target scene. In [29], Walach and Wolf made use
of layered boosting and selective sampling methods to reduce the count estima-
tion error. Different from the existing patch-based estimation methods, Shang
et al. [30] used a network that simultaneously estimates local and global counts
for whole input images. Boominathan et al. [31] combined shallow and deep net-
works for generating density map. Zhang et al. [3] designed multi-column CNN
(MCNN) to tackle the large scale variation in crowd scenes. With similar idea,
Onoro and Sastre [4] also proposed a scale-aware network, called Hydra, to ex-
tract features at different scales. Recently, inspired by MCNN [3], Sam et al. [5]
presented Switch-CNN which trains a classifier to select the optimal regressor
from multiple independent regressors for particular input patches. Sindagi et al.
[32,6] explored methods to incorporate the contextual information by learning
various density levels and generate high-resolution density maps. To improve the
quality of density maps, they use adversarial loss to overcome the limitation of
Euclidean loss. Li et al. [33] proposed CSRNet by combining VGG-16 [34] and
dilated convolution layers to aggregate multi-scale contextual information.

However, by observing these recent state-of-the-art approaches, we found
that: (1) Most works use multi-column architecture to extract features at dif-
ferent scales. As the issue discussed in Sec. 1, the multi-scale representation of
this architecture might be insufficient to deal with the large size variance due to
the limited scale diversity. (2) [5,32,6] require density level classifier to provide
contextual information. However, these extra classifiers significantly increase the
computations. In addition, the density level is related to specific dataset and is
hard to be defined. (3) Most works use only pixel-wise Euclidean loss which
assumes independence among each pixel. Though adversarial loss has shown
improvement for density estimation, density maps may contain little high-level
semantic information.

Based on the former observations, we propose an encoder-decoder network to
improve the performance without extra classifier. Furthermore, we use a light-
weight loss to enforce the local pattern consistency between the estimated density
map and the corresponding ground truth.

3 Scale Aggregation Network

This section presents the details of the Scale Aggregation Network (SANet).
We first introduce our network architecture and then give descriptions of the
proposed loss function.
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Fig. 2: The architecture of scale aggregation module.

3.1 Architecture

As shown in Fig. 1, we construct our SANet network based on two insights,
i.e. multi-scale feature representations and high-resolution density maps. The
SANet consists of two components: feature map encoder (FME) and density map
estimator (DME). FME aggregates multi-scale features extracted from input
image and DME estimates high-resolution density maps by fusing these features.

Feature Map Encoder (FME) Most previous works use the multi-column
architecture to deal with the large variation in object sizes due to perspective
effect or across different resolutions. MCNN [3] contains three sub-networks to
extract features at different scales. However, as the drawback mentioned in Sec. 1,
the scale diversity of features is limited by the number of columns.

To address the problem, we propose an scale aggregation module to break
the independence of columns with concatenation operation, as shown in Fig. 2.
This module is flexible and can be extended to arbitrary branches. In this paper,
we construct it by four branches with the filter sizes of 1× 1, 3× 3, 5× 5, 7× 7.
The 1 × 1 branch is used to reserve the feature scale in previous layer to cover
small targets, while others increase respective field sizes. The output channel
number of each branch is set equal for simplicity. In addition, we add a 1 × 1
convolution before the 3 × 3, 5 × 5 and 7 × 7 convolution layers to reduce the
feature dimensions by half. These reduction layers are removed in the first scale
aggregation module. ReLU is applied after every convolutional layer.

The FME of SANet is constructed by scale aggregation modules stacked
upon each other as illustrated in Fig. 1, with 2 × 2 max-pooling layers after
each module to halve the spatial resolution of feature maps. The architecture
exponentially increases the possible combination forms of features and enhances
the representation ability and scale diversity of the output feature maps. In this
paper, we stack four scale aggregation modules. The stride of output feature
map is 8 pixels w.r.t the input image. Intuitively, FME might represent an
ensemble of variable respective field sizes networks. The ensemble of different
paths throughout the model would capture the multi-scale appearance of people
in dense crowd, which would benefit the crowd density estimation.
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Density Map Estimator (DME) While crowd density estimation based ap-
proaches take account of the spatial information, the output of most works is
low-resolution and lose lots of details. To generate high-resolution density maps,
we use a similar but deeper refinement structure to [6] as our DME, which is
illustrated in Fig.1. The DME of our SANet consists of a set of convolutional
and transposed convolutional layers. We use four convolutions to progressively
refine the details of feature maps, with filter sizes from 9 × 9 to 3 × 3. And
three transposed convolutional layers are used to recover the spatial resolution,
each of which increases the size of feature maps by a factor 2. ReLU activations
are added after each convolutional and transposed convolutional layers. Then,
a 1× 1 convolution layer is used to estimate the density value at each position.
Since the values of density maps are always non-negative, we apply a ReLU
activation behind the last convolution layer. Finally, DME generates the high-
resolution density maps with the same size as input, which could provide finer
spatial information to facilitate the feature learning during training the model.

Normalization Layers We observe a gradient vanishing problem which leads
to non-convergence in training process when we combine FME and DME to-
gether. We attempt the Batch Normalzation [35] (BN) and Instance Normaliza-
tion [12] (IN) to alleviate the problem, but get worse results when using BN due
to the unstable statistic with small batchsize. Hence, we apply IN layers, which
use statistics of each instance in current batch at training and testing, after each
convolutional and transposed convolutional layers. However, our model trained
by small patches gets inferior results when tested with whole images. We think
it is caused by the statistical shifts. Considering the last 1× 1 convolution layer
and the preceding IN layer, for a d-dimensional vector x = (x1...xd) of input
feature maps, the output is

y = ReLU

(

d
∑

i=0

wi ·ReLU

(

γi ·
xi − µi
√

σ2

i + ǫ
+ βi

)

+ b

)

, (1)

where w and b are weight and bias term of the convolution layer, γ and β are
weight and bias term of the IN layer, µ and σ2 are mean and variance of the input.
The output is a weighted combination of the features which are normalized by
the IN layer. Therefore, it is sensitive to the magnitude of features. But we find
the difference of σ2 are relatively large in some feature dimension when input
patches or images. Then the deviation is amplified by square root and reciprocal
function, and finally causes wrong density value. Since it is crucial to train the
deep network with patches in consideration of speed and data augmentation, we
apply a simple but effective patch-based training and testing scheme to reduce
the impact of statistic shift problem.

3.2 Loss Function

Most existing methods use pixel-wise Euclidean loss to train their network, which
is based on the pixel independence hypothesis and ignores the local correlation
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of density maps. To overcome this issue, we use single-scale SSIM to measure
the local pattern consistency and combine it with L2 loss.

Euclidean Loss The Euclidean loss is used to measure estimation error at pixel
level, which is defined as follows:

LE =
1

N
‖F (X; Θ)− Y ‖

2

2
(2)

where Θ denotes a set of the network parameters, N is the number of pixels in
density maps, X is the input image and Y is the corresponding ground truth
density map, F (X; Θ) denotes the estimated density map (we omit X and Θ
for notational simplicity in later part). The Euclidean loss is computed at each
pixel and summed over. Considering the size of input image may be different in
a dataset, the loss value of each sample is normalized by the pixel number to
keep training stable.

Local Pattern Consistency Loss Beyond the pixel-wise loss function, we also
incorporate the local correlation in density maps to improve the quality of results.
We utilize SSIM index to measure the local pattern consistency of estimated den-
sity maps and ground truths. SSIM index is usually used in image quality assess-
ment. It computes similarity between two images from three local statistics, i.e.
mean, variance and covariance. The range of SSIM value is from -1 to 1 and it is
equal to 1 when the two image are identical. Following [11], we use an 11×11 nor-
malized Gaussian kernel with standard deviation of 1.5 to estimate local statis-
tics. The weight is defined byW = {W (p) | p ∈ P,P = {(−5,−5), · · · , (5, 5)}} ,
where p is offset from the center and P contains all positions of the kernel. It
is easily implemented with a convolutional layer by setting the weights to W
and not updating it in back propagation. For each location x on the estimated
density map F and the corresponding ground truth Y , the local statistics are
computed by:

µF (x) =
∑

p∈P

W (p) · F (x+ p), (3)

σ2

F (x) =
∑

p∈P

W (p) · [F (x+ p)− µF (x)]
2, (4)

σFY (x) =
∑

p∈P

W (p) · [F (x+ p)− µF (x)] · [Y (x+ p)− µY (x)], (5)

where µF and σ2

F are the local mean and variance estimation of F , σFY is the
local covariance estimation. µY and σ2

Y are computed similarly to Equation 3,
4. Then, SSIM index is calculated point by point as following:

SSIM =
(2µFµY + C1)(2σFY + C2)

(µ2

F + µ2

Y + C1)(σ2

F + σ2

Y + C2)
, (6)
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where C1 and C2 are small constants to avoid division by zero and set as [11].
The local pattern consistency loss is defined below:

LC = 1−
1

N

∑

x

SSIM(x), (7)

where N is the number of pixels in density maps. LC is the local pattern con-
sistency loss that measures the local pattern discrepancy between the estimated
result and ground truth.

Final Objective By weighting the above two loss functions, we define the final
objective function as follows:

L = LE + αCLC , (8)

where αC is the weight to balance the pixel-wise and local-region losses. In our
experiments, we empirically set αC as 0.001.

4 Implementation Details

After alleviating the vanishing gradient problem with IN layers, our method can
be trained end-to-end. In this section, we describe our patch-based training and
testing scheme which is used to reduce the impact of statistic shift problem.

4.1 Training Details

In training stage, patches with 1/4 size of original image are cropped at random
locations, then they are randomly horizontal flipped for data augmentation.
Annotations for crowd image are points at the center of pedestrian head. It
is required to convert these points to density map. If there is a point at pixel
xi, it can be represented with a delta function δ(x − xi). The ground truth
density map Y is generated by convolving each delta function with a normalized
Gaussian kernel Gσ:

Y =
∑

xi∈S

δ(x− xi) ∗Gσ, (9)

where S is the set of all annotated points. The integral of density map is equal
to the crowd count in image. Instead of using the geometry-adaptive kernels [3],
we fix the spread parameter σ of the Gaussian kernel to generate ground truth
density maps.

We end-to-end train the SANet from scratch. The network parameters are
randomly initialized by a Gaussian distributions with mean zero and standard
deviation of 0.01. Adam optimizer [36] with a small learning rate of 1e-5 is used
to train the model, because it shows faster convergence than standard stochastic
gradient descent with momentum in our experiments. The implementation of
our method is based on the Pytorch [37] framework.
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4.2 Evaluation Details

Due to the statistic shift problem caused by the IN layers, the input need to be
consistent during training and testing. For testing the model trained based on
patches, we crop each test sample to patches 1/4 size of original image with 50%
overlapping. For each overlapping pixels between patches, we only reserve the
density value in the patch of which the center is the nearest to the pixel than
others, because the center part of patches has enough contextual information to
ensure accurate estimation.

For crowd counting, the count error is measured by two metrics, Mean Ab-
solute Error (MAE) and Mean Squared Error (MSE), which are commonly used
for quantitative comparison in previous works. They are defined as follows:

MAE =
1

N

N
∑

i=1

|Ci − CGT
i |, MSE =

√

√

√

√

1

N

N
∑

i

|Ci − CGT
i |2, (10)

where N is the number of test samples, Ci and CGT
i are the estimated and

ground truth crowd count corresponding to the ith sample, which is given by the
integration of density map. Roughly speaking, MAE indicates the accuracy of
predicted result and MSE measures the robustness. Because MSE is sensitive to
outliers and it would be large when the model poorly performs on some samples.

5 Experiments

In this section, we first introduce datasets and experiment details. Then an
ablation study is reported to demonstrate the improvements of different modules
in our method. Finally, we give the evaluation results and perform comparisons
between the proposed method with recent state-of-the-art methods.

5.1 Datasets

We evaluate our SANet on four publicly available crowd counting datasets:
ShanghaiTech [3], UCF CC 50 [21], WorldExpo’10 [28] and UCSD [38].

ShanghaiTech. The ShanghaiTech dataset [3] contains 1198 images, with a
total of 330,165 annotated people. This dataset is divided to two parts: Part A
with 482 images and Part B with 716 images. Part A is randomly collected from
the Internet and Part B contains images captured from streets views. We use
the training and testing splits provided by the authors: 300 images for training
and 182 images for testing in Part A; 400 images for training and 316 images
for testing in Part B. Ground truth density maps of both subset are generated
with fixed spread Gaussian kernel.

WorldExpo’10. The WorldExpo10 dataset [28] consists of total 3980 frames
extracted from 1132 video sequences captured with 108 surveillance cameras.
The density of this dataset is relatively sparser in comparison to ShanghaiTech
dataset. The training set includes 3380 frames and testing set contains 600 frames
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Table 1: Ablation experiment results on ShanghaiTech Part A. Models are
trained with patches and using only Euclidean loss unless otherwise noted

(a) Modules: Comparison the estimation
error of different network configurations.
MCNN∗ refers to our reimplementation

Model MAE MSE

MCNN [3] 110.2 173.2

MCNN∗ 109.4 161.6

FME 90.5 129.2

MCNN+DME 83.3 134.7

(b) Instance Normalization layers:
Estimation error of the models trained
with or without IN layers. ‘-’ indicates
that the model fails to converge

Model IN MAE MSE

MCNN+DME × 83.3 134.7
MCNN+DME X 77.6 111.5

SANet × - -
SANet X 71.0 107.5

(c) Loss function and Test Scheme: Estimation error of SANet trained with dif-
ferent loss functions and tested with different samples. LE refers to Euclidean loss and
LC refers to local pattern consistency loss

Loss function Test sample MAE MSE

LE image 116.8 180.4
LE patch 71.0 107.5

LE , LC image 88.1 134.3
LE , LC patch 67.0 104.5

from five different scenes and 120 frames per scene. Regions of interest (ROI)
are provided for all scenes. We use ROI to prune the feature maps of the last
convolution layer. During testing, only the crowd estimation error in specified
ROI is computed. This dataset also gives perspective maps. We evaluate our
method by ground truth generated with and without perspective maps. We
follow experiment setting of [6] to generate density maps with perspective maps.

UCF CC 50. The UCF CC 50 dataset [21] includes 50 annotated crowd im-
ages. There is a large variation in crowd counts which range from 94 to 4543.
The limited number of images make it a challenging dataset for deep learn-
ing method. We follow the standard protocol and use 5-fold cross-validation to
evaluate the performance of proposed method. Ground truth density maps are
generated with fixed spread Gaussian kernel.

UCSD. The UCSD dataset [38] consists of 2000 frames with size of 158×238
collected from surveillance videos. This dataset has relatively low density with
an average of around 25 people in a frame. The region of interest (ROI) is also
provided to ignore irrelevant objects. We use ROI to process the annotations.
MAE and MSE are evaluated only in the specified ROI during testing. Following
the train-test split used by [38], frames 601 through 1400 are used as training set
and the rest as testing set. We generate ground truth density maps with fixed
spread Gaussian kernel.
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Fig. 3: Visualization of estimated density maps. First row: sample images from
ShanghaiTech Part A. Second row: ground truth. Third row: estimated density
maps by MCNN [3], which are resized to the same resolution as input images.
Four row: estimated density maps by SANet trained with Euclidean loss only.
Five row: estimated density maps by SANet trained with the combination of
Euclidean loss and the local pattern consistency loss.

5.2 Ablation Experiments

We implement the MCNN and train it with the ground truth generated by
fixed-spread Gaussian kernel. The result is slightly better than that reported
in [3]. Based on the MCNN model, several ablation studies are conducted on
ShanghaiTech Part A dataset. The evaluation results are reported in Table 1.

Architecture. We separately investigate the roles of FME and DME in SANet.
We first append a 1× 1 convolution layer to our FME to estimate density maps,
which are 1/8 the size of input images. Both MCNN and FME output low-
resolution density maps, but FME improves the scale diversity of features by
the scale aggregation modules. Then, We combine DME with MCNN model to
increase the resolution of density maps. With up-sampling by the transposed
convolution layers in DME, the size of estimated density maps is the same as
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input images. Compared with MCNN baseline, both FME and DME substan-
tially reduce the estimation error. Table 1a shows that FME lowers MAE by
19.9 points and MSE by 32.4 points, while DME decreases 26.1 points of MAE
and 26.9 points of MSE than baseline. This result demonstrate that the multi-
scale feature representation and the high-resolution density map are extremely
beneficial for the crowd density estimation task.

Instance normalization. Considering the vanishing gradient problem, we ap-
ply IN layers to both MCNN+DME and SANet. As illustrated in Table 1b,
the IN layer can ease training process and boost the performance by a large
margin. For MCNN+DME, IN layers decrease MAE by 5.7 points and MSE by
23.2 points. This result indicates that the model tends to fall into local minima
without the normalization layers. Meanwhile, SANet with IN layers converges
during training and achieves competitive results, with MAE of 71.0 and MSE
of 107.5. The result would encourage attempts to use deeper network in density
estimation problem.

Test scheme. We evaluated the SANet trained with patches by different input
samples, i.e. images and patches. As shown in Table 1c, we can see that the
SANet obtains promising results when testing with patches, but the performance
is significantly dropped when testing with images. It verifies the statistic shift
problem caused by IN layers. Therefore, it is indispensable to apply the patch-
based test scheme.

Local pattern consistency loss. The result by using the combination of Eu-
clidean loss and local pattern consistency loss is given in the Table 1c. We can
observe that the model trained with the loss combination results in lower es-
timation error than using only LE , which indicates this light-weight loss can
improve the accuracy and robustness of model. Furthermore, the local pattern
consistency loss significantly increases the performance when testing with im-
ages, which shows that the loss can enhance the insensitivity to statistic shift.
We think it could smooth changes in the local region and reduce the statistical
discrepancy between patches and images

Qualitative analysis. Estimated density maps from MCNN and our SANet
with or without local pattern consistency loss on sample input images are il-
lustrated in Fig. 3. We can see that our method obtains lower count error and
generates higher quality density maps with less noise than MCNN. Moreover,
the use of additional local pattern consistency loss further reduce the estimation
error and improve the quality.

5.3 Comparisons with State-of-the-art

We demonstrate the efficiency of our proposal method on four challenging crowd
counting datasets. Table 2, 3, 4, 5 report the results on ShanghaiTech, World-
Expo’10, UCF CC 50 and UCSD respectively. They show that the proposed
method outperforms all other state-of-the-art methods from all tables, which
indicates our method works not only in dense crowd images but also relatively
sparse scene.
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Table 2: Comparison with state-of-the-art methods on ShanghaiTech dataset [3]
Part A Part B

Method MAE MSE MAE MSE

Zhang et al. [28] 181.8 277.7 32.0 49.8

MCNN [3] 110.2 173.2 26.4 41.3

Cascaded-MTL [32] 101.3 152.4 20.0 31.1

Huang et al. [39] - - 20.2 35.6

Switch-CNN [5] 90.4 135.0 21.6 33.4

CP-CNN [6] 73.6 106.4 20.1 30.1

CSRNet [33] 68.2 115.0 10.6 16.0

SANet(ours) 67.0 104.5 8.4 13.6

Table 3: Comparison with state-of-the-art methods on WorldExpo’10 dataset
[28]. Only MAE is computed for each scene and then averaged to evaluate the
overall performance

Method Scene1 Scene2 Scene3 Scene4 Scene5 Avgerage

Zhang et al. [28] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [3] 3.4 20.6 12.9 13.0 8.1 11.6

Huang et al. [39] 4.1 21.7 11.9 11.0 3.5 10.5

Switch-CNN [5] 4.4 15.7 10.0 11.0 5.9 9.4

CP-CNN [6] 2.9 14.7 10.5 10.4 5.8 8.9

CSRNet [33] 2.9 11.5 8.6 16.6 3.4 8.6

SANet(ours) with perspective 2.8 14.0 10.2 12.5 3.5 8.6

SANet(ours) w/o perspective 2.6 13.2 9.0 13.3 3.0 8.2

As shown in Table 2, our method obtains the lowest MAE on both subset
of ShanghaiTech. On WorldExpo’10 dataset, our approaches with and without
perspective maps, both are able to achieve superior result compared to the other
methods in Table 3. In addition, the method without perspective maps gets bet-
ter result than using it and acquires the best MAE in two scenes. In Table 4,
our SANet also attains the lowest MAE and a comparable MSE comparing to
other eight state-of-the-art methods, which states our SANet also has decent
performance in the case of small dataset. Table 5 shows that our method out-
performs other state-of-the-art methods even in sparse scene. These superior
results demonstrate the effectiveness of our proposed method.

As shown in Table 6, the parameters number of our proposed SANet is the
least except MCNN. Although CP-CNN and CSRNet have comparable result
with our method, CP-CNN has almost 75× parameters and CSRNet has nearly
17× parameters than ours. Our method achieves superior results than other
state-of-the-art methods while with much less parameters, which proves the ef-
ficiency of our proposed method.
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Table 4: Comparison with state-of-the-art methods on UCF CC 50 dataset [21]
Method MAE MSE

Idrees et al. [21] 419.5 541.6

Zhang et al. [28] 467.0 498.5

MCNN [3] 377.6 509.1

Huang et al. [39] 409.5 563.7

Hydra-2s [4] 333.7 425.3

Cascaded-MTL [32] 322.8 341.4

Switch-CNN [5] 318.1 439.2

CP-CNN [6] 295.8 320.9

CSRNet [33] 266.1 397.5

SANet(ours) 258.4 334.9

Table 5: Comparison with state-of-the-art methods on UCSD dataset [38]
Method MAE MSE

Zhang et al. [28] 1.60 3.31

MCNN [3] 1.07 1.35

Huang et al. [39] 1.00 1.40

CCNN [4] 1.51 -

Switch-CNN [5] 1.62 2.10

CSRNet [33] 1.16 1.47

SANet(ours) 1.02 1.29

Table 6: Number of parameters (in millions)

Method MCNN [3] Switch-CNN [5] CP-CNN [6] CSRNet [33] SANet

Parameters 0.13 15.11 68.4 16.26 0.91

6 Conclusion

In this work, we propose a novel encoder-decoder network for accurate and effi-
cient crowd counting. To exploit the local correlation of density maps, we propose
the local pattern consistency loss to enforce the local structural similarity be-
tween density maps. By alleviating the vanishing gradient problem and statistic
shift problem, the model can be trained end-to-end. Extensive experiments show
that our method achieves the superior performance on four major crowd count-
ing benchmarks to state-of-the-art methods while with much less parameters.

Acknowledgement

This work was supported by Chinese National Natural Science Foundation Projects
No.61532018 and No.61471049.



Scale Aggregation Network for Accurate and Efficient Crowd Counting 15

References

1. Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L.Q.: Crowd anal-
ysis: a survey. Machine Vision and Applications 19(5-6) (2008) 345–357

2. Li, T., Chang, H., Wang, M., Ni, B., Hong, R., Yan, S.: Crowded scene analysis:
A survey. IEEE transactions on circuits and systems for video technology 25(3)
(2015) 367–386

3. Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting via
multi-column convolutional neural network. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. (2016) 589–597
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