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Abstract. This paper studies the object transfiguration problem in wild
images. The generative network in classical GANs for object transfigura-
tion often undertakes a dual responsibility: to detect the objects of inter-
ests and to convert the object from source domain to another domain. In
contrast, we decompose the generative network into two separated net-
works, each of which is only dedicated to one particular sub-task. The
attention network predicts spatial attention maps of images, and the
transformation network focuses on translating objects. Attention maps
produced by attention network are encouraged to be sparse, so that ma-
jor attention can be paid on objects of interests. No matter before or
after object transfiguration, attention maps should remain constant. In
addition, learning attention network can receive more instructions, given
the available segmentation annotations of images. Experimental results
demonstrate the necessity of investigating attention in object transfigu-
ration, and that the proposed algorithm can learn accurate attention to
improve quality of generated images.
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1 Introduction

The task of image-to-image translation aims to translate images from a source
domain to another target domain, e.g., greyscale to color and image to seman-
tic label. A lot of researches on image-to-image translation have been produced
in the supervised setting, where ground truths in the target domain are avail-
able. [1] learns a parametric translation function using CNNs by minimizing the
discrepancy between generated images and the corresponding target images. [2]
uses conditional GANs to learn a mapping from input to output images. Similar
ideas have been applied to various tasks such as generating photographs from
sketch or from semantic layout [3, 4], and image super-resolution [5].

To achieve image-to-image translation in the absence of paired examples,
a series of works has emerged by combining classical adversarial training [6]
with different carefully designed constraints, e.g., circularity constraint [7–9], f -
consistency constraint [10], and distance constraints [11]. Although there is no
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Fig. 1. (a): Object transfiguration of horse ↔ zebra. (b): An illustration of Attention-
GAN. A, T,D respectively represent the attention network, the transformation network
and the discriminative network. Sparse loss denotes the sparse regularization for the
predicted attention map. MSE denotes mean square error loss for supervised learning.
A(x) denotes the attention map predicted by the attention network. T (x) denotes the
transformed images. ⊙ denotes the layered operation.

paired data, these constraints are able to establish the connections between two
domains so that meaningful analogs are obtained. Circularity constraint [7–9]
requires a sample from one domain to the other that can be mapped back to
produce the original sample. f -consistency requires both input and output in
each domain should be consistent with each other in intermediate space of a
neural network. [11] learns the image translation mapping in a one-sided un-
supervised way by enforcing high cross-domain correlation between matching
pairwise distances computed in source and target domains.

Object transfiguration is a special task in the image-to-image translation
problem. Instead of taking the image as a whole to accomplish the transfor-
mation, object transfiguration aims to transform a particular type of object in
an image to another type of object without influencing the background regions.
For example, in the top line of Figure 1(a), horses in the image are transformed
into zebras, and zebras are transformed into horses, but the grassland and the
trees are expected to be constant. Existing methods [7, 11] used to tackle object
transfiguration as a general image-to-image task, without investigating unique
insights of the problem. In such a one-shot generation, a generative network ac-
tually takes two distinct roles: detecting the region of interests and converting
object from source domain to target domain. However, incorporating these two
functionalities in a single network would confuse the aims of the generative net-
work. In iterations, it could be unclear whether the generative network should
improve its detection of the objects of interests or boost its transfiguration of the
objects. The quality of generated images is often seriously influenced as a result,
e.g. some background regions might be taken into transformation by mistake.
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In this paper, we propose an attention-GAN algorithm for the object transfig-
uration problem. The generative network in classical GANs has been factorized
as two separated networks: an attention network to predict where the atten-
tion should be paid, and a transformation network that actually carries out the
transformation of objects. A sparse constraint is applied over the attention map,
so that limited attention energy can be focused on regions of priority rather
than spreaded on the whole image at random. A layered operation is adopted
to finalize the generated images by combining the transformed objects and the
original background regions with the help of the learned sparse attention mask.
A discriminative network is employed to distinguish real images from these syn-
thesized images, while attention network and transformation network cooperate
to generate synthesized images that can fool the discriminative network. Cycle-
consistent loss [7–9] was adopted to handle unpaired data. Moreover, if segmen-
tation results of images are available, the attention network can be learned in a
supervised manner and the performance of the proposed algorithm can be im-
proved accordingly. Experimental results on three object transfiguration tasks,
i.e. horse ↔ zebra, tiger ↔ leopard, and apple ↔ orange [12], suggest the advan-
tages of investigating attention in object transfiguration, and the quantitative
and the qualitative performance improvement of the proposed algorithm over
state-of-the-art methods.

2 Related Work

Generative Adversarial Networks Generative adversarial networks (GANs)
[6] have achieved impressive results in image generation [13–15] by way of a two-
player minimax game: a discriminator aims to distinguish the generated images
from real images while a generator aims to generate realistic images to fool the
discriminator. A series of multi-stage generative models has been proposed to
generate more realistic images [16–18]. [17] proposes composite generative ad-
versarial network (CGAN) that disentangles complicated factors of images by
employing multiple generators to generate different parts of the image. The lay-
ered recursive GANs [18] learns to generate image background and foregrounds
separately and recursively. GANs have shown a great success on a variety of
conditional image generation applications, e.g., image-to-image translation [7–
9, 19], text-to-image generation [20, 21]. Different from the original GANs that
generate images from noise variables, conditional GANs synthesize images based
on the input information (e.g., category, image and text). [22] proposes a mask-
conditional contrast-GAN architecture to disentangle image background with
object semantic changes by exploiting the semantic annotations in both train
and test phases. However, it is hard to collect segmentation mask for a large
number of images, especially in test phase.

Attention Model in Networks Motivated by human attention mechanism
theories [23], attention mechanism has been successfully introduced in computer
vision and natural language processing tasks, e.g. image classification [24–26],
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image captioning [27], visual question answering [28], image segmentation [29].
Rather than compressing an entire image or a sequence into a static represen-
tation, attention allows the model to focus on the most relevant part of images
or features as needed. Mnih et al. [24] propose a recurrent network model that
is capable of only processing a sequence of regions or locations of an image or
video. Bahdanau et al. [30] propose an attention model that softly weights the
importance of input words in a source sentence when predicting a target word
for machine translation. Following this, Xu et al. [27] and Yao et al. [31] use
attention models for image captioning and video captioning respectively. The
model automatically learns to fix its gaze on salient objects while generates
the corresponding words in the output sequence. In visual question answering,
[28] uses the question to choose relevant regions of the images for computing
the answer. In image generation, Gregor et al. [32] proposes a generative net-
work combined attention mechanism with a sequential variational auto-encoding
framework. The generator attends a smaller region of an input image guided by
the ground truth image, and generates a few pixels for an image at a time. Differ-
ently, our method combine the attention mechanism with GANs framework and
produce region of interest in absence of ground truth images in target domain.

3 Preliminaries

In the task of image-to-image translation, we have two domains X and Y with
training samples {xi}

N
i ∈ X and {yi}

N
i ∈ Y . The goal is to learn mapping from

one domain to the other G : X → Y , (e.g. horse→zebra). The discriminator DY

aims to distinguish real image y from translated images G(x). On the contrary,
the mapping function G tries to generate images G(x) that looks similar to
images in Y domain to fool the discriminator. The objective of adversarial loss
in LSGAN [33] is expressed as:

LGAN (G, DY , X, Y ) = Ey∈Y

[

D2

Y (y)
]

+ Ex∈X

[

(DY (G(x))− 1)2
]

, (1)

The mapping function F : Y → X, in the same way, tries to fool the discrimi-
nator DX :

LGAN (F , DX , X, Y ) = Ex∈X

[

D2

X(x)
]

+ Ey∈Y

[

(DX(F(y))− 1)2
]

. (2)

The discriminatorsDX andDY try to maximize the loss while mapping functions
G and F try to minimize the loss. However, a network of sufficient capacity can
map the set of input images to any random permutation of images in the target
domain. To guarantee that the learned function maps an individual input x

to a desired output y, the cycle consistency loss is proposed to measure the
discrepancy occurred when the translated image is brought back to the original
image space:

Lcyc(G,F ) = Ex∈X [‖F(G(x))− x‖1] + Ey∈Y [‖G(F(y))− y‖1] . (3)
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Taking advantages of adversarial loss and cycle consistency loss, the model
achieves a one-to-one correspondence mapping, and discovers the cross-domain
relation [8]. The full objective is:

L(G,F , DX , DY ) = LGAN (G, DY , X, Y )

+ LGAN (F , DX , Y,X) + λLcyc(G,F),
(4)

where λ controls the relative importance of the two objectives. However, the
generative mapping functions G and F actually takes a dual responsibility for
object transfiguration: to detect the objects of interest and to transfigure the
object, which confuse the aims of the generative network.

On the other hand, we notice that the model can be viewed as two ‘autoen-
coders’: F ◦G : X → X and G◦F : Y → Y , where the translated image G(x) and
F(y) can be viewed as intermediate representations trained by adversarial loss.
In object transfiguration task, the generative mappings G and F are trained to
generate objects to fool the discriminator. Therefore, the image background can
be coded as any representation so long as it can be decoded back to the original,
which does not guarantee background consistency before and after transforma-
tion. As a result, the proposed Attention-GAN that decomposes the generative
network into two separated network: an attention network to predict the object
of interests and a transformation network focuses on transforming object.

4 Model

The proposed model consists of three players: an attention network, a transfor-
mation network, and a discriminative network. The attention network predicts
the region of interest from the original image x. The transformation network
focuses on transforming the object from one domain to the other. The resulting
image is therefore a combination of the transformed object and the background
of original image with a layered operator. Finally, the discriminator aims to dis-
tinguish the real image y ∈ Y and the generated image. The overview of the
proposed model is illustrated in Figure 1(b). For notation simplicity, we only
show the forward process that transforms images from domain X to domain Y ,
and the backward process from domain Y back to the domain X can be easily
obtained in the similar approach.

4.1 Formulations

The architecture of the proposed model is shown in Figure 2. Given an input
image x in domain X, the attention network AX outputs a spatial score map
AX(x), whose size is the same as the original image x. The element value of score
map is from 0 to 1. The attention network assigns higher scores of visual attention
to the region of interest while suppressing background. In another branch, the
transformation network T outputs the transformed image T (x) that looks similar
to those in the target domain Y . Then we adopt a layered operation to construct
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Transformation Network

Attention Network

Fig. 2. The proposed Attention-GAN for object transfiguration from one class to an-
other. The attention network predicts the attention maps. The transformation network
synthesizes the target object. A layered operation is applied on the background and
transformed images to output the resulting image.

the final image. Given transformed region AX(x), a transformed image TX(x)
and image background from original image x are combined as:

G(x) ≡ AX(x)⊙ TX(x) + (1−AX(x))⊙ x, (5)

where ⊙ denotes the element-wise multiplication operator. Another mapping
function F is introduced to bring transformed images G (x) back to the original
space F(G(x)) ≈ x. The mapping from an image y in target domain Y to the
source domain follows:

F(y) ≡ AY (y)⊙ TY (y) + (1−AY (y))⊙ y. (6)

Followed by Section 3, the adversarial loss (Equations (1) and (2)) and the cy-

cle consistency loss (Equation (3)) are introduced to learn the overall mappings
G and F . In classical GANs [7–9], the generative mapping G transforms the
whole image to target domain and then the generative mapping F is required
to bring the transformed image back to original image F (G (x)) ≈ x. However,
in practice, the background of the generated image appears to be unreal and
significantly different from the original image background, so that the cycle con-
sistency loss can hardly reach 0. In our method, the attention network outputs
a mask that separates the image into region of interest and background. The
background part will not be transformed, so that the cycle consistency loss in
the background reaches 0.

4.2 Attention Losses

Similar to cycle consistency, the attention map of object x in domain X pre-
dicted by attention network AX should be consistent with the attention map
of the transformed object by attention network AY . For example, if a horse is
transformed into a zebra, the region of the zebra should be brought back to the
horse as a cycle. That is to say, the regions of interest in the original image
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and the transformed image should be the same: AX(x) ≈ AY (G(x)). Similarly,
for each image y from domain Y , attention network AY and AX should satisfy
consistency: AY (y) ≈ AX(F(y)). To that end, we propose an attention cycle-
consistent loss:

LAcyc
(AX , AY ) = Ex∈X [‖AX(x)−AY (G(x))‖1] + Ey∈Y [‖AY (y)−AX(F(y))‖1]

(7)
In addition, we introduce a sparse loss to encourage the attention network to
pay attention to a small region related to the object instead of the whole image:

Lsparse(AX , AY ) = Ex∈X [‖AX(x)‖1] + Ey∈Y [||AY (y)||1] . (8)

Considering Equation (7), the attention maps of AX(F(y)) and AY (G(x)) should
be consistent to AY (y) and AX(x), so they do not include additional sparse loss
on AX(F(y)) and AY (G(x)).

Hence, by combining Equations (1-3), (7) and (8), our full objective is:

L(TX , TY , DX , DY , AX , AY ) = LGAN (G, DY , X, Y ) + LGAN (F , DX , X, Y )

+ λcycLcyc(G,F) + λAcyc
LAcyc

(AX , AY ) + λsparseLsparse(AX , AY ),
(9)

where λsparse and λcyc balance the relative importance of different terms. At-
tention network, transformation network and discriminative network in both X

domain and Y domain can be solved in the following min-max game:

arg min
TX ,TY ,AX ,AY

max
DX ,DY

L(TX , TY , DX , DY , AX , AY ), (10)

the optimization algorithm is described in the supplementary material.

4.3 Extra Supervision

In some cases, segmentation annotations can be collected and used as attention
map. For example, our horse → zebra image segmentation of horse is exactly
the region of interest. We therefore supervise the training of the attention net-
work by segmentation label. Given a training set {(x1,m1), · · · , (xN ,mN )} of
N examples, where mi indicates the binary labels of segmentation, we minimize
the discrepancy between predicted attention maps A(xi) and segmentation label
mi. To learn the attention maps for both X domain and Y domain, the total
attention loss can be written as:

LAsup
(AX , AY ) =

NX
∑

i=1

‖mi −AX(xi)‖1 +

NY
∑

j=1

‖mj −AY (yj)‖1. (11)

The full objective thus becomes:

L(TX , TY , DX , DY , AX ,AY ) = LGAN (G, DY , X, Y ) + LGAN (F , DX , X, Y )

+ λcycLcyc(G,F) + λAsup
LAsup

(AX , AY ),

(12)

where λcyc and λAsup
control the relative importance of the objectives. As the

attention maps are supervised by semantic annotations, we do not incorporate
the constraints of Equations (7) and (8).
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5 Experiments

In this section, we first introduce two metrics to evaluate the quality of gener-
ated images. We then compare unsupervised Attention-GAN against CycleGAN
[7]. Next, we study the importance of the attention sparse loss, and compare
our method against some variants. Lastly, we demonstrate empirical results of
supervised Attention-GAN.

We first evaluated the proposed Attention-GAN on three tasks: horse ↔ ze-
bra, tiger ↔ leopard and apple ↔ orange. The images for horse, zebra, apple
and orange were provided by CycleGAN [7]. The images for tiger and leopards
are from ImageNet [12], which consists of 1,444 images for tiger, 1,396 for leop-
ard. We randomly selected 60 images for test, and the rest for training set. In
supervised experiment, we performed horse ↔ zebra task where images and an-
notations can be obtained from MSCOCO dataset [34]. For each object category,
images in MSCOCO training set were used for training and those in MSCOCO
val set were for testing. For all experiments, the training samples were first scaled
as 286×286, and then randomly flipped and cropped as 256×256. In test phase,
we scaled input images to the size of 256 × 256.

For all experiments, the networks were trained with an initial learning rate
of 0.0002 for the first 100 epoch and a linearly decaying rate that goes to zero
over the next 100 epochs. We used the Adam solver [35] with batch size of 1.
We updated the discriminative networks using a randomly selected sample from
a buffer of previously generated images followed by [36]. The training process is
shown in supplementary material. The architectures of transformation networks
and attention networks are based on Johnson et al. [37]. The discriminators are
adapted from the Markovian Patch-GAN [38, 2, 7, 9]. Details are listed in the
supplementary material.

5.1 Assessment of Image Quality

Since object transiguration is required to predict the region of interest and trans-
form the object while preserve the background, we introduce metrics to estimate
quality of transformed image.

To assess the background consistency of transformation, we compute PSNR
and SSIM between generated image background and original image background.
PSNR is an approximation to human perception of reconstruction quality, which
is defined via mean squared error (MSE). Given testing samples {(x1,m1), · · · ,
(xN ,mN )}, we use pixels-wise multiplication ⊙ by the segmentation mask to
compute image background PSNR:

1

N

N
∑

i=1

PSNR (xi ⊙ (1−mi) ,G(xi)⊙ (1−mi)) , (13)

where xi indicates original image, G(xi) indicates the resulting image, (1−mi)
indicates the image background, the pixels-wise multiplication xi ⊙ (1 − mi)
indicates the background of original image, and G(xi) ⊙ (1 −mi) indicates the
background of generated image. Similarly, we use SSIM to assess the structural
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Input Output Attention Map Input Output Attention Map

horse → zebra zebra → horse

leopard → tiger tiger → leopard

apple → orange orange → apple

Fig. 3. Results of object transfiguration on different tasks: horse ↔ zebra, leopard ↔
tiger and apple ↔ orange. In each case, the first image is the original images, the second
image is the synthesized image, and the third image is the predicted attention map.
Our proposed model only manipulates the attention parts of image and preserves the
background consistency.

Table 1. Background consistency performance of different object transfiguration tasks
for background PSNR and SSIM.

Task CycleGAN DistanceGAN
Ours

(Unsupervised)
Ours

(Supervised)

PSNR
horse → zebra 18.1875 11.1896 22.2629 24.589
zebra → horse 18.1021 10.1153 21.5360 23.9330

SSIM
horse → zebra 0.6725 0.2630 0.9003 0.9482
zebra → horse 0.7155 0.3627 0.8988 0.9534

similarity between background of original image and composited output by using
pixels-wise multiplication:

1

N

N
∑

i=1

SSIM (xi ⊙ (1−mi) , yi ⊙ (1−mi)) . (14)

In experiment, we use MSCOCO [34] dataset’s test images and segmentation
mask to evaluate background quality of generated image.

5.2 Unsupervised Results Comparisons to State-of-the-Art

Quantitative Comparison. We compare our method with CycleGAN [7] and
DistanceGAN [11] by computing the image background PSNR and SSIM (Equa-
tions (13) and (14)). The test dataset is fromMSCOCO dataset [34]. As MSCOCO



10 X. Chen et al.

Input CycleGAN Ours Input CycleGAN Ours

horse → zebra zebra → horse

Fig. 4. Comparison with CycleGAN on horse ↔ zebra. In each case, the first image is
the input image, the second is the result of CycleGAN [7], and the third is the result
of our Attention-GAN.

Input CycleGAN Ours Input CycleGAN Ours

leopard → tigertiger → leopard

apple → orange orange → apple

Fig. 5. Comparison with CycleGAN on apple ↔ orange and tiger ↔ leopard. In each
case: input image (left), result of CycleGAN [7] (middle), and result of our Attention-
GAN (right).

dataset does not have the classes of tiger or leopard, and apples and oranges in
images are too small, we only compare the results of horse ↔ zebra. Results
are shown in Table 1. As can be seen, for both PSNR and SSIM, our method
in unsupervised fashion outperforms CycleGAN and DistanceGAN, which in-
dicates that the proposed model predicts accurate attention map and achieves
a better performance of transformation quality. Since our method outperforms
DistanceGAN by a large margin, we only explore qualitative quality and human
perceptual study with CycleGAN.

Qualitative comparison Results of horse ↔ zebra are shown in Fig. 4. We
observed that our method provides translation results of higher visual quality
on test data compared to those of CycleGAN. For example, in the horse →
zebra task, CycleGAN mistakes some parts of background as target and trans-
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Fig. 6. The stacked bar chart of participants preferences for our methods compared to
CycleGAN [21]. The blue bar indicates the number of images that more participants
prefer our results. The gray bar indicates the number of images that more participants
prefer CycleGAN’s results. The orange bar indicates the number of images where two
methods get a equal number of votes from 10 participants.

forms them into black and white stripes. In second column of Fig 4, CycleGAN
translates the green grass and trees into brown in the zebra → horse task. In
contrast, our method generates zebra in the correct location and preserves back-
ground consistency. Comparison results on tiger ↔ leopard and apple ↔ orange
are shown in Figure 5. The results of Attention-GAN are more visually pleasing
than those of CycleGAN. In most cases, CycleGAN can not preserve background
consistency, e.g., the blue jeans in the first image are transformed to yellow, the
blue water in third image is transformed to yellow and the yellow weeds in the last
image is transformed to green. One possible reason is that our Attention-GAN
disentangles the background and object of interests by the attention network and
only transforms the object, while the compared method only uses one generative
network that manipulate the whole image.
Human Perceptual Study We further evaluate our algorithm via a human
study. We perform pairwise A/B tests deployed on the Amazon Mechanical Turk
platform. We follow the same experiment procedure in [39, 40]. The participants
are asked to select the more realistic image from each pair. Each pair contains
two images translated from the same source image by two approaches. We test
the tasks of horse ↔ zebra, tiger ↔ leopard and apple ↔ orange. In each task,
we randomly select 100 images from test set. Each image are compared by 10
participants. Figure 6 shows the participants preference among 100 examples.
We observe that 92 results of our methods outperforms results of CycleGAN
in horse ↔ zebra task. In tiger ↔ leopard, still only 17% results of compared
method beat ours, which indicates that qualitative assessments obtained by our
proposed approaches are better than those obtained by existing methods. We also
notice that in apple ↔ orange task, only 60 results of our methods outperform
the compared method. We consider the reason is that a large portion of images
in apple and orange dataset are close-up images whose background is simple so
that CycleGAN could reach a competitive result.

5.3 Model Analysis

We perform model analysis on the horse → zebra task. Figure 7 shows the gen-
erated images, along with the intermediate generation results of model. In the
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Fig. 7. Generation results of our model on horse → zebra. From left to right: Inputs,
attention maps, outputs of transformation network, background images factorized by
attention maps, object of images factorized by attention maps, final composite images.

Table 2. Performance of horse → zebra for different losses.

λattn = 0 λattn = 1 λattn = 5

PSNR 19.8621 22.2629 24.2173
SSIM 0.8291 0.9003 0.9367

second column, the attention maps with are shown. As can be seen, while being
completely unsupervised, the attention network of model is able to successfully
disentangle the objects of our interests and the background from input image.
The third column is the output of the transformation network, where the trans-
formed zebra are visually pleasing while the background parts of images are
meaningless. It demonstrates that the transformation network only focuses on
transforming the object of interests. Moreover, Figure 7 shows that the final
output images in the last column are combined by the background parts in the
forth column and the objects of interests in the fifth column.

Figure 8 shows the qualitative results of variants of our model on horse →
zebra. It can be seen that without the sparse loss (λsparse = 0 in Equation (8)),
the attention network would predict some parts of image background as regions
of interests. When λsparse was set to 5, the attention mask shrinked too much
to cover the whole object of interests. It is because if we emphasize too much on
the relative importance of sparse loss, the attention network can not comprehen-
sively predict the object location. We find λsparse = 1 is an appropriate choice,
which makes a good balance to pay enough attention on the objects of interests.
In Table 2, we observe that with the value of λsparse becoming larger, the perfor-
mance of background consistency is better. However, the qualities of transformed
object decrease if λsparse is set too large. This indicates that the λsparse can be
viewed as a parameter that balance the performance of background consistency
and transformation quality.
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!"#$% !"##$ % & !"##$ % ' &$'( !"##$ % (

Fig. 8. The effect of sparse loss with different parameters λsparse for mapping horse →
zebra. From left to right: input, output and attention map without sparse loss, input
and attention map when λsparse = 1, input and attention map when λsparse=5.

Input CycleGAN
Attention-GAN
(unsupervised)

Attention-GAN
(supervised)

Fig. 9. Comparison of horse ↔ zebra between CycleGAN [7], unsupervised Attention-
GAN and supervised Attention-GAN.

5.4 Comparisons of Supervised Results

We compute PSRN, SSIM of background region between generated and original
images in horse ↔ zebra task. In Table 1, the Attention-GAN with supervision
outperforms unsupervised Attention-GAN and CycleGAN from the perspective
of background consistency. This demonstrates that the attention network pre-
dicts the object of interests more accurately with the segmentation mask. In
Figure 9, CycleGAN and unsupervised Attention-GAN predict some parts of
the person as region of interests and transform them into texture of zebra (see
the first row of Figure 9). We also notice that the attention maps with supervi-
sion tend to be dark red or dark blue, which indicates the supervised attention
network predicts with higher confidence, and disentangles the background and
object of interests more clearly.

We evaluate the foreground mask of horse in terms of UoI and mAPr@0.5.
The unsupervised Attention-GAN got 28.1% of UoI and 20.3% of mAPr@0.5.
On the other hand, the supervised Attention-GAN got 37.8% of UoI score and
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Input CycleGAN Attention-GAN

Fig. 10. Results of Summer → Winter comparing with CycleGAN

30.5% of mAPr@0.5. Although our algorithm is not particularly designed for
semantic segmentation, the proposed attention network is able to learn the object
of interests in an unsupervised way and achieve a reasonable performance.

5.5 Global Image Transformation

Both local and global image transformation are important. We study object
transfiguration, and evaluate it on horse ↔ zebra, apple ↔ orange and tiger ↔
leopard. More applications include virtual try-on [41] with regard to a desired
clothing item of a person, and face attributes (e.g. mustache and glass) changing
[42]. The proposed attention GAN is effective to identify important regions in
object transfiguration problems, and it can also lead to some interesting obser-
vations in global image transformation. In summer ↔ winter, there is no explicit
object of interests, but the algorithm does recognize some regions with more at-
tention, e.g. grass and trees in Fig. 10, which are usually green in summer and
brown in winter. Meanwhile, regions without distinctive characteristics, e.g., blue
sky would not be attended.

6 Conclusion

This paper introduces attention mechanism into the generative adversarial nets
considering image context and structure information on object transfiguration
task. We develop a three-player model that consists of an attention network,
a transformation network and a discriminative network. The attention network
predicts the regions of interest whilst the transformation network transforms the
object from one class to another. We show that our model has advantages over
the one-shot generation method [7] in preserving background consistency and
transformation quality.
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