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Abstract. Domain generalization aims to learn a classification model
from multiple source domains and generalize it to unseen target domains.
A critical problem in domain generalization involves learning domain-
invariant representations. Let X and Y denote the features and the
labels, respectively. Under the assumption that the conditional distri-
bution P (Y |X) remains unchanged across domains, earlier approaches
to domain generalization learned the invariant representation T (X) by
minimizing the discrepancy of the marginal distribution P (T (X)). How-
ever, such an assumption of stable P (Y |X) does not necessarily hold
in practice. In addition, the representation learning function T (X) is
usually constrained to a simple linear transformation or shallow net-
works. To address the above two drawbacks, we propose an end-to-end
conditional invariant deep domain generalization approach by leverag-
ing deep neural networks for domain-invariant representation learning.
The domain-invariance property is guaranteed through a conditional in-
variant adversarial network that can learn domain-invariant representa-
tions w.r.t. the joint distribution P (T (X), Y ) if the target domain data
are not severely class unbalanced. We perform various experiments to
demonstrate the effectiveness of the proposed method.

Keywords: Domain generalization · Adversarial networks · Domain in-
variant representation.

1 Introduction

With the advances in deep learning in recent years, computer vision has achieved
impressive success, e.g., in image classification [1, 2], face recognition [3, 4], and
object detection [5]. The mentioned tasks rely on standard supervised learning
that assumes that the training and test data follow the same distribution. How-
ever, this assumption does not hold in many real-world situations due to various
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changing factors, such as background noise, viewpoint changes and illumination
variation. Such factors can cause biases in the collected datasets [6]. In deep
learning, a common approach to eliminating data bias is through fine-tuning a
pre-trained network on the target domain with a certain number of labels. How-
ever, labeling the data when moving to different new target domains is labor
intensive. Domain generalization [7–16] is proposed to overcome such challenges.
Given inputs and the corresponding outputs of multiple source domains, domain
generalization aims to learn a domain-invariant feature representation that can
generalize well to unseen target domains.

Most existing domain generalization methods learn the invariant feature
transformation based on handcrafted features or features extracted from pre-
trained deep learning models. Compared to handcrafted features, features ex-
tracted from pre-trained neural networks are more discriminative and descrip-
tive. Several domain generalization methods [7–11] have demonstrated the ef-
fectiveness of features extracted from neural networks. However, the referenced
methods consider the extracted features as input X and use a linear transfor-
mation or multilayer perceptrons to model the transformation T (X). Such a
learning strategy does not fully explore the advantages of deep neural networks.
We argue that learning the invariant feature transformation directly from the
original image in an end-to-end fashion will lead to better performance.

In addition, previous studies assume that the conditional distribution P (Y |X)
remains stable across domains and that domain-invariant learning boils down to
the guarantee of invariance of the marginal distribution P (T (X)). If this as-
sumption is violated, the joint distribution P (T (X), Y ) will not be invariant
even if P (T (X)) is invariant after learning. According to recent results in causal
learning [17, 18], if the causal structure is X → Y , where X is the cause and
Y is the effect, P (Y |X) can remain stable as P (X) changes because they are
“independent” of each other. However, the causal structure is often Y → X
in computer vision, e.g., object classes are the causes of image features [19].
In this scenario, if P (X) changes, P (Y |X) often changes together with P (X).
Considering digital number classification as an example and denoting each rota-
tion angle α as one domain, we obtain a different class-conditional distribution
P (X|Y, α = αi) for each domain, i.e., the feature distribution of digital numbers
depends on the rotation angle. Assuming, for simplicity, that P (Y ) does not

change, according to the sum rule, we obtain P (X|α = αi) =
∑L

j=1 P (X|Y =
j, α = αi)P (Y = j), where L is the number of classes, and thus, the values
of P (X|α = αi) are different across domains. Additionally, according to Bayes’
rule, P (Y |X,α = αi) = P (X|Y, α = αi)P (Y )/P (X|α = αi); hence, it is very
unlikely that P (Y |X,α = αi) are the same across domains.

In this paper, we consider the scenario whereby both P (X) and P (Y |X) can
change across domains and address domain generalization in an end-to-end deep
learning framework. This is achieved by learning a conditional invariant neu-
ral network that learns to minimize the discrepancy in P (X|Y ) across different
domains. Inspired by generative adversarial networks [20] and recent deep do-
main adaptation methods [21, 22], we develop an adversarial network to learn a
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domain-invariant representation by making the learned representations on differ-
ent domains indistinguishable. The conditional invariance property is guaranteed
by two adversarial losses that consider the source-domain label information over-
looked by the existing methods. One aims to directly make the representations in
each class indistinguishable across source domains. The other loss aims to make
the representations of all classes indistinguishable across class prior-normalized
source domains. The purpose of introducing class prior-based normalization is to
reduce the negative effect caused by the possible class prior P (Y ) changes across
source domains. If the prior distributions P (Y ) in the target domain and the
pooled source domains are identical, our method can guarantee the invariance
of the joint distribution P (X,Y ) across domains.

2 Related Work

Domain generalization has drawn substantial attention in recent years, with
various approaches [7–11] having been proposed. Muandet et al. [9] proposed a
domain-invariant component analysis that learns an invariant transformation by
minimizing dissimilarity among domains. Ghifary et al. [8] proposed a unified
framework for domain adaptation and generalization using scatter component
analysis. In contrast to the above methods, Khosla et al. [7] proposed removing
the dataset bias by measuring the dataset-specific model as a combination of
the dataset-specific bias and a visual world model. Considering the construction
ability of an autoencoder, Ghifary et al. [11] proposed a multi-task autoencoder
method to learn domain-invariant features. The learned features could subse-
quently be used as the input to classifiers. All referenced methods are shallow
domain generalization methods that need handcrafted features or features ex-
tracted from pre-trained deep learning models. Note that the multi-task autoen-
coder uses only one hidden layer built on the pre-learned deep features. Such
pre-extracted features dramatically constrain the learning ability of the existing
domain generalization methods. Our method learns the domain-invariant repre-
sentation from the original images in an end-to-end deep learning framework.

In addition to the shallow architecture, the existing methods assume that
P (Y |X) remains invariant across domains and only aim to learn a domain-
invariant feature transformation T (X) to guarantee the invariance of feature
distribution P (T (X)). Recent studies of domain adaptation have noted the im-
portance of matching joint distributions instead of the marginal distribution. [23]
and [24] suggested considering the domain adaptation problem in the general-
ized target shift scenario, where the causal direction is Y → X. In this scenario,
both the change of distribution P (Y ) and conditional distribution P (X|Y ) are
considered to reduce the data bias across domains. [25, 22] proposed iterative
methods for matching the joint distribution by using the predicted labels from
previous iterations as pseudo-labels. [26] proposed an optimal transport-based
approach to matching joint distributions and obtained promising results. In con-
trast to the domain adaptation methods, domain generalization does not require
unlabeled data from the target domains.
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3 Conditional Invariant Deep Domain Generalization

3.1 Domain Generalization

Suppose the feature and label spaces are represented by X and Y, respec-
tively. A domain is represented by a joint distribution P (X,Y ) defined on
X ×Y . To simplify notation, the m-th domain Pm(X,Y ) is denoted Pm, and the
marginal distribution Pm(X) is denoted Pm

X . In each domain, we have a sample
Dm = {(xm

i , ymi )}N
m

i=1 drawn from Pm(X,Y ), where Nm is the sample size in the
m-th domain, while (xm

i , ymi ) ∼ Pm(X,Y ) denotes the i-th data point in the
m-th domain. Given C related source domains {P 1, P 2, ..., PC} and their cor-
responding datasets Dm = {(xm

i , ymi )}N
m

i=1 , where m = {1, 2, ..., C}, the goal of
domain generalization is to learn a model f : X → Y that can well fit an unseen,
yet related, target domain P t(X,Y ) using all data from the source domains.

3.2 Domain Divergence

We first introduce the Jensen-Shannon divergence (JSD) that measures similari-
ties among multiple distributions [27]. We use the marginal distribution P (X) as
an example to illustrate the general results in this section. The JSD among distri-
butions {P 1(X), P 2(X), . . . , PC(X)} is defined as the average of KL-divergences
of each distribution from the average distribution:

JSD(P 1
X , . . . , PC

X ) =
1

C

∑C

m=1
KL(Pm

X ||P̄X), (1)

where P̄X = 1
C

∑C

m=1 P
m
X is the average (centroid) of these distributions. In [20],

a two-player minimax approach is proposed for learning a generative adversarial
network and is proven to be equivalent to minimizing JSD between the generative
distribution and data distribution.

We extend the two-player minimax approach to multiple players and prove its
equivalence to minimizing the JS divergence among multiple distributions. De-
note the distributions after a feature transformation T as {P 1

T (T (X)), P 2
T (T (X)),

. . . , PC
T (T (X))}, or simply as {P 1

T , P
2
T , . . . , P

C
T }. Suppose that D is the learned

discriminator andDm(T (X)) denotes the prediction probability with discrimina-
tor D that T (X) comes from the m-th domain Pm

T , m ∈ {1, 2, . . . , C}. We define
the following multi-player minimax game with value function V (T,D1, . . . , DC) =
∑C

m=1 Ex∼Pm(x) logD
m(T (x)):

min
T

max
D1,D2,...,DC

V (T,D1, . . . , DC),

s.t.
∑C

m=1
Dm(T (x)) = 1. (2)

In what follows, we will show that the above minimax game reaches a global
optimum at P 1

T = P 2
T = . . . = PC

T , i.e., the multi-player minimax game is able to
learn invariant feature representations. The following proposition provides the
optimal discriminator under a fixed transformation T .
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Proposition 1 Let x′ = T (x) for a fixed transformation T ; the optimal predic-

tion probabilities {D1
T , . . . , D

C
T } of discriminator D are

Dm∗
T (x′) = Pm

T (x′)/
∑C

m=1
Pm
T (x′). (3)

Proof. For a fixed T , Eq. (2) reduces to maximizing V (T,D1, . . . , DC) w.r.t.
{D1, . . . , DC}:

{D1∗
T , . . . , DC∗

T } = arg max
D1,...,DC

∑C

m=1

∫

x′

Pm
T (x′)log(Dm(x′))dx′

s.t.
C
∑

m=1

Dm(x′) = 1. (4)

Maximizing the value function pointwise and applying Lagrange multipliers, we
obtain the following problem:

{D1∗
T , . . . , DC∗

T } = arg max
D1,...,DC

∑C

m=1
Pm
T (x′)log(Dm(x′))+λ(

∑C

m=1
Dm(x′)−1).

Setting the derivative of the above equation w.r.t. Dm(x′) to zero, we obtain

Dm∗
T (x′) = −

Pm
T (x′)
λ

. We can solve for the Lagrange multiplier λ by substitut-

ing Dm∗
T (x′) = −

Pm
T (x′)
λ

into the constraint
∑C

m=1 D
m(x′) = 1 to obtain λ =

−
∑C

m=1 P
m
T (x′). Thus, we obtain the optimal solution Dm∗

T (x′) =
Pm

T (x′)
∑

C
m=1

Pm
T

(x′)
.

Theorem 1 If U(T ) is the maximum value of V (T,D1, . . . , DC)

U(T ) =
∑C

m=1
Ex∼Pm

T
(x′)

[

log
pmT (x′)

∑C

m=1 P
m
T (x′)

]

, (5)

the global minimum of the multi-player minimax game is attained if and only if

P 1
T = P 2

T = . . . = PC
T . At this point, U(T ) attains the value −C logC.

Proof. If we add C logC to U(T ), we obtain

U(T ) + C logC =
∑C

m=1
{Ex∼Pm

T
(x′)

[

log
pmT (x′)

∑C

m=1 P
m
T (x′)

]

+ logC}

=
∑C

m=1
Ex∼Pm

T
(x′)

[

log
pmT (x′)

1
C

∑C

m=1 P
m
T (x′)

]

=
∑C

m=1
KL

(

Pm
T (x′)

∣

∣

∣

∣

∣

∣

1

C

∑C

m=1
Pm
T (x′)

)

. (6)

By using the definition of the JS divergence in Eq. (1), we obtain U(T ) =
−ClogC+C ·JSD(P 1

T , . . . , P
C
T ). As the Jensen-Shannon divergence among mul-

tiple distributions is always non-negative and zero iff they are equal, we have
shown that U∗ = −C logC is the global minimum of U(T ) and that the only
solution is P 1

T = P 2
T = . . . = PC

T , i.e., the learned feature representations on all
source domains are perfectly matched.
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3.3 Proposed Approach

The existing methods proposed matching the marginal distribution P (T (X))
across domains; however, the invariance of P (Y |T (X)) could not be guaran-
teed. Our approach corrects the changes in P (Y |X) by correcting the changes in
P (X|Y ). In the ideal scenario, we expect the deep network to learn a conditional
invariant feature transformation such that Pm=i(T (X)|Y ) = Pm=j(T (X)|Y ) =
P t(T (X)|Y ), where i, j ∈ {1, 2, ..., C}, and P t is a single target domain. With
the conditional invariant feature transformation, we can merge all source do-
mains into a single new domain that has the joint distribution Pnew(T (X), Y ) =
P (T (X)|Y )Pnew(Y ). While training on the transformed and merged source do-
main data, we correct the possible class imbalances so that Pnew(Y ) is the same
for all classes. Thus, if the target domain data are class balanced, the equality of
joint distributions P (T (X), Y ) between source domains and target domain can
be guaranteed. Even if the target domain data are class unbalanced, our method
can still provide reliable results if the features and labels are highly correlated,
as the class prior distribution is not important to classification in this case.

The conditional invariance property is achieved by applying the minimax
game to different aspects of the distributions on the source domains, resulting
in the class-conditional minimax value and class prior-normalized marginal min-
imax value. In the following section, we will show that such two regularization
terms can be easily implemented through variants of softmax loss.

Class-conditional minimax value Suppose that there are L different classes
in each domain, and denote by xm

i∼j an example from the j-th class in the m-
th domain. The class-conditional minimax value for class j can be formulated
as Vcon(T,D

1
j , . . . , D

C
j ) =

∑C

m=1 Ex∼Pm(x|y=j) logD
m
j (T (x)), where Dj is the

discriminator for the j-th image class. The multi-player minimax game is

min
T

max
D1

j
,...,DC

j

Vcon(T,D
1
j , . . . , D

C
j ),

s.t.
∑C

m=1
Dm

j (T (x)) = 1. (7)

The empirical minimax game value can be formulated as follows:

Ṽcon(T,D
1
j , . . . , D

C
j ) =

∑C

m=1

1

Nm
j

∑Nm
j

i=1
logDm

j (T (xm
i∼j)), (8)

where Nm
j denotes the number of examples in the j-th class of the m-th domain.

This term computes the minimax game value among P (X|Y ) locally. In practice,
we compute the minimax game values for all classes separately and subsequently
sum such values. By optimizing the above minimax value, we can guarantee the
invariance of class-conditional distributions P (T (X)|Y = j) among domains.

Class prior-normalized marginal minimax value If the sample size is not
large, overfitting can easily occur in a deep network due to a very large number



Deep Domain Generalization via Conditional Invariant Adversarial Networks 7

of parameters. As the number of examples in certain classes is sometimes small,
learning with the above class-conditional minimax value can result in overfit-
ting. To improve learning of domain-invariant features, we propose learning a
class prior-normalized marginal term that applies the minimax game value to all
conditional distributions globally. Note that the marginal distribution of feature
representations on the m-th domain can be formulated as

Pm(T (X)) =
∑L

j=1
Pm(T (X)|Y = j)Pm(Y = j). (9)

The above equation shows that the marginal distribution Pm(T (X) is de-
termined by the conditional distribution Pm(T (X)|Y = j) and the class prior
distribution Pm(Y = j), where j ∈ {1, 2, ..., L}. As shown in [23, 24], we may be
able to determine the conditional invariant representation T (X) by matching the
marginal distribution P (T (X)) across domains, i.e., the invariance of P (T (X))
may induce invariance of P (T (X)|Y ) if P (Y ) is invariant. If P (Y ) also changes,
even with an invariant P (T (X)|Y ) across domains, P (T (X)) can still vary ac-
cording to Eq. (9). In this case, minimizing the discrepancy in P (X) may lead
to removal of useful information, as the effect of changing P (Y ) is not supposed
to be corrected by learning an invariant representation from X. To remove the
effect caused by the changing class prior distribution P (Y ), we propose normal-

izing the class prior distribution as Pm
N (T (X)) =

∑L

j=1 P
m(T (X)|Y = j) 1

L
. The

above class prior-normalized distribution Pm
N enforces the prior probability for

each class to be the same. Consequently, the invariant class conditional distri-
bution across domains can guarantee equality of class prior-normalized marginal
distributions across domains. Suppose that βm(Y ) is the normalized weight to

ensure that Pm
N (T (X)) =

∑L

j=1 P
m(T (X)|Y = j)Pm(Y = j)βm(Y = j) =

∑L

j=1 P
m(T (X)|Y = j) 1

L
. We apply the minimax game according to the class

prior-normalized marginal distribution as follows:

min
T

max
D1,...,DC

Vnorm(T,D1, . . . , DC)

=min
T

max
D1,...,DC

∑C

m=1
Ex∼Pm

N
(x) logD

m(T (x))

=min
T

max
D1,...,DC

∑C

m=1
Ex∼

∫
Pm(x|y)Pm(y)βm(y)dy logD

m(T (x))

=min
T

max
D1,...,DC

∑C

m=1

∫

Pm(x|y)Pm(y)βm(y)dy logDm(T (x))dx

=min
T

max
D1,...,DC

∑C

m=1

∫

Pm(x, y) logDm(T (x))βm(y)dxdy

s.t.
∑C

m=1
Dm(T (x)) = 1. (10)

The empirical version of a class prior-normalized minimax value is as follows:

Ṽnorm(T,D1, . . . , DC) =
∑C

m=1

1

Nm

∑Nm

i=1
logDm(T (xm

i ))βm(ymi ), (11)
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Fig. 1. The network architecture of our proposed method. It consists of four parts:
feature learning network which represents the invariant feature transformation T, image
classification network which classifies the images from all domains with softmax loss,
class prior-normalized domain network which discriminates different domains with loss
in Eq. (14), and class-conditional domain network which discriminates domains for
each image class with loss in Eq. (13).

i.e., the class prior-normalized weight βm(ymi ) can be viewed as a weight of the
log-likelihood. And βm(ymi ) can be empirically obtained as

βm(ymi ) =
1

L

1

Pm(Y = ymi )
=

Nm

L×Nm
j=ym

i

, (12)

where Nm denotes the total number of examples in the m-th domain and Nm
j=ym

i

denotes the number of examples with the same label as ymi in the m-th domain.

4 Conditional Invariant Adversarial Network

We introduce the conditional invariant deep neural network to represent the fea-
ture transformation T and then implement the approach proposed in Sec 3.3.
The architecture is shown in Figure 1. It contains four components: the represen-
tation learning network, the image classification network, the class-conditional
domain network, and the class prior-normalized domain network. The represen-
tation learning network aims to learn a class-conditional domain-invariant fea-
ture representation, while retaining the ability to discriminate among different
image classes. The two domain classification networks aim to make the features
of examples from different domains indistinguishable by adversarial training. Ad-
ditionally, the image classification network is used to make the learned features
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informative for classification. In this section, we will introduce each network and
describe the process of training such networks using various loss functions.

Let xi be an input image, F (·|θ) denote a network with parameter θ, and
F (xi|θ) be the output of image xi. To simplify notation, the feature representa-
tion learning network is denoted F (·|θf ) or Ff (·), the image classification network
is denoted F (·|θc) or Fc(·), and the class-conditional domain network for image
class j is denoted F j(·|θd) or F

j
d (·). Additionally, the class prior-normalized do-

main network is denoted F (·|θp) or Fp(·).

4.1 Class-Conditional Domain Classification Network

According to Eq. (7), we can implement the class-conditional minimax game
value through a variant of softmax loss. For image class j, the class-conditional
domain loss can be formulated as follows:

Lcon(θf , θ
j
d) =

C
∑

m=1

[
1

Nm
j

Nm
j

∑

i=1

C
∑

n=1

I[ydi∼j = n]logPn(F
j
d (Ff (x

m
i∼j)))], (13)

where ydi∼j ∈ {1, 2, ..., C} denotes the domain label of xi∼j (i-th example in class

j). Pn(F
j
d (Ff (xi∼j))) denotes the predicted probability that the image in j-th

category belongs to the n-th domain. Note that the above loss is specifically for
the j-th image class. If we have L classes, we must construct L sub-branches of
the networks. Each sub-branch corresponds to one class.

4.2 Class Prior-Normalized Domain Classification Network

We introduce the class prior-normalized domain classification networks according
to Eq. (11). It is also implemented using a variant of softmax loss. We obtain
the prior-normalized loss as

Lnorm(θf , θp) =
C
∑

m=1

1

Nm
[
Nm

∑

i=1

C
∑

n=1

βm(ymi )I[ydi = n]logPn(Fp(Ff (xi)))], (14)

where ymi denotes the class label of the i-th image in domain m.

4.3 Learning Procedure

We combine all the above losses with the image classification loss Lcla(θf , θc)
used for image classification networks. Note that Lcla(θf , θc) can be a standard
softmax loss. The total loss can be obtained as follows:

R(θf , {θ
j
d}

L
j=1, θp, θc) = Lcla(θf , θc)+λ(

L
∑

j=1

Lcon(θf , θ
j
d)+Lnorm(θf , θp))). (15)
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The learning of the above loss can be separated into two steps by determining
the optimal values (θ∗f , {θ

∗j
d }Lj=1, θ

∗
p, θ

∗
c ) as follows:

(θ∗f , θ
∗
c ) = argmin

θf ,θc

R(θf , {θ
j
d}

L
j=1, θp, θc),

({θ∗jd }Lj=1, θp) = argmax
{θj

d
}L
j=1

,θp

R(θf , {θ
j
d}

L
j=1, θp, θc).

(16)

A saddle point of the above optimization problem can be determined by per-
forming the following gradient updates iteratively until the networks converge:

θi+1
f = θif − γ[

∂Li
cla

∂θf
+ λ(

∑L

j=1

∂Li
con(θf , θ

j
d)

∂θf
+

∂Li
norm

∂θf
)],

θi+1
c = θic − γ

∂Li
cla

∂θc
,

(θjd)
i+1 = (θjd)

i + γλ
∂Li

con(θf , θ
j
d)

∂θjd
,

θi+1
p = θip + γλ

∂Li
norm

∂θp
,

(17)

where γ is the learning rate. It is very similar to the stochastic gradient descent
(SGD). The only difference is in the updating of θp and θjd, which contain the
negative gradients from two domain classification losses. Such negative gradients
contribute to making the learned features similar across domains. We propose a
gradient-reversal layer (GRL) to update θf by easily following [21]. This gradient-
reversal layer does nothing and merely forwards the input to the following layer
during forward propagation. However, it multiplies the gradient by −1 during the
backpropagation to obtain a negative gradient from the domain classification.

5 Experiments

In this section, we conduct experiments on three domain generalization datasets
to demonstrate the effectiveness of our conditional invariant deep domain gener-
alization (CIDDG). We compare our proposed method to the following methods.

– L-SVM [29] is support vector machines (SVM) with a linear kernel to clas-
sify the learned feature representations.

– Kernel Fisher discriminant analysis (KDA) [30] is used to find a trans-
formation of data using nonlinear kernels in all source domains.

– Undo-bias (UB) [7] measures the model of each task with a domain-specific
weight and a globally shared weight used for domain generalization. The
original UB was developed for binary domain generalization classification.
We extend it to a multi-class method using a one-vs-all strategy.

– Domain-invariant component analysis (DICA) [9] aims at learning a
domain-invariant feature representation by matching the marginal distribu-
tions across domains.



Deep Domain Generalization via Conditional Invariant Adversarial Networks 11

Fig. 2. Rotated MNIST dataset. Each rotation angle is viewed as one domain.

– Scatter component analysis (SCA) [8] is a unified framework for domain
adaptation and domain generalization that also learns a domain-invariant
feature transformation through marginal distributions.

– Multi-task auto-encoder (MTAE) [11] is a domain generalization method
based on an auto-encoder to match marginal distributions across domains.

– DeepA refers to Deep-All, using data from all source domains to train the
networks with only image classification loss.

– DeepD refers to Deep-Domain, using data from all source domains to train
the networks with image classification loss and domain classification loss to
match the marginal distribution P (T (X)).

– DeepC refers to Deep-Conditional, using data from all source domains
to train networks with image classification loss and our proposed class-
conditional domain classification loss in Eq. (13).

– DeepN refers to Deep-Normalize, using data from all source domains to
train the networks with image classification loss and our proposed class prior-
normalized domain classification loss in Eq. (14).

– CIDDG uses data from all source domains to train networks with image
classification loss, class-conditional domain classification loss and class prior-
normalized domain classification loss, as shown in Eq. (15).

5.1 Rotated MNIST Dataset

The rotated MNIST digits are shown in Figure 2, which displays four different
rotation angles: 0◦, 30◦, 60◦ and 90◦. Note that the original MNIST digits are
already characterized by certain small-angle rotations. Each of the four rotation
angles is viewed as one domain. Therefore, we have four domains. One domain
is selected as the target domain and the other three ones are used as source
domains. We repeat it four times, thus each domain is used as the target domain
once. The number of training examples from each class in different domains
are randomly chosen from a uniform distribution U [80 160], to guarantee the
variance of P (Y ) in each domain. The number of test examples is 10000 and
they are obtained from the MNIST testset with corresponding rotation angles.

The network architecture for rotated MNIST is the same as the architecture
in [31]. All domain classification networks consist of three fully-connected layers
(1024 → 1024 → 10) and the GRL layer is connected to the ReLU layer after the
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Table 1. Performance comparison in terms of accuracy (%) on rotated MNIST dataset.

Target SVM KDA UB DICA SCA MATE DeepA DeepD DeepC DeepN CIDDG

Test0◦ 72.62 72.70 64.43 72.61 71.79 75.56 75.43 77.07 77.79 78.25 78.47

Test30◦ 92.17 91.95 89.60 90.72 91.85 92.84 93.44 94.16 94.11 94.71 94.88

Test60◦ 93.34 93.15 89.30 91.77 92.69 93.68 94.47 95.22 94.96 95.49 95.64

Test90◦ 77.62 72.81 69.39 72.05 73.43 78.34 79.56 82.95 80.08 83.99 84.00

(a) DICA (b) SCA (c) MATE

(d) DeepA (e) DeepD (f) CIDDG

Fig. 3. Feature visualization of different methods on rotated MNIST dataset when the
target domain is 90◦. Different colors refer to different domains and the gray color
denotes the target domain. Different shapes corresponds to different image classes.

last convolution layer. The input features for baseline methods (SVM, KDA,
UB, DICA, SCA, MATE) are extracted using the well-trained DeepA net-
work. RBF kernel is applied toKDA,UB,DICA and SCA. Additionally, linear
SVM is used to classify the learned domain-invariant features for KDA, DICA,
SCA and MATE. Deep-learning-based methods, including DeepA, DeepD,
DeepC, DeepN and CIDDG, use softmax layer to do the classification. The
experimental results are summarized in Table 1.

Our proposed conditional-invariant adversarial network achieves the best
performance when testing on different target domains. All deep-learning-based
methods outperform traditional domain generalization methods. Our method
can achieve better improvement on more challenging tasks, e.g. the target do-
main is 0◦ or 90◦, which demonstrates that our method is more robust. When
the target domain is 30◦ or 60◦, the angle 30◦ or 60◦ can be interpolated from
its corresponding source domains (0◦, 60◦, 90◦) or (0◦, 30◦, 90◦). It is easier to
learn a generalized model when testing on an interpolation angle (30◦ or 60◦)
than testing on an extrapolation angle (0◦ or 90◦).

To better understand the generalization ability of different methods, we also
visualize the learned feature distribution using t-SNE [32] projection in Figure 3.
We randomly select 100 examples from each class in the target domain for visual-
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ization. In the visualization results,DeepA refers to original feature distribution
learned by the network with just softmax loss. For DeepA, the feature has been
learned to be discriminative but different domains are not well matched. Almost
all domain generalization methods can learn better domain-invariant features.
Methods like SCA, MATE, DeepD can well match the feature distributions
of the source domains; however, the distributions of several classes in the target
domain are not well matched. Note that the visualization performance of KDA
are not promising, we do not show its visualization result considering the lim-
ited pages. For our CIDDG, the distributions of about two classes are not well
matched. In genera, our CIDDG can learn more discriminative features, and
better match the distributions across source domains and target domains.

5.2 VLCS Dataset

In this section, we conduct experiments on a real world image classification
dataset VLCS. It consists of four different sub-datasets corresponding to four
domains: PASCAL VOC2007 (V) [33], LabelMe (L) [34], Caltech-101 (C) [35]
and SUN09 (S) [36]. Following the settings in previous works [9, 7], we select
the five shared classes (bird, car, chair, dog and person) for classification. The
total image numbers in the four domains (V,L,C,S) are 3376, 2656, 1415 and
3282 respectively. We use AlexNet [1] to train all the deep learning models and
extract the FC6 features as input for traditional baseline methods. All domain
classification networks consist of 3 fully-connected layers (1024 → 1024 → 3) and
the GRL layer is connected to the FC6 layer. The datasets from source domains
are split into two parts: 70% for training and 30% for validation, following [11,
28]. The whole target domain is used for testing.

For SVM, KDA, UB, DICA, SCA, MATE, we first directly extract FC6
features of AlexNet from source domains and then learn domain-invariant fea-
tures using these baseline domain generalization methods. Finally, linear SVM
are used to train the classification model and test on target domains. ForDeepA,
we directly use all source domains to fine-tune the AlexNet and test on target
domains. For DeepD, we use all the domains to fine-tune the AlexNet with a
domain classification network to match the marginal distribution P (X).DeepC,
DeepN and CIDDG are our methods with different proposed losses. The ex-
perimental results are summarized in Table 2.

From the results, we can conclude that traditional domain generalization
methods perform even worse than DeepA (the network just fine-tuned using all
source domains). Deep domain generalization methods outperform the simply
fine-tuned model DeepA. Additionally, our conditional-invariant domain gen-
eralization method performs better than domain generalization (DeepD) which
matches the marginal distribution.

5.3 PACS Dataset

PACS [28] consists of four sub-datasets corresponding to four different image
styles, including photo (P), art-painting (A), cartoon (C) and sketch (S). Each
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Table 2. Performance comparison in terms of accuracy (%) on VLCS dataset.

Target SVM KDA UB DICA SCA MATE DeepA DeepD DeepC DeepN CIDDG

V 48.10 44.40 47.90 51.78 54.71 51.66 62.71 63.71 63.97 64.31 64.38

L 50.87 46.69 51.09 45.63 53.73 53.95 61.28 62.06 62.60 62.10 63.06

C 70.04 61.48 73.71 68.69 58.94 75.75 85.73 86.58 87.47 86.38 88.83

S 47.94 38.52 46.77 37.66 47.62 50.33 59.33 60.29 61.51 61.87 62.10

Table 3. Performance comparison in terms of accuracy (%) on PACS dataset.

Target SVM KDA UB DICA SCA MATE DeepA DeepD DeepC DeepN CIDDG

P 55.15 59.04 55.57 55.93 59.10 58.44 77.98 80.39 80.72 77.45 78.65

A 41.80 47.66 42.48 47.46 50.05 45.95 57.55 60.75 62.30 59.17 62.70

C 52.30 53.29 48.93 57.00 58.79 51.11 67.04 68.63 69.58 67.86 69.73

S 47.87 48.21 46.30 40.70 50.62 49.25 58.52 60.76 64.45 60.92 64.45

image style can be viewed as one domain. The numbers of images in each domain
are 1670, 2048, 2344, 3929 respectively. We use all the images from the source
domains as train set and test on all the images from the target domain. We
extract the features from FC7 layer for traditional methods and the GRL layer
is also connected to FC7 layer. Other settings including the network architectures
are the same as that used in VLCS dataset.

The results are shown in Table 3. Similar conclusions can be made as that
in the experiments of VLCS dataset. The reason DeepN performs worse than
DeepC is that PACS has larger data bias and variance of P (Y ). The class-
conditional domain classification networks cannot learn well with just images in
one specific image class and not considering the changes in P (Y ) across domains.

6 Conclusions

In this paper, we proposed a novel conditional-invariant deep domain general-
ization method. This method is superior than previous works because it matches
conditional distributions by considering the changes in P (Y ) rather than marginal
distributions, thus it can better learn domain invariant features. We prove that
the distributions of multiple source domains can be perfectly matched with our
proposed multi-player minimax value. Additionally, extensive experiments are
conducted and the results demonstrate the effectiveness of our proposed method.
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