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Abstract. Neural networks in the real domain have been studied for a
long time and achieved promising results in many vision tasks for recent
years. However, the extensions of the neural network models in other
number fields and their potential applications are not fully-investigated
yet. Focusing on color images, which can be naturally represented as
quaternion matrices, we propose a quaternion convolutional neural net-
work (QCNN) model to obtain more representative features. In partic-
ular, we re-design the basic modules like convolution layer and fully-
connected layer in the quaternion domain, which can be used to es-
tablish fully-quaternion convolutional neural networks. Moreover, these
modules are compatible with almost all deep learning techniques and can
be plugged into traditional CNNs easily. We test our QCNN models in
both color image classification and denoising tasks. Experimental results
show that they outperform the real-valued CNNs with same structures.

Keywords: Quaternion convolutional neural network · quaternion-based
layers · color image denoising · color image classification

1 Introduction

As a powerful feature representation method, convolutional neural networks (C-
NNs) have been widely applied in the field of computer vision. Since the success of
AlexNet [20], many novel CNNs have been proposed, e.g., VGG [31], ResNet [13],
and DenseNet [16], etc., which achieved state-of-the-art performance in almost
all vision tasks [4, 12, 23]. One key module of CNN model is the convolution
layer, which extracts features from high-dimensional structural data efficiently
by a set of convolution kernels. When dealing with multi-channel inputs (e.g.,
color images), the convolution kernels merges these channels by summing up
the convolution results and output one single channel per kernel accordingly, as
Fig. 1(a) shows.

Although such a processing strategy performs well in many practical situ-
ations, it congenitally suffers from some drawbacks in color image processing
tasks. Firstly, for each kernel it just sums up the outputs corresponding to d-
ifferent channels and ignores the complicated interrelationship between them.

⋆ Equal contribution



2 X. Zhu et al.

(a) Real-valued CNN (b) Quaternion CNN

Fig. 1. Illustration of the difference between CNN and QCNN on convolution layers.

Accordingly, we may lose important structural information of color and obtain
non-optimal representation of color image [36]. Secondly, simply summing up
the outputs gives too many degrees of freedom to the learning of convolution
kernels, and thus we may have a high risk of over-fitting even if imposing heavy
regularization terms. How to overcome these two challenges is still not fully-
investigated.

Focusing on the problems mentioned above, we propose a novel quaternion
convolutional neural network (QCNN) model, which represents color image in
the quaternion domain. Fig. 1 illustrates the scheme of QCNN model. In particu-
lar, each color pixel in a color image (i.e., the yellow dot in Fig. 1) is represented
as a quaternion, and accordingly, the image is represented as a quaternion ma-
trix rather than three independent real-valued matrices. Taking the quaternion
matrix as the input of our network, we design a series of basic modules, e.g.,
quaternion convolution layer, quaternion fully-connected layer. While the tradi-
tional real-valued convolution is only capable to enforce scaling transformation
on the input, specifically, the quaternion convolution achieves the scaling and
the rotation of input in the color space, which provides us with more structural
representation of color information. Based on these modules, we can establish
fully-quaternion CNNs to represent color images in a more effective way. More-
over, we study the relationship between our QCNN model and existing real-
valued CNNs and find a compatible way to combine them together in a same
algorithmic framework.

Essentially, our QCNN imposes an implicit regularizer on the architecture
of network, which ensures that the representations of color image under the
guidance of quaternion operations. Such a strategy considers more complicated
relationships across different channels while suppress the degrees of freedom of
model’s parameters during training. As a result, using quaternion CNNs, we can
achieve better learning results with fewer parameters compared with real-valued
CNNs. Additionally, a color image is represented as a quaternion matrix in our
QCNN, so that we can transform a color pixel throughout the color space using
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independent and physically-meaningful parameters (i.e., the magnitude and the
angle on the color cone shown in Fig. 1(b)), which enhances the interpretability
of the model. As Fig. 1 shows, our QCNN preserves more color information than
real-valued CNN, which is suitable for color image processing, especially for low-
level color feature extraction. Experimental results show that our QCNN model
provides benefits for both high-level vision task (i.e., color image classification)
and low-level vision task (i.e., color image denoising), which outperforms its
competitors.

2 Related works

2.1 Quaternion-based color image processing

Quaternion is a kind of hyper complex numbers, which is first described by
Hamilton in 1843 and interpreted as points in three-dimensional space. Math-
ematically, a quaternion q̂ in the quaternion domain H, i.e., q ∈ H, can be
represented as q̂ = q0 + q1i + q2j + q3k, where ql ∈ R for l = 0, 1, 2, 3, and the
imaginary units i, j, k obey the quaternion rules that i2 = j2 = k2 = ijk = −1.

Accordingly, a N -dimensional quaternion vector can be denoted as q̂ =
[q̂1, ..., q̂N ]⊤ ∈ H

N . Similar to real numbers, we can define a series of opera-
tions for quaternions:

– Addition: p̂+ q̂ = (p0 + q0) + (p1 + q1)i+ (p2 + q2)j + (p3 + q3)k.
– Scalar multiplication: λq̂ = λq0 + λq1i+ λq2j + λq3k.
– Element multiplication:

p̂q̂ =(p0q0 − p1q1 − p2q2 − p3q3) + (p0q1 + p1q0 + p2q3 − p3q2)i

+ (p0q2 − p1q3 + p2q0 + p3q1)j + (p0q3 + p1q2 − p2q1 + p3q0)k.

– Conjugation: q̂∗ = q0 − q1i− q2j − q3k.

These quaternion operations can be used to represent rotations in a three-
dimensional space. Suppose that we rotate a 3D vector q = [q1 q2 q3]

⊤ to get
a new vector p = [p1 p2 p3]

⊤, with an angle θ and along a rotation axis w =
[w1 w2 w3]

⊤, w2
1 + w2

2 + w2
3 = 1. Such a rotation is equivalent to the following

quaternion operation:

p̂ = ŵq̂ŵ∗, (1)

where q̂ = 0 + q1i+ q2j + q3k and p̂ = 0 + p1i+ p2j + p3k are pure quaternion
representations of these two vectors, and

ŵ = cos
θ

2
+ sin

θ

2
(w1i+ w2j + w3k). (2)

Since its convenience in representing rotations of 3-D vectors, quaternion
is widely used in mechanics and physics [10]. In recent years, the theory of
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quaternion-based harmonic analysis has been well developed and many algo-
rithms have been proposed, e.g., quaternion Fourier transform (QFT) [29], quater-
nion wavelet transform (QWT) [1,35], and quaternion Kalman filter [2,39]. Most
of these algorithms have been proven to work better for 3D objects than real-
valued ones. In the field of computer vision and image processing, quaternion-
based methods also show its potentials in many tasks. The advantages of quater-
nion wavelet transform [1,17], quaternion principal component analysis [40] and
other quaternion color image processing techniques [37] have been proven to
extract more representative features for color images and achieved encouraging
results in high-level vision tasks like color image classification. In low-level vision
tasks like image denoising and super-resolution, the quaternion-based method-
s [8, 38] preserve more interrelationship information across different channels,
and thus, can restore images with higher quality. Recently, a quaternion-based
neural network is also put forward and used for classification tasks [3, 27, 30].
However, how to design a quaternion CNN is still an open problem.

2.2 Real-valued CNNs and their extensions

Convolutional neural network is one of the most successful models in many vision
tasks. Since the success of LeNet [21] in digit recognition, great progresses have
been made. AlexNet [20] is the first deep CNN that greatly outperforms all past
models in image classification task. Then, a number of models with deep and
complicated structures are proposed, such as VGG [31] and ResNet [13], which
achieve incredible success in ILSVRC [6]. Recently, the CNN models are also
introduced for low-level vision tasks. For example, SRCNN [7] applies convolu-
tional neural networks to image super-resolution and outperforms classical meth-
ods. For other tasks like denoising [24] and inpainting [34], CNNs also achieve
encouraging results.

Some efforts have been made to extend real-valued neural networks to oth-
er number fields. Complex-valued neural networks have been built and proved
to have advantage on generalization ability [15] and can be more easily opti-
mized [26]. Audio signals can be naturally represented as complex numbers, so
the complex CNNs are more suitable for such a kind of tasks than real-valued
CNNs. It has been proven that deep complex networks can obtain competitive re-
sults with real-valued models on audio-related tasks [32]. In [9], a deep quaternion
network is proposed. However, its convolution simply replaces the real multipli-
cations with quaternion ones, and its quaternion kernel is not further parame-
terized. Our proposed quaternion convolution, however, is physically-meaningful
for color image processing tasks.

3 Proposed Quaternion CNNs

3.1 Quaternion convolution layers

Focusing on color image representation, our quaternion CNN treats a color image
as a 2D pure quaternion matrix, denoted as Â = [ânn′ ] ∈ H

N×N , where N
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represents the size of the image.4 In particular, the quaternion matrix Â is

Â = 0+Ri+Gj +Bk, (3)

where R, G, B ∈ R
N×N represent red, green and blue channels, respectively.

Suppose that we have an L× L quaternion convolution kernel Ŵ = [ŵll′ ] ∈
H

L×L. We aim to design an effective and physically-meaningful quaternion con-
volution operation, denoted as “⊛”, between the input Â and the kernel Ŵ .
Specifically, this operation should (i) apply rotations and scalings to color vec-
tors in order to find the best representation in the whole color space; (ii) play
the same role as real-valued convolution when processing grayscale images. To
achieve this aim, we take advantage of the rotational nature of quaternion shown
in (1,2) and propose a quaternion convolution in a particular form. Specifically,
we set the element of the quaternion convolution kernel as

ŵll′ = sll′(cos
θll′

2
+ sin

θll′

2
µ), (4)

where θll′ ∈ [−π, π] and sll′ ∈ R. µ is the gray axis with unit length(i.e.,
√
3
3 (i+

j + k)). As shown in Eq. 2, we want a unit quaternion to perform rotation.
Accordingly, the quaternion convolution is defined as

Â⊛ Ŵ = F̂ = [f̂kk′ ] ∈ H
(N−L+1)×(N−L+1), (5)

where

f̂kk′ =
∑L

l=1

∑L

l′=1

1

sll′
ŵll′ â(k+l)(k′+l′)ŵ

∗
ll′ . (6)

The collection of all such convolution kernels formulates the proposed quaternion
convolution layer.

Different from real-valued convolution operation, whose elementary opera-
tion is the multiplication between real numbers, the elementary operation of
quaternion convolution in (6) actually applies a series of rotations and scalings

to the quaternions ânn′ ’s in each patch. The rotation axis is set as (
√
3
3 ,

√
3
3 ,

√
3
3 )

(i.e., grayscale axis in color space) for all operations, while the rotation angle and
the scaling factor are specified for each operation by θll′ and sll′ , respectively.

The advantage of such a definition is interpretable. As shown in Fig. 1(a),
the convolution in traditional CNNs operates triple scaling transforms to each
pixel independently to walk through three color axes and it needs to find the
best representation in the whole color space accordingly. For our QCNNs, one
pixel is a quaternion or a 3D vector in color space, but the proposed convolu-
tion find its best representation in a small part of the color space because we
restrict the convolution to apply only a rotate and a scaling transform. Such a
convolution actually impose implicit regularizers on the model, such that we can

4 Without the loss of generality, we assume that both the width and the height of
image are equal to N in the following content.
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suppress the risk of over-fitting brought by too many degrees of freedom to the
learning of kernels. Additionally, in real-valued CNNs, the input layer transfers
3-channel images to single-channel feature maps, ignoring the interrelationship
among channels, which causes information loss. Although the loss can be recov-
ered with multiple different filters, the recovery requires redundant iterations,
and there’s no guarantee that the loss can be recovered perfectly. In QCNNs, the
convolution causes no order reduction in the input layer, thus the information
of interrelationship among channels can be fully conserved.

Although our convolution operation is designed for color image, it can be
applied to grayscale image as well. For grayscale images, they can be seen as
color images whose channels are the same. Because all the corresponding color
vectors are parallel to the gray axis, the rotate transform equals to identical
transformation, thus the quaternion convolution performs the same function as
real-valued convolution. From this viewpoint, real-valued convolution is a special
case of quaternion convolution for grayscale image.

According to the rule of quaternion computations, if we represent each ânn′

as a 3D vector ann′ = [a1 a2 a3]
⊤, then the operation in (6) can be represented

by a set of matrix multiplications:

fkk′ =
∑L

l=1

∑L

l′=1
sll′




f1 f2 f3
f3 f1 f2
f2 f3 f1


a(k+l)(k′+l′), (7)

where fkk′ is a vectorized representation of quaternion f̂kk′ , and

f1 =
1

3
+

2

3
cos θll′ , f2 =

1

3
−

2

3
cos(θll′ −

π

3
), f3 =

1

3
−

2

3
cos(θll′ +

π

3
). (8)

The detailed derivation from (6) to (7) is given in the supplementary file. Ad-
ditionally, because the inputs and outputs of quaternion convolutions are both
pure quaternion matrices, quaternion convolution layers can be stacked like what
we do in real-valued CNNs and most architectures of real-valued CNNs can al-
so be used in QCNNs. In other words, the proposed quaternion convolution is
compatible with traditional real-valued convolution.

According to (7), we can find that a quaternion convolution layer has twice as
many parameters as the real-valued convolution layer with same structure and
same number of filtering kernels since an arbitrary element of quaternion convo-
lution kernel has two trainable parameters s and θ. Denote K as the number of
kernels, L as kernel size and C as the number of input channels. A real-valued
convolution layer with K L × L × C kernels has KCL2 parameters, and we
require L2N2KC multiplications to process C N × N feature maps. A quater-
nion layer with K L × L × C kernels has 2KCL2 parameters: each kernel has
CL2 angle parameters [θll′c] and CL2 scaling parameters [sll′c]. To process C

N ×N × 3 color feature maps, we need 9L2N2KC multiplications because each
output quaternion fkk′ requires 9L2 multiplications, as shown in the (7). By re-
ducing the number of the kernels and channels to K√

2
and C√

2
, the number of the

quaternion layer’s parameters is halved and equal to that of real-valued layer.
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Since the number of channels C in one layer is equal to the number of kernels
K in the previous layer, by reducing the number of the kernels in all layers with
the ratio 1√

2
, we half the number of QCNN’s parameters and half the number

of operations to 4.5 times as that of the real-valued CNN. Note that the matrix
multiplication in the (7) can be optimized and parallelized when implement-
ed by Tensorflow. In our experiments, our QCNNs only takes about twice as
much time as real-valued CNNs with same number of parameters. According to
our following experiments, such a simplification will not do harm to our QCNN
model — experimental results show that the QCNNs with comparable number
of parameters to real-valued CNNs can still have superior performance.

3.2 Quaternion fully-connected layers

The quaternion convolution layer mentioned above preserves more interrelation-
ship information and extracting better features than real-valued one. However, if
we had to connect it to a common fully-connected layer, that kind of information
preserved would be lost. Therefore, here we design a quaternion fully-connected
layer that performs same operation as quaternion convolution layer to keep the
interrelationship information between channels. Specifically, similar to the real-
valued CNNs, whose fully-connected layers can be seen as special cases of one-
dimensional convolution layers with kernels having same shapes with inputs, our
quaternion fully-connected layers follow the same rule. Suppose that the input is
an N -dimensional quaternion vector â = [âi] ∈ H

N , for i = 1, 2, 3...N . Applying
M 1D quaternion filtering kernels, i.e., ŵm = [ŵm

i ] ∈ H
M for m = 1, ..,M , we

obtain an output b̂ = [b̂m] ∈ H
M with element

b̂m =
∑N

i=1

1

si
ŵm

i âiŵ
m∗
i , (9)

where si is the magnitude of ŵm
i .

Similar to our quaternion convolution layer, the computation of the proposed
quaternion fully-connected layer can also be reformulated as a set of matrix
multiplications, and thus, it is also compatible with real-valued CNNs.

3.3 Typical nonlinear layers

Pooling and activation are import layers to achieve nonlinear operations. For
our QCNN model, we extend those widely-used real-valued nonlinear layers to
quaternion versions. For average-pooling, the average operation of quaternion is
same as averaging the 3 imaginary parts respectively. For max-pooling, we can
define various criterions such as magnitude or projection to gray axis to judge
which element to choose.

In our experiments, we find that simply applying max-pooling to 3 imaginary
parts respectively can provides us with good learning results. Similarly, we use
same activation functions with real-valued CNNs for each channel respectively
in QCNNs. For ReLU, if a vector of quaternion is rotated out of valid value
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range in color space, e.g. negative color value for RGB channels, we reset it to
the nearest point in color space.

For softmax, we split the output of the quaternion layer in to real numbers
and connect them to real-valued softmax layers and train classifiers accordingly.

3.4 Connecting with real-valued networks

Using the modules mentioned above, we can establish arbitrary fully-quaternion
CNNs easily. Moreover, because of the compatibility of these modules, we can
also build hybrid convolutional neural networks using both quaternion-based
layers and common real-valued layers. In particular,

– Connect to real-valued convolution layer: The feature map that a
quaternion layer outputs can be split into 3 grayscale feature maps, each
corresponding to one channel. Then, we can connect each of these three
maps to real-valued convolution layers independently, or concatenate them
together and connect with a single real-valued convolution layers.

– Connect to real-valued fully-connected layer: Similarly, we flatten the
output of a quaternion layer and treat each quaternion element as 3 real
numbers. Thus, we obtain a real-valued and vectorized output which can be
connected to real-valued fully-connected layer easily.

4 Learning Quaternion CNNs

4.1 Weight initialization

Proper weight initialization is essential for a network to be successfully trained.
This principle is also applicable to our QCNN model. According to our analysis
above, the scaling factor s corresponds to the parameters in real-valued CNNs,
which controls the magnitude of transformed vector, while the rotation angle θ is
an additional parameter, which only makes the transformed vector an rotation of
input vector. Additionally, when transformed vectors are added together, though
the magnitude is affected by θ, its projection to gray axis is still independent of
θ. Therefore, we follow the suggestion proposed in [11] and perform normalized
initialization in order to keep variance of the gradients same during training.
Specifically, for each scaling factor and each rotation factor of the j-th layer,
i.e., sj and θ, and we initialize them as two uniform random variables:

sj ∼ U

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
, θ ∼ U

[
−
π

2
,
π

2

]
. (10)

where U [·] represents a uniform distribution, and nj means the dimension of the
j-th layer’s input.
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4.2 Backpropagation

Backpropagation is the key of training a network, which applies the chain rule
to compute gradients of the parameters and updates them. Denote L as the real-
valued loss function used to train our quaternion CNN model. p̂ = p1i+p2j+p3k

and q̂ = q1i + q2j + q3k are two pure quaternion variables. For the operation
we perform in the QCNN, i.e., p̂ = 1

s
ŵq̂ŵ∗, it can be equivalently represented

by a set of matrix multiplications. So is the corresponding quaternion gradient.
Particularly, we have:

∂L

∂q
=

∂L

∂p

∂p

∂q
,

∂L

∂θ
=

∂L

∂p

∂p

∂θ
,

∂L

∂s
=

∂L

∂p

∂p

∂s
, (11)

where p = [p1, p2, p3]
⊤ and q = [q1, q2, q3]

⊤ are vectors corresponding to p̂ and
q̂. When p and q are arbitrary elements of feature maps and filtering kernels,
corresponding to ann′ and wll′ in (7), we have

∂p

∂q
= s




f1 f2 f3
f3 f1 f2
f2 f3 f1


 ,

∂p

∂θ
= s




f
′

1 f
′

2 f
′

3

f
′

3 f
′

1 f
′

2

f
′

2 f
′

3 f
′

1







q1
q2
q3


 ,

∂p

∂s
=




f1 f2 f3
f3 f1 f2
f2 f3 f1







q1
q2
q3


(12)

where fi, i = 1, 2, 3, is defined as (8) does. The matrix of fi’s is exactly same
as that in (7), but the operation switches from left multiplication to right mul-
tiplication. In other words, the backward process can be explained as a rotate
transform with the same axis and a reverse angle.

4.3 Loss and activation functions

In neural networks, loss and activation functions must be differentiable for the
gradient to generate and propagate. For fully-quaternion CNNs, any functions
which are differentiable with respect to each part of the quaternion variables
also make the quaternion chain rule hold, and thus, can be used as loss (and
activation) functions. For hybrid CNNs, we select loss functions according to
the category of tasks. In classification tasks, the top of the networks are real-
valued fully-connected layers, before which the quaternion inputs are flattened
as section 3.4 suggested, and the loss function is cross entropy loss. In other tasks
(e.g., regression tasks) that the network outputs images, quaternion outputs of
the top layer are regarded as the 3-channel images, and the loss function can be
mean square error (MSE) or other similar functions.

5 Experiments

To demonstrate the superiority and the universality of our QCNN model, we
test it on two typical vision tasks: color image classification and color image de-
noising. These two tasks represent typical high-level and low-level vision tasks.
Compared with real-valued CNN models in these two tasks, our QCNN models
show improvements on learning results consistently. Some typical experimen-

tal results are shown and analyzed below, and more representative

results and details are given in the supplementary file.
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Table 1. Experiment results in classification tasks

Model Dataset Test accuracy

Shallow real network Cifar-10 0.7546
Shallow quaternion network Cifar-10 0.7778

Real-valued VGG-S 102 flowers 0.7308
Quaternion VGG-S 102 flowers 0.7695

Quaternion VGG-S with fewer filters 102 flowers 0.7603

5.1 Color image classification

We have tested two QCNN architectures in our research, a shallow network for
cifar-10 [19], and a relatively deep one for 102 Oxford flowers [25]. For com-
parison, real-valued networks with same structure and comparable number of
parameters are also trained in the same datasets. Both quaternion and real-
valued networks use a real-valued fully-connected layer with softmax function,
or a softmax layer to classify the input images. The real-valued networks use
ReLU as activation functions, while the quaternion ones adapt ReLU for each
imaginary part separately. All those networks are trained with cross entropy loss.
Input data is augmented by shifting and flipping.

The proposed shallow network for cifar-10 contains 2 convolution blocks,
each has 2 convolution layers and a max-pooling layer, and ends with 2 fully-
connected layers. In the experiment, each layer of real-valued CNN and QCNN
are of same number of filters, so actually QCNN has more parameters. Both
models are optimized using RMSProp [14] with learning rate set at 0.0001, and
learning rate decay set at 1e-6. The training ends at epoch 80.

The network for 102 Oxford flowers is VGG-S [5], which has 5 convolution
layers, 3 pooling layers and 3 fully-connected layers. In this experiment, a QCNN
with same number of filters as real-valued one and another one with fewer filters
to keep the similar number of parameters are both tested. Models are optimized
using Adam [18] with learning rate set at 0.0001. The training ends at epoch 50.

In Fig. 2, we can find that the performance of our QCNNs is consistently
better than that of real-valued CNNs. For each data set, the loss function of our
QCNN converges more quickly than that of real-valued CNNs in the training
phase and reaches smaller loss finally. The classification accuracy on the testing
set obtained by our QCNN is also better than that of real-valued CNN even
in the very beginning of training phase. Moreover, even if we reduce the num-
ber of QCNN’s parameters, the proposed QCNN model is still superior to the
real-valued CNN with the same size. These phenomena verify our claims before.
Firstly, although a QCNN can have more parameters than real-valued CNN, it
can suffer less from the risk of over-fitting because of the implicit regularizers
imposed by the computation of quaternions. Secondly, the quaternion convolu-
tion achieves both the scaling and the rotation of inputs in color space, which
preserves more discriminative information for color images, and this information
is beneficial for classifying color images, especially for classifying those images
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Fig. 2. (a, b) The loss and the test accuracy of the shallow networks during training on
cifar-10. (c, d) The loss and the test accuracy of the VGG-S networks during training
on 102 Oxford flower data set (256 test images picked randomly from the test set for
each epoch).

Table 2. Experiment results in denoising tasks

Model Dataset Test PSNR (dB) Dataset Test PSNR (dB)

Real-valued CNN 102 flowers 30.9792 subset of COCO 30.4900
Quaternion CNN 102 flowers 31.3176 subset of COCO 30.7256

in which the objects have obvious color attributes (i.e., the flowers in 102 Ox-
ford flower data set). The quantitative experimental results are given in Table 1,
which further demonstrates the superiority of our model.

5.2 Color image denoising

Besides the high-level vision tasks like image classification, the proposed QCNN
can also obtain improvements in the low-level vision tasks. In fact, because our
QCNN model can obtain more structural representation of color information, it
is naturally suitable for extracting low-level features and replacing the bottom
convolution layers of real-valued CNNs. To demonstrate our claim, we test our
QCNN model in color image denoising task. Inspired from the encoder-decoder
networks with symmetric skip connections for image restoration [24] and de-
noising autoencoders [33], a U-Net-like [28] encoder-decoder structure with skip
connections is used for denoising in our research. The encoder contains two 2×2
average-pooling layers, each following after two 3×3 convolution layers, then two
3× 3 convolution layers and a fully-connected layer. The decoder is symmetrical
to the encoder, containing up-sampling and transposed convolution layers. The
layers before pooling and that after up-sampling are connected by shortcuts.
A QCNN and a real-valued CNN with this structure are both built, and the
QCNN has fewer filters each layer to ensure a similar number of parameters to
the real-valued CNN. Similar to networks for classification, both networks use
ReLU as activation functions except the top layer, whose activation function is
“tanh” function. Both networks are trained with MSE loss.
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Fig. 3. (a, b) The loss and the PSNR of test images using proposed denoising networks
during training on 102 Oxford flower data set. (c, d) The loss and the PSNR of test
images using proposed denoising networks during training on COCO subset.

(a) Original image (b) Noisy image

(c) Enlarged image (d) QCNN, 25.69dB (e) CNN, 24.80dB

Fig. 4. Denoising experiment on a image of snacks.

We trained and tested these two models on two data sets: the 102 Oxford
flower data set and a subset of COCO data set [22]. These two data sets are
representative for our research: the flower data set is a case having colorful
images, which is used to prove the superiority of our QCNN model conceptually;
while the COCO subset is a more general set of natural images, which have both
colorful and colorless images and can be used to prove the performance of our
model in practice.

In our experiments, both the training and the testing images are cut and
resized to 128 × 128 pixels with values normalized to [0, 1]. Then a salt and
pepper noise which corrupts 30% of pixels and a Gaussian noise with zero mean
and 0.01 variance are added. The inputs of networks are corrupted images, and
target outputs are original images. For both real-valued CNN and our QCNN
model, the optimizer is Adam with 0.001 learning rate, and the batch size is 64
for the 102 Oxford flower data set and 32 for the COCO subset, respectively.
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Fig. 5. In the denoising task, QCNN shows at least 0.5dB higher PSNR than CNN for
images in (a). For images in (b), CNN offers better result. (c) The quantile-quantile
plot of saturation versus PSNR difference. (d) The quantile-quantile plot of average
angle between color vectors and gray axis versus PSNR difference.

Table 2 shows quantitative comparisons for the real-valued CNN model and
the proposed QCNN model. We can find that our QCNN model obtains higher
PSNR values consistently on both data sets. The change of loss function and
that of PSNR on testing set are given in Fig. 3 for the two data sets. Similar
to the experiments in color image classification task, the loss function of our
QCNN converges more quickly to a smaller value and its PSNR on testing images
becomes higher than that of the real-valued CNN after 100 epochs. Furthermore,
we show a visual comparison for the denosing results of the real-valued CNN
and our QCNN in Fig. 4. We can find that our QCNN preserves more detailed
structures in the image (e.g., the pattern on the plate) than the real-valued
CNN does. Suffering from information loss during feature encoding, real-valued
CNNs cannot perfectly preserve the details of color images, especially when the
structure presents sharp color variations. Our QCNN, on the contrary, can avoid
this information loss and learn more texture features even in bottom layers, so
it outputs images of higher fidelity. High-resolution visual comparisons can be
found in the supplementary file.

5.3 Discussion on advantages and limitations

As aforementioned, our QCNN is motivated for color image representation.
When it comes to the images with little variety of colors, our QCNN degrades
to a model similar to real-valued CNN,5 and thus, obtains just comparable or
slightly worse results in the denoising task, which is confirmed on the COCO
subset.

In particular, according to the results shown above, we can find that the
superiority of our QCNN on the COCO subset is not so significant as that on
the 102 Oxford flower data set. To further analysis this phenomenon, we pick up
those COCO images for which our QCNN shows great advantage as well as those
for which our QCNN shows no advantage in the denoising task, and compare

5 As we mentioned in section 3.1, for grayscale images, QCNNs perform exactly the
same as real-valued CNNs with same number of filters.
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them visually in Fig. 5. We can find that the images on which our QCNN shows
better performance are often colorful, while images where our QCNN is inferior
to the real-valued CNN are close to grayscale images.

To further investigate QCNN’s advantages, we use two metrics as quantitative
descriptions of “colorful images”. The first metric is the mean saturation of
color image, denoted as S. For an image, a low S indicates that this image is
similar to a grayscale image, while a high S value implies this image is with high
color saturation (i.e. many colorful parts). The second metric is the averaged
angle between the pixel (color vector) of color image and grayscale axis, denoted
as A. For an image, the larger the averaged angle is, the colorful the image
is. We show the quantile-quantile plots of these two metrics with respect to
the difference between PSNR value of real-valued CNN and that of our QCNN
(denoted as D) in Fig. 5(c) and Fig. 5(d), respectively. We can find that both S

and A are correlated with D positively. It means that our QCNN can show its
dominant advantages over real-valued CNNs when the target images are colorful.
Otherwise, its performance is almost the same with that of real-valued CNNs.

6 Conclusions and Future Work

In this paper, we introduce QCNN, a quaternion-based neural network, which
obtains better performance on both color image classification and color image
denoising than traditional real-valued CNNs do. A novel quaternion convolution
operation is defined to represent color information in a more structural way. A
series of quaternion-based layers are designed with good compatibility to existing
real-valued networks and reasonable computational complexity. In summary, the
proposed model is a valuable extension of neural network model in other number
fields. In the future, we plan to explore more efficient algorithms for the learning
of QCNNs. For example, as we mentioned in section 4.2, for QCNNs their back-
propagation of gradients can be represented by reverse rotations of color vectors
with respect to the forward propagation of inputs. Such a property provides us
a chance to reduce the computation of the backpropagation given the interme-
diate information of forward propagation and accelerate the learning of QCNNs
accordingly. Additionally, we will extend our QCNN model to large-scale data
and more applications.
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