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Abstract. In multi-label brain tumor segmentation, class imbalance
and inter-class interference are common and challenging problems. In
this paper, we propose a novel end-to-end trainable network named
FSENet to address the aforementioned issues. The proposed FSENet
has a tumor region pooling component to restrict the prediction within
the tumor region (“focus”), thus mitigating the influence of the domi-
nant non-tumor region. Furthermore, the network decomposes the more
challenging multi-label brain tumor segmentation problem into several
simpler binary segmentation tasks (“segment”), where each task focuses
on a specific tumor tissue. To alleviate inter-class interference, we adopt
a simple yet effective idea in our work: we erase the segmented regions
before proceeding to further segmentation of tumor tissue (“erase”), thus
reduces competition among different tumor classes. Our single-model
FSENet ranks 3rd on the multi-modal brain tumor segmentation bench-
mark 2015 (BraTS 2015) without relying on ensembles or complicated
post-processing steps.

Keywords: Brain Tumor Segmentation · Convolutional Neural Network
· Class Imbalance · Inter-Class Interference

1 Introduction

Brain tumor, though not a common disease, severely harms the health of pa-
tients and causes high mortality. Automatic brain tumor segmentation would
greatly assist medical diagnosis and treatment planning, since manual segmen-
tation is time-consuming and requires a high degree of professional expertise.
The segmentation task is very challenging due to the diversity of the tumors in
terms of their location, shape, size and contrast, which restrict the application
of strong priors. Hence, researchers have spent much time and effort in studying
this topic.

*Authors contributed equally
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Fig. 1. Overview of FSENet. The operations are shown on the input image for
illustrative purpose. (1) The tumor region pooling first extracts the tumor region (“fo-
cus”). (2) Within the tumor region, each classifier sequentially segments a target tissue
(“segment”), and erases it before proceeding to the next classifier (“erase”), forming a
cascaded framework. Finally, all segmented tissues are combined to produce the multi-
label result. Blue, green, red and yellow indicate edema, enhancing core, necrosis and
non-enhancing core respectively. The darkened regions represent the erased areas. The
pie charts illustrate the class imbalance problem (Better viewed in color)

The approaches for brain tumor segmentation can be generally categorized
into two classes, i.e., generative methods and discriminative methods. Gener-
ative methods [19, 23], which model tumor anatomy and appearance statistics
explicitly, usually have better generalization ability, but require more profes-
sional knowledge and elaborate pre-processing steps. Discriminative methods [1,
4, 7, 11, 22], though relying heavily on the quality of training data, can learn
task-relevant demands from human-labeled data directly.

An example of discriminative methods is machine learning, which has been
successfully applied in this field. Before the advent of the deep learning era, tra-
ditional machine learning approaches typically rely on the dedicated selection of
hand-crafted features, for example, first-order textures [1], histogram and spatial
location[4], and a mixture of high dimensional multi-scale features[7] to achieve
good performance. However, searching exhaustively for the best combination of
features by trial-and-error is not feasible. Deep convolutional neural networks
(DCNNs), on the other hand, are able to extract more suitable features for
the task on their own by updating the networks gradually with gradient back-
propagation, and thus have gained popularity in the medical image processing
community [2, 5, 6, 10, 11, 14, 20, 22, 24, 25].

Common problems faced in multi-label brain tumor segmentation are class
imbalance and inter-class interference. The class imbalance problem exhibits two
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aspects. First, the non-tumor region may be tens, or even hundreds of times the
size of a tumor lesion. Second, some tumor tissues are much larger compared to
others, for example, edema vs. necrotic core. We plot the statistics of each class
in the training set of BraTS 2015 [15, 18] as pie charts in Fig. 1 to show the class
imbalance problem. The inter-class interference is caused by similar features
shared among different tumor tissues, leading to difficulties in differentiating
each class and also interfering with their predictions.

In this paper, we propose a novel network named FSENet that aims to ad-
dress these problems. Fig. 1 shows an overview of the proposed FSENet. While
segmenting each tumor tissue is highly challenging, separating the entire tumor
from the non-tumor region is relatively easy. Thus, we first identify the tumor re-
gion with a whole-tumor classifier and then extract features of the tumor region
with a tumor region pooling component, such that the influence of the large
non-tumor region can be alleviated by discarding a large portion of negative
sample features. This step tells the network where it should pay attention to,
demonstrating the “focus” feature of our FSENet.

In order to reduce the inter-class interference, a simple yet effective idea is
adopted: the previously segmented tumor tissues are erased before proceeding
to the segmentation of the next tumor label. We first decompose the multi-
label segmentation problem into several binary sub-problems, which are more
specialized in discriminating specific tumor tissues. Taking this step further, we
cascade our binary classifiers sequentially in an “outer-to-inner” manner accord-
ing to the typical brain tumor structure, i.e., edema first, followed by enhancing
core, necrosis and non-enhancing core. Furthermore, an erasing process is intro-
duced between the classifiers to erase features from the feature maps if they are
confidently classified as foreground by the previous classifiers. Usually, the inner
tissues, like necrosis, are more irregular in size, shape, contrast and distribution,
and thus more difficult to segment compared to the outer tissues. As a result,
erasing the segmented outer tissue class would reduce their interference with the
prediction of the remaining more challenging labels. This step demonstrates the
“segment” and “erase” features of our FSENet. To summarize, our contributions
are fourfold:

– We propose a tumor region pooling component to force a prediction to be
made only on the extracted tumor region, in order to suppress the negative
influence from the dominant non-tumor region.

– We propose to replace one-stage multi-label segmentation with a compo-
nent that consists of cascaded binary classifiers with erasing to simplify and
specialize the problem, and to avoid inter-class interference.

– We develop an end-to-end training pipeline which achieves significantly per-
formance boost over the baseline (without the proposed components) with
only ∼1.7% overhead.

– Our single-model FSENet achieves 3rd place performance on the BraTS 2015
leaderboard without heavy model ensembles or complicated post-processing
steps.
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2 Related Work

Class imbalance is a common problem in medical image analysis. For example,
in liver computed tomography (CT) images, the lesions are several times smaller
than the liver, and may only occupy a few pixels.

Various approaches have been proposed to address the class imbalance prob-
lem. One approach is to keep a reasonable ratio of positive samples and neg-
ative samples by manual oversampling or undersampling [2, 9, 22]. However, as
in multi-label segmentation, this method is only applicable to a patch-based
framework, but not to one that takes the entire image as input. Another typical
approach is to modify the loss function [5, 20], such that the network is less sen-
sitive to the class imbalance problem. Although [20] claims the effectiveness of
using the Dice loss, it is only suitable for a binary segmentation problem. The
weighted cross-entropy loss [5], unlike the Dice loss, is more flexible in that it is
suitable for both binary and multi-label segmentation. However, it suffers from
the elaborate selection of weighting factors.

In our approach, we use the coarse binary segmentation result to locate the
tumor region, and then extract the region for fine multi-label segmentation. By
extracting the tumor region, the non-tumor samples are naturally reduced and
hence have less influence on the fine-grained prediction. The proposed method
is implemented as a region pooling component, which is able to work within an
image-based framework and requires no hyperparameter.

Sequential prediction is also one plausible way to deal with the class imbal-
ance problem, as well as simplifying difficult one-stage multi-label segmentation
by using several specialized classifiers. Its effectiveness in multi-label segmenta-
tion has been widely reported. Sequential prediction is usually implemented by
cascading multiple models [2, 3, 5, 8, 10, 11, 25]. The first model performs a simi-
lar function to our proposed region pooling component, which is to identify the
region of interest (RoI). The following models are trained to handle more difficult
tasks with the help of the identified RoI. For example, in [2], one 3D-UNet that
is used to separate the whole tumor from the non-tumor region is cascaded with
a second 3D-UNet which discriminates the different brain tumor tissues. One
obvious disadvantage of cascading multiple models is that the overall framework
may be sub-optimal since end-to-end training is inapplicable. In addition, the
deep convolution features extracted by each CNN could not be fully utilized,
thus reducing computational efficiency.

In our paper, we implement sequential prediction by cascading classifiers,
rather than cascading models, in such a way that the proposed FSENet can
perform end-to-end training. All classifiers share features that are first extracted
by a fully convolutional network, instead of having their own networks as in the
case of cascading models, so that the deep convolutional features can be well
utilized. Similarly, the cascaded classifiers solve the difficult multi-label segmen-
tation problem in a more specialized and effective way. The main difference lies
in the novel erasing operation introduced between classifiers, which is able to
alleviate the inter-class interference that is common in medical images due to
the similar features shared by different tissues. This erasing operation suppresses
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Fig. 2. Architecture of the proposed FSENet. The input goes through Res-UNet
for the extraction of deep convolutional features. A whole-tumor classifier produces
binary tumor/non-tumor segmentation to locate the tumor, and then the tumor re-
gion pooling component extracts the valid region from the feature maps accordingly.
The extracted feature maps pass through the cascaded binary classifiers with erasing
component for the segmentation of each tumor tissue in an “outer-to-inner” order. An
example of the erasing process is visualized in the bottom left box. Feature multiplying
the erasing mask with Hadamard product gives the erased feature maps.

the responses of regions that correspond to the confident foreground prediction
produced by the previous classifiers. The classifiers are cascaded in an “outer-to-
inner” manner according to the typical brain tumor structure, and this is done
in such a way that the outer tissues would not interfere with the segmentation
of the inner tissues.

3 FSENet

The proposed FSENet includes two novel components, i.e., tumor region pooling
and cascaded binary classifiers with erasing. The architecture of FSENet is shown
in Fig. 2.

Following convention, the input of the proposed network is the concatenation
of all four available channels, i.e., contrast-enhanced T1-weighted (T1c) image,
T1-weighted (T1) image, T2-weighted (T2) image and FLuid-Attenuated In-
version Recovery (FLAIR) image of each brain magnetic resonance (MR) slice
to fully utilize the multi-modal information. We feed forward the input to a
fully-convolutional network to extract deep convolutional features. The feature
maps pass through a whole-tumor classifier, which separates the tumor and non-
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Fig. 3. Configuration of the residual unit and the classifier in the FSENet.

The parts inside the green rectangle are the residual convolution block (res-conv). A
residual unit (res-unit) consists of two res-convs. The parts indicated in dash line are
only included in the classifier

tumor regions. According to the binary tumor/non-tumor segmentation result,
the tumor region pooling module knows where to focus to extract the tumor
region from the feature maps, such that the negative influence from the dom-
inant non-tumor region can be alleviated in the subsequent predictions. The
extracted feature maps are sequentially fed to the cascaded binary classifiers
with erasing component such that more discriminative representation related to
a specific tissue is emphasized, thus favors more accurate pixel-wise classifica-
tion. The erasing operation helps to suppress inter-class interference, and hence
assists the prediction of the latter class to improve overall performance. The final
multi-label segmentation result is the fusion of the predictions given by the four
binary classifiers, as well as the whole-tumor classifier.

3.1 Res-UNet

UNet [24] has wide applications in medical image processing [5, 6, 14]. Features
and ground truth information of small and scattered tissues can totally dis-
appear in a network whose output stride is larger than 1. Thus, UNet is an
appropriate choice since the generated feature maps share the size of the input
image. In order to increase the network capability without hindering the gradient
back-propagation, we replace each convolution layer in UNet with a residual con-
volution block (res-conv) (Fig. 3) as proposed in [13], which turns UNet into its
residual counterpart (Res-UNet). Res-UNet is adopted as our backbone architec-
ture to extract deep convolutional features. However, the proposed components
can be generalized to any fully convolutional network easily, and is not limited
to this specific Res-UNet.

A whole-tumor binary classifier is attached to the Res-UNet to segment the
entire tumor from the non-tumor region. By thresholding the prediction P0 ∈
R

H×W of the whole-tumor classifier with a constant value of 0.5, the binary
tumor/non-tumor segmentation result S0 ∈ R

H×W can be obtained. The feature
maps extracted with Res-UNet and the binary tumor/non-tumor segmentation
result S0 are further utilized in the following components of the FSENet, which
are discussed in detail below.
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3.2 Tumor Region Pooling

Brain tumor tissues usually occupy a small number of pixels in the MR im-
age, while the non-tumor region is several times larger than the tumor (Fig 1),
which causes a severe class imbalance problem and hence leads to difficulties
in learning. To address this problem, we propose to use RoIAlign [12] to ex-
tract the features of the tumor region from the original feature maps, so that
the following classifiers only need to focus on the tumor region for subsequent
fine-grained segmentation. Extracting the tumor region has two benefits. First,
since the non-tumor region contains a large no-measurement area (the black re-
gion), computational resources can be saved on its segmentation since this is a
relatively easy task. Second, the following fine-grained multi-label segmentation
would not be hindered by the presence of the large non-tumor region.

RoIAlign locates the tumor region according to an RoI proposal, and then
converts the valid region in the feature maps into RoI feature maps with fixed
spatial extent HRoI ×WRoI. The RoI proposal is produced based on the binary
tumor/non-tumor segmentation result S0 generated by the whole-tumor clas-
sifier. To avoid the warping problem, the RoI proposal is set to the smallest
square bounding box that contains the tumor region. With the consideration
of not losing too much detail during the pooling operation from a large spatial
dimension to a small one, we empirically set both HRoI and WRoI equal to 100
in our experiments.

The RoI feature maps, which mainly contain features related to the tumor
region, are then fed to the four cascaded binary classifiers with erasing to classify
each pixel to its correct target class.

3.3 Cascaded Binary Classifiers with Erasing

Inter-class feature similarity and class imbalance (Fig. 1) are commonly exhibited
among different tumor tissues. It would be challenging to achieve optimal multi-
label segmentation in one stage according to our observation (Model 2 in Table
1). Instead of considering all the labels at the same time, we propose to divide
the multi-label segmentation problem into several binary ones, thus turning the
difficult one-stage task into a more tractable multi-stage task. Unlike a multi-
label classifier, each binary classifier is able to learn more discriminative task-
relevant representation of the target class for more accurate binary segmentation.
The configuration of a binary classifier is shown in Fig. 3.

However, simply decomposing a multi-label classifier into several binary coun-
terparts may not necessarily lead to improvement in performance. This is be-
cause the prediction of relatively small and scattered tissues, like necrotic tissue,
would still be difficult due to the scarcity of positive samples and competition
from other classes. Therefore, the overall performance is sub-optimal and should
be improved. To address the problem, we first cascade the classifiers in an “outer-
to-inner” fashion according to the typical brain tumor structure, i.e., edema first,
followed by enhancing core, necrosis and non-enhancing core. We introduce an



8 X. Chen*, J.H. Liew*, W. Xiong, C.K. Chui, S.H. Ong

erasing process between the classifiers to erase the responses of previously seg-
mented tissues, such that the remaining classes, which are usually more irregular
in sizes, shapes, contrast and distributions, are free from the competition and in-
terference of the earlier class. The erasing operation is multiplying, element-wise,
the RoI feature maps with an erasing mask:

F ′ = F ⊙M (1)

where F and F ′ are the RoI feature maps and the erased RoI feature maps
respectively, M the erasing mask, and ⊙ the Hadamard product.

An example demonstrating the erasing process is shown in the bottom left
box in Fig. 2. The responses in the RoI feature maps are gradually erased after
each binary segmentation stage, thus leading to fewer features and hence less
competition and interference in subsequent segmentation of more difficult tumor
tissues.

Suppose the prediction produced by each binary classifier is denoted as
Pi ∈ R

HRoI×WRoI , i ∈ {1, . . . , 4} with its value in the range [0, 1], indicating
the confidence of classifying the corresponding pixel to a target class. The eras-
ing mask Mi is generated based on the prediction Pi:

Mi(x, y) = 1− Pi(x, y) (2)

whereMi(x, y) ∈ [0, 1]. The erasing mask is a reverse attention mask that focuses
on the unsegmented regions, while suppressing the responses of the confident
foreground regions predicted by previous classifiers.

Instead of totally removing the segmented region by thresholding the predic-
tion with a specific constant value, the proposed erasing mask only suppresses
their response to a certain extent according to the prediction confidence. This
avoids the selection of the threshold value, and allows regions with not very high
prediction confidence (usually along the boundary) to partially pass through the
mask as supporting context in the following segmentations.

To provide the classifiers with a better understanding of the overall tumor
structure, we introduce a context branch in our FSENet (Fig. 2), which contains
the pyramid pooling module proposed in [26]. The multi-scale context infor-
mation is concatenated with the erased RoI feature maps as the input of the
classifier, thus providing additional reference to assist the segmentation.

3.4 Loss and Final Result

The network contains one whole-tumor classifier to identify the tumor region
and four class-specific classifiers to segment different tumor tissues. For each
classifier, we adopt both cross-entropy loss and Dice loss. Dice loss, which is
widely used in the medical image processing community [20], can be defined as:

Ldice = 1−
2
∑K

k=1 pkgk∑K

k=1 pk +
∑K

k=1 gk
(3)
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where pk is the prediction of a pixel, gk, the corresponding ground truth, and K,
the total number of pixels. The total loss is the weighted sum of all the losses:

Ltotal =
∑

i

αiL
i +

∑

i

βiL
i

dice (4)

where i ∈ {0, . . . , 4} refers to the whole-tumor classifier and the four class-specific
classifiers respectively, Li the cross-entropy loss of the ith classifier, and αi and
βi the hyperparameters to emphasize or mitigate a certain loss. We assign equal
importance to all losses, and hence αi and βi, ∀i ∈ {0, . . . , 4} are set to 1.

To generate the final multi-label segmentation result, the prediction Pi ∈
R

HRoI×WRoI , i ∈ {1, . . . , 4} is first projected to have its original scale P ′
i
∈

R
H×W , i ∈ {1, . . . , 4}, which represents the probability of each pixel belonging

to the class. As for the non-tumor class, we have P ′
0 = J−P0, where J ∈ R

H×W

is an all-one matrix. Fusing the five predictions by the argmax function gives us
the final multi-label segmentation result.

4 Experiment

4.1 Dataset and Experiment Settings

Dataset and Evaluation Metrics We evaluate the proposed FSENet on
the multi-label brain tumor segmentation benchmark 2015 (BraTS 2015) [15,
18], which includes 4 tumor tissue categories and one non-tumor category (la-
bel=0). The 4 types of tumor tissues are necrosis (label=1), edema (label=2),
non-enhancing core (label=3) and enhancing core (label=4). BraTS 2015 con-
tains 220 high-grade glioma (HGG) cases and 54 low-grade glioma (LGG) cases
in the training set, and 110 mixture cases of HGG and LGG in the test set.
Each case includes four volumes, which correspond to the four modalities, i.e.,
T1, T1c, T2 and FLAIR. A volume consists of 155 MR images of size 240× 240.
The performance is evaluated in terms of the Dice similarity score (Dice), posi-
tive prediction value (PPV), and sensitivity (Sens) over three predefined regions,
i.e. whole tumor (label 1+2+3+4), tumor core (label 1+3+4) and active tumor
(label 4). Dice score, PPV and sensitivity are defined respectively as:

Dice(P, T ) =
2|P1 ∩ T1|

|P1|+ |T1|

PPV(P, T ) =
|P1 ∩ T1|

|P1|

Sens(P, T ) =
|P1 ∩ T1|

|T1|

(5)

where P ∈ {0, 1} is the prediction, T ∈ {0, 1} the ground truth, P1 and T1 the
sets of pixels where P = 1 and T = 1 respectively, and |·| the size of the set.
Training/Testing Settings In the training phase, only the slices that con-
tain tumor tissue labels are used (19676 slices). We train our FSENet from
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scratch with mini-batch size equals to 2. The T1, T1c, T2 and FLAIR images
that correspond to the same brain MR slice are concatenated, forming a 4-
channel input to the model. All patient cases in the training and test sets are
pre-processed to correct for intensity inhomogeneity with a learning based two-
step standardization [21]. In the test phase, for each patient case, all 155 slices
are fed into the network for inference.

Our implementation is based on the PyTorch1 platform using a NVIDIA
GeForce TITAN Xp GPU with 12GB memory. The initial learning rate is set to
1× 10−3 and decreased by a factor of 10 after 15 epochs. We train the FSENet
for 25 epochs in total before deployment. To facilitate learning, we use ground
truth to generate RoI proposal during training. However, the masks are always
generated based on the predictions of the network stated in Equation (2). We
use stochastic gradient descent (SGD) with momentum and weight decay set
as 0.9 and 0.0005 respectively. The input images are horizontally flipped with
probability of 0.5 during training. No other data augmentation is used.

In the test phase, we adopt horizontal flip as data augmentation. Simple
connected component analysis is applied as the post-processing step to remove
noise. We also experimented with more complicated post-processing steps such
as 3D denseCRF [16] but only observe a marginal improvement. In the consid-
eration of trade-off between marginal gain and heavy computational cost, we
do not use any complicated post-processing techniques in the remaining exper-
iments. It is also worth mentioning that all experimental results presented are
generated by a single model without heavy model ensembles.

4.2 Ablation Analysis

We conducted a systematic ablation study using 220 out of the 274 patient cases
(220 HGG cases and 54 LGG cases) from the training set for training and the
remaining 54 cases for validation.

We present quantitative and qualitative analysis in Table 1 and Fig. 4 re-
spectively. To better demonstrate the effectiveness of the cascaded classifier with
erasing module in mitigating the inter-class interference and benefiting the pre-
diction of the difficult class, we additionally report the mean intersection over
union (IoU) score over the non-enhancing core category, which is the most diffi-
cult class to predict because of its irregularity and dispersibility.

Tumor Region Pooling We first study the effect of the tumor region pool-
ing component in the FSENet. As discussed previously, tumor region pooling
helps to ease the class imbalance problem, so that the model can focus on learn-
ing useful task-relevant representations for multi-label segmentation without the
interference of the dominant non-tumor region. Firstly, we notice that Model 1
without the region pooling component fails to learn and predict almost all pixels
as non-tumor category, if normal cross-entropy loss is applied. Instead, we use

1 http://pytorch.org/
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Table 1. Quantitative comparison among baselines and our models

Model Methods Dice PPV Sens mean

No. TRP MultiS Context Erase W T A W T A W T A IoU

1 0.744 0.686 0.721 0.616 0.577 0.689 0.982 0.910 0.805 22.1

2 X
0.751
↑ 9.4%

0.735
↑ 7.1%

0.688
↓ 4.6%

0.628
↑ 1.9%

0.686
↑ 18.9%

0.774
↑ 12.3%

0.965
↓ 1.7%

0.837
↓ 8.0%

0.659
↓ 18.1%

24.6
↑ 11.3%

3 X X
0.890
↑ 19.6%

0.776
↑ 13.1%

0.708
↓ 1.8%

0.897
↑ 45.6%

0.831
↑ 44.0%

0.788
↑ 14.4%

0.892
↓ 9.2%

0.768
↓ 15.6%

0.677
↓ 15.9%

28.1
↑ 27.1%

4 X X X
0.891
↑ 19.8%

0.775
↑ 13.0%

0.711
↓ 1.4%

0.912

↑ 48.1%

0.843

↑ 46.1%

0.792

↑ 14.9%

0.878
↓ 10.6%

0.763
↓ 16.2%

0.675
↓ 16.2%

28.3

↑ 28.1%

5 X X X X
0.892

↑ 19.9%

0.782

↑ 14.0%

0.734

↑ 1.8%

0.902
↑ 46.4%

0.817
↑ 41.6%

0.766
↑ 11.2%

0.891
↓ 9.3%

0.790
↓ 13.2%

0.745
↓ 7.5%

28.3

↑ 28.1%

The three columns under each metric section correspond to the scores achieved over
whole tumor (W), tumor core (T) and active tumor (A) respectively (percentages are
the relative changes compared to Model 1). “TRP” indicates whether the tumor region
pooling component is used. “MultiS” indicates whether the multi-label segmentation is
done in multiple stage. “Context” means that if the context branch is included. “Erase”
represents the erasing process.

a weighted cross-entropy loss, where the weighting factor for each class is the
normalized inverse frequency of the corresponding class.

We apply the same weighted cross entropy loss to Model 2 for fair compar-
ison. Obviously, even with a weighted cross-entropy loss function, Model 1 still
gives unsatisfactory results (second row in Fig. 4)). Despite its high sensitivity
score due to excessively predicting pixels as foreground classes, the generated re-
sult is undesirable. Model 2 generates more accurate segmentation results, and
hence outperforms Model 1 in most of the evaluation categories as shown in
Table 1. This shows the effectiveness of the “focus” step.

One-stage vs. Multi-stage To simplify multi-label segmentation task, we
propose to decompose the one-stage multi-label segmentation problem into sev-
eral binary segmentations. We expect these more specialized classifiers would
perform better in differentiating each class, and hence boost overall results. To
examine this, we additionally train a model which feeds the RoI feature map to 4
binary classifiers for individual tumor tissue segmentation (Model 3) as opposed
to Model 2 that applies a softmax layer for one-stage multi-label segmentation.
We find that Model 3 significantly outperforms Model 2 in most categories of
the metrics, which endorses our assumption.

Erasing and Contextual Compensation In Model 3, the inter-class inter-
ference problem remains unsolved. Taking this one step further, we introduce the
proposed erasing process to Model 4 to study its effectiveness. However, Model
4 only achieves slightly better performance compared to Model 3 which may due
to the loss of context information. Therefore, a context branch is added to form
Model 5. The additional context information provides reference for the classifiers
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(b) 

Fig. 4. Qualitative comparison among baselines and FSENet. The ground
truths and T1c images of two examples are shown in the first row. The segmenta-
tion results generated by the baseline model (Model 1) and their corresponding error
images are shown in the second row. The segmentation results produced by FSENet
(Model 5) and their corresponding error images are shown in the third row. Color code
is the same as that in Fig. 1 (Better viewed in color)

to understand the structure of the tumor. Together with the context branch and
the erase process, Model 5 outperforms Model 3 in most evaluation metrics.

The Proposed FSENet The proposed FSENet achieves top performance in
terms of the Dice similarity score which is a very important evaluation metric
in medical image segmentation, and the prediction of the most difficult non-
enhancing core class (Table 1). On top of Res-UNet (∼ 65.5 million parameters),
the FSENet only introduces ∼1.1 million extra parameters (∼1.7% overhead) to
achieve this significant boost in performance compared to the baseline (Model
1). We find that our FSENet can accurately identify and segment each tumor
tissue (Fig. 4). The error images in the third row of Fig. 4 indicate that the
prediction errors usually occur along the boundary.

A noteworthy advantage of our FSENet is that no hyperparameter is re-
quired. On the whole, the proposed pipeline is simple yet effective in dealing
with problems of class imbalance and inter-class interference in multi-label brain
tumor segmentation.
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Table 2. Evaluation results on the test set of BraTS 2015

Network
Dice PPV Sens

Rank
2

W T A W T A W T A

zhouc1 [17] 0.87 0.75 0.64 0.87 0.81 0.61 0.89 0.75 0.72 1

isenf1 [17] 0.85 0.74 0.64 0.83 0.80 0.63 0.91 0.73 0.72 2

Pereira et al.[22] 0.78 0.65 0.75 - - - - - - -

Kamnitsas et al.[14] 0.84 0.63 0.63 0.82 0.85 0.64 0.89 0.62 0.66 -

FSENet 0.85 0.72 0.61 0.86 0.83 0.66 0.86 0.68 0.63 3

4.3 Comparison with State-of-the-art Methods

We evaluate the performance of our FSENet by submitting our test set results
to the official BraTS 2015 online evaluation platform. The results are reported
in Table 2. We also compare our proposed FSENet with several state-of-the-art
methods. The two methods “zhouc1” and “isenf1” currently rank 1st and 2nd

on the leader-board respectively. However, since BraTS 2015 does not require
participants to substantiate their achievements in peer-reviewed publications,
we are unable to identify the authors and the details of their methods. The
proposed FSENet ranks 3rd on the learder-board. In addition, we also show the
performance of two state-of-the-art CNN-based approaches that are evaluated
on the same data set. In [22], two patch-based frameworks are trained sepa-
rately for multi-label segmentation of HGG and LGG case respectively, consid-
ering their different characteristics. A multi-scale 3D CNN named DeepMedic
proposed by [14] has two convolutional pathways, in order to better utilize multi-
scale features for prediction. As shown in Table 2, the proposed FSENet achieve
competitive single-model performance.

We also present several examples of the segmentation results generated by
our FSENet in Fig. 5, showing the effectiveness of the proposed pipeline.

We are currently unable to report the performance of FSENet on the BraTS
2017 challenge, since access to the dataset is restricted to the challenge partic-
ipants. A performance analysis based on the BraTS 2017 dataset will be con-
ducted in future when the dataset is publicly available.

5 Conclusion

In this paper, we propose an end-to-end pipeline named FSENet for the challeng-
ing multi-label brain tumor segmentation task, which follows the “focus, segment
and erase” approach. To address the common class imbalance and inter-class
interference problems, two novel components are introduced, which are tumor
region pooling and cascaded binary classifiers with erasing. We demonstrate the

2 The rank is according to the leader-board by the time of paper submission.
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Fig. 5. Examples of the multi-label segmentation results produced by the

proposed FSENet. First row shows T1c images from the test set of BraTS 2015.
Results generated by the our FSENet are shown in the second row. Color code is the
same as that in Fig. 1 (Better viewed in colors)

effectiveness of the tumor region pooling component, and also discuss its ad-
vantages compared to other techniques in terms of its flexibility for image-based
multi-label segmentation framework and no restriction by the elaborate selection
of hyperparamenter. The cascaded binary classifiers with erasing component di-
vides difficult one-stage multi-label segmentation into multiple binary ones for
capturing more discriminative task-relevant features. In addition, to suppress the
competition and interference from easier to be segmented categories in the pre-
diction of tougher ones, the binary classifiers are cascaded in the “outer-to-inner”
manner and possess an erasing processing in between. We show the advantages of
the proposed FSENet over the baseline models, demonstrating the effectiveness
of the proposed pipeline. Besides, our FSENet achieves 3rd place single-model
performance on the BraTS 2015 leader-board without relying on heavy model
ensembles or complicated post-processing techniques.

Other applications, like liver tumor segmentation and whole heart segmen-
tation, share similar characteristics and challenges to that of multi-label brain
tumor segmentation. We intend to investigate the performance of FSENet to
these applications in future.
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