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Abstract. Local features at neighboring spatial positions in feature
maps have high correlation since their receptive fields are often over-
lapped. Self-attention usually uses the weighted sum (or other functions)
with internal elements of each local feature to obtain its weight score,
which ignores interactions among local features. To address this, we pro-
pose an effective interaction-aware self-attention model inspired by PCA
to learn attention maps. Furthermore, since different layers in a deep net-
work capture feature maps of different scales, we use these feature maps
to construct a spatial pyramid and then utilize multi-scale information
to obtain more accurate attention scores, which are used to weight the
local features in all spatial positions of feature maps to calculate atten-
tion maps. Moreover, our spatial pyramid attention is unrestricted to
the number of its input feature maps so it is easily extended to a spatio-
temporal version. Finally, our model is embedded in general CNNs to
form end-to-end attention networks for action classification. Experimen-
tal results show that our method achieves the state-of-the-art results on
the UCF101, HMDB51 and untrimmed Charades.

1 Introduction

Human action recognition [1,2,3,4,5,6] in videos occupies a significant position in
computer vision and has attracted a large amount of attention. The CNN-based
methods [7,8,9,10] achieve great progress in image classification. Besides, there
are more labeled images to train the networks than labeled video data. In view
of these two points, many methods combine predictions of images from a video
by image-based classification methods to classify videos. However, videos own
not only much irrelevant information with human actions in intra frames but
also include more temporal information along frames.
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Attention [11,12] enables models to differentiate irrelevant information so as
to focus on the key information. Hard and soft attention are two typical ways.
Hard attention usually needs to make hard binary choices and faces training
problems while soft attention uses weighted average instead of hard selection. In
action recognition, many existing methods [13,14] often use CNN or RNN based
architectures to extract the channel-level or frame-level local features, which are
subsequently modeled by combining LSTM with soft attention. Usually, supple-
mentary sources are required to predict the attention scores of the next time by
LSTM, so substantial computational cost is required. Self-attention [12] is one
kind of soft attention and can reduce computational cost by performing on top
of features without extra input, and it is also a special form of the non-local
network [15] by using attention scores to weight all features to obtain salient
features. Local features at neighboring spatial positions in feature maps have
high correlation since their receptive fields are often overlapped. However, the
interaction information among features is often ignored in self-attention because
the attention score of each feature is usually calculated by the weighted sum (or
other functions) of internal elements of this feature.

We propose an interaction-aware spatio-temporal pyramid attention layer.
It is embedded in general CNNs to generate more discriminative attention net-
works for video action classification. Firstly, attention enables models to extract
key features with high attention scores, just as that PCA extracts key features
with principal components. By minimizing the trace of the covariance matrix,
PCA utilizes the interaction information among features to obtain basis vectors
for projection. Inspired by PCA, we propose an interaction-aware self-attention
by using interaction information to train their attention scores. Secondly, con-
sidering that feature pyramid [16,17] provides an important advantage of the
multi-resolutions for feature representation, we stack feature maps of different
layers to construct a spatial pyramid. Then we perform an interaction-aware
self-attention on the channel-level features in the pyramid to obtain more accu-
rate attention scores, which are used to aggregate the top layer of the pyramid
to obtain more discriminative attentional maps. Thirdly, spatio-temporal detec-
tion [18,19] based methods also have good performance so it is promising to
use attention to detect salient spatio-temporal regions in videos. So we extend
the spatial pyramid attention to a spatio-temporal version to detect and utilize
the key information in videos. Besides, our model is irrelevant to the temporal
sequence order and is compatible to frames of any number.

Contributions: (1) We propose an interaction-aware self-attention inspired
by PCA. (2) We propose to construct a spatial feature pyramid to obtain more
accurate attention maps by multi-scale information. (3) We extend our layer to
a spatio-temporal version which accepts frames of any number even though the
architecture and parameters of our layer are determined. (4) Our layer is able to
apply in any CNNs to form end-to-end attention networks. Finally, we validate
our attention networks generated from three baseline networks, VGGNet-16, BN-
Inception, and Inception-ResNet-V2, on the UCF101, HMDB51 and untrimmed
Charades datasets, and obtain the state-of-the-art results.
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2 Related Works

Deep Networks: CNN-based methods have obtained great progress in im-
age recognition compared with hand-crafted features [20,21,22,23,24,25]. Two-
Stream ConvNet [26] first used the image-based recognition method to solve the
issue of video classification by averaging classification scores of uniformly sam-
pled frames from a video as the video prediction. Deep ConvNets [27] used the
fusion of different layers and were trained on a large scale dataset such as Sports-
1M. Temporal Segment Network [28] divided the video into multiple parts, on
which Two-Stream ConvNets were used separately. ST-ResNet [29] based on
ResNet [7] also employed two-stream architecture. The 3D ConvNet [30,31,32]
extended the 2D ConvNet to directly train using videos, but it needed abundant
computations and more pre-training on larger dataset such as Kinetics [32]. The
works [33,34] explored video representations based on spatio-temporal convolu-
tions. These methods equally treated the information of each frame or spatio-
temporal region. The performance is limited because it is hard to effectively
differentiate key features. Many deep networks are used to model the temporal
structure, such as the recurrent neural network (RNN) [35] or its variants such
as long short-term memory (LSTM) [36,37,38,39] or CNNs [39,40].

Attention Methods: Hard attention usually needs to add extra information
to enhance the original model. [41,42] proposed attention RNNs for objection
recognition to select regions by making hard binary choices. R*CNN [43] used
an auxiliary box to encode context besides the human bounding box. [44] used
the whole image as the context and used multiple instance learning (MIL) to
note all humans in the image to predict the action label for the input image.
Soft attention uses weight average instead of hard selection. Sharma et al. [13]
proposed a soft-attention LSTM on top of the RNNs to pay attention to salient
parts of the video frames for classification. Li et al. [45] proposed an end-to-end
sequence learning model called VideoLSTM. However, these soft attention mod-
els also required the auxiliary information to guide the weight average. Girdhar
and Ramanan [46] proposed the unconstrained self-attention pooling added at
the last layer to generate a global representation on top of a CNN. Long et al.
[47] proposed a method of attention clusters to integrate local feature of each
frame by self-attention. Ma et al. [48] proposed a model by attending to key
image-level representations to summarize the whole video sequence with LSTM.
Previous attention based methods often focused on the frame-level deep network
and the average performance was limited. We propose an interaction-aware self-
attention method to weight the channels of feature maps, and use the feature
maps of different scales to construct spatial pyramid to obtain more accurate
attention scores. Finally, the temporal extension of our layer can be adaptive to
the video-level framework for action classification.

3 Interaction-aware Spatio-temporal Pyramid Attention

In this section, we first propose an interaction-aware spatial pyramid attention
layer inspired by PCA. This layer can be plugged into a general CNN to form an
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Fig. 1. The illustration of our spatial pyramid interactive attention layer. We use the
feature maps of different sizes in different layers to construct a multi-scale attention to
obtain more accurate spatial attention.

end-to-end attention network, in which this layer can generate more discrimina-
tive attention feature maps. Next, we extend our layer to a temporal version for
aggregating temporal sequences for action classification in videos. Then, we give
the modified loss function of our network. Finally, we give implemental details.

3.1 Interaction-aware Spatial Pyramid Attention Layer

The CNNs usually extract feature maps by equally treating every local region.
We aim to adding an attention layer into the general CNN after one convolutional
layer to emphasize the features of the key local regions and further improve the
performance of the network. Let fi ∈ RWi×Hi×Ci denote a group of feature maps
at the i-th layer of a network obtained by inputting a frame, where Wi, Hi, Ci are
the spatial size and channel number of the feature maps. We flatten fi into Xi ∈

RWiHi×Ci . Xi can be considered as stacked rows Xi = [hiT

1 , h
iT

2 , ..., h
iT

WiHi
]T ,

where hi
k ∈ R1×Ci is a channel vector locating at the k-th spatial position of

fi and represents the local feature of its receptive field in the input image.
We propose an interaction-aware spatial pyramid attention layer to generate
discriminative d features Mi ∈ Rd×Ci from local features {hi

k}
WiHi

k=1 . To preserve
the architecture of the network behind the i-th layer unchanged, we set d =
WiHi. Then, Mi is reshaped into attention maps M

′

i ∈ RWi×Hi×Ci .
Specifically, we use feature maps of the i-th layer and that before the i-th

to construct a feature pyramid {fj ∈ RWj×Hj×Cj}|ij=i−N+1, where N is the
number of pyramid layers, as shown in Figure 1. Then, we down sample feature
maps except the top layer of the pyramid to fit the spatial size of the top layer,

f
′

j =

{

ℜ(fj), j = i−N + 1, ..., i− 1,

fi, j = i.
, where f

′

j ∈ RWi×Hi×Cj , (1)

where ℜ(•) is a down sampling function. To adapt to multiple feature maps
{f

′

j}|
i
j=i−N+1 with different channels, we perform a self-attention on the channel
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vectors hj . Namely, given Xj flattened from f
′

j , we obtain an attention score

matrix Yj by individually compute the sum of weighted channels of every hj in
Xj , which is formulated as

Yj = Wattnj
XT

j ⊕ battnj
, where Wattnj

∈ Rd×Cj , XT
j ∈ RCj×WiHi , (2)

where Wattnj
= {wj

m ∈ R1×Cj}dm=1 and battnj
∈ Rd×1 = {bjk}

d
k=1 are trainable

weights and biases. The symbol ⊕ denotes that each column of Wattnj
XT

j adds

battnj
. Furthermore, let Yj = [yj1

T
, yj2

T
, ..., yj

T

d ]
T , where yj ∈ R1×WiHi denotes

attention scores corresponding to all spatial positions of each jth-layer feature

maps. Each score in yj is individually calculated by wj
mhjT

k + bjm, which means
the score of hj

k is calculated by just weighting itself.
Subsequently, we use a softmax function to normalize yj ∈ R1×WiHi to obtain

the normalized attention score matrix Ai = [ai1
T
, ai2

T
, ..., aid

T
]T , where ai ∈

R1×WiHi . Considering the spatial pyramid, ai is calculated as follows,

ai = softmax(F (yi−N+1, ..., yi−1, yi)). (3)

F is a fusion function for yj of all layers in the pyramid. Here we respectively
investigate three fusion functions, element-wise maximum, element-wise sum and

element-wise multiplication. Then, ai is L2 normalized [49] to preserve ai
T
ai = 1.

Finally, Ai is used to aggregate the flattened feature maps Xi of the i-th
layer, to obtain a more discriminative representation Mi, as follows,

Mi = AiXi, where Mi ∈ Rd×Ci , Ai ∈ Rd×WiHi , Xi ∈ RWiHi×Ci . (4)

Discussion: The attention mechanism extracts key features from the set of
features by using attention scores to weight features while PCA extracts key
features by using a set of basis vectors to project features. So, we give an-
other insight on our self-attention process. Xi can be also considered as stacked
columns Xi = [vi1, v

i
2, ..., v

i
C ] and vi ∈ RWiHi×1 represents a flattened global

feature map divided by channel. We use PCA to generate the key features
M ∈ Rd×Ci with principal dimensions from the stacked columns {vim}Cm=1. Let
S = [e1, e2, ..., ed]

T be the set of orthogonal basis vectors {en}
d
n=1 ∈ RWiHi×1,

on which v is projected for extracting principal components. So by PCA, we
obtain Mi = SXi ∈ Rd×Ci , which is the same as the form of Mi in Eq. 4.

There exists a subtle correspondence between PCA and attention mecha-
nism, namely the attention score ai ∈ RWiHi×1 corresponds to the basis vector
e ∈ RWiHi×1 even if the computing ways of a and e are different. In other words,
this is an attention processing if we extract key features from Xi considered as
stacked channel-level features, as well as a PCA processing if extracting prin-
cipal components from Xi considered as stacked features divided by channels.
Furthermore, “⊕battnj

” in Eq. 2 can be considered as the data central processing
(subtracting mean) of PCA. Until now, our self-attention is actually a simplified
version of PCA since it doesn’t consider the interaction among features by just
weighting itself to obtain attention scores. As described in the analysis of Eq.
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2, each attention score is obtained for h by weighting h itself. However in PCA,
S is usually obtained by eigenvalue decomposition of covariance matrix XiX

T
i .

Here we use another equivalent form [50,51],

S = argmin
S

− tr(SXiX
T
i S

T ), where S ∈ Rd×WiHi , Xi ∈ RWiHi×Ci ,

s.t. SST = I. (5)

PCA uses the covariance matrix to obtain S, and in this way it utilizes the non-
local interaction among features. Inspired by PCA, we add an interaction-aware
loss item to generate an interaction-aware spatial pyramid attention layer, which
use the non-local interaction information among channel features h to further
improve the effectiveness of self-attention. The details of interaction-aware loss
are given in Section 3.3.

3.2 Temporal Aggregation

Our interaction-aware spatial pyramid attention layer can accept not only a
single image but also multiple frames as the input. We can easily extend it to
a temporal architecture based on a original deep CNN. The obtained spatio-
temporal pyramid attention network models the temporal sequences and detects
the key spatio-temporal information.

First, we sample K frames from a video, and then input them into the net-
work until the i-th layer to extractK groups of feature maps Fi ∈ RK×Wi×Hi×Ci ,
which is flattened into Xi ∈ RKWiHi×Ci . To preserve the parameters and archi-
tecture of the network after the i-th layer unchanged, we seek to aggregate Fi

into a group of feature maps M
′

i ∈ RWi×Hi×Ci which has the same size with fi.
To address this aggregation, we first construct feature pyramid {Fj}|

i
j=i−N+1

by K frames. Then, we set d = WiHi, Wattnj
∈ Rd×Cj and battnj

∈ Rd×1. It is
interesting to note that W and b of multiple frames have the same forms with
that of a single frame in Eq. 2. This is because we use Wattnj

to weight chan-
nels of feature maps. In addition, the size of output attention maps are fixed to
d = Wi × Hi, which is also the size of the i-th layer in the original CNN. So,
as long as the feature maps of a CNN constructing the spatio-temporal pyramid
are selected, the parameters are determined and are irrelevant to K. Based on
this fact, we can expediently use frames of different numbers to train and test
our networks. Finally, by replacing fj with Fj and replacing Xj ∈ RWiHi×Cj

with Xj ∈ RKWiHi×Cj in Eq. (1)(2)(3)(4), we obtain the aggregated attention

features M and then it is reshaped to attention maps M
′

i .

3.3 Design of Loss Function

We first present the specific form of our interaction-aware loss inspired by PCA.
The original form of PCA is shown in Eq. 5. We use Ai to represent S and then
change this loss function into a derivable form as follows,

linteractive = −X ((AiXiX
T
i A

T
i ) ◦ I) + Y ((AiA

T
i ) ◦ (1− I)), (6)
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where 1 ∈ Rd×d and I ∈ Rd×d are a matrix of all ones and an identity matrix
respectively, ◦ is element-wise multiplication. X and Y are operations of sum
of elements and quadratic sum of elements respectively. Minimizing the second
term obtains the constraint AiA

T
i = I after the diagonal of AiA

T
i have already

been all one, because ai is L2 normalized as descibed in Section 3.1.
In order to further enhance the representative ability of the attention maps,

we propose a regularization about attention scores. Specifically, ai represents
the attention scores calculated by all scales of the spatio-temporal pyramid and
softmax(yj) represents the attention scores obtained by the j-th scale of the
pyramid. To sufficiently utilize the information of different scales of the pyramid
and make each scale focus on diverse parts as far as possible, we attempt to
maximize the distance δ between ai and softmax(yj) or minimize the distance
1− δ2. We define δj,m,k (∈ [0, 1]) as follows,

δj,m,k = ||aim,k − softmax(yj)m,k||,m = 1, ..., d, k = 1, ...,KWiHi. (7)

Subsequently, we give the specific form of our attention loss, as follows,

lattn =

√

∑

j

∑

m

∑

k

(1− δ2j,m,k). (8)

We use the cross-entropy loss for the classification loss, and the final loss is
formulated as follows,

L = −
1

K

K
∑

t=1

C
∑

c=1

yt,clogŷt,c + λ
∑

θ

w2
θ + βlinteractive + γlattn, (9)

where yt is one hot label vector, ŷt is the vector of class probabilities obtained by
the t-th frame. λ, β and γ are weight decay coefficients. wθ are trainable weights
of the network. C is the class number.

3.4 Implementation Details

Network architecture:We incorporate interaction-aware spatio-temporal pyra-
mid attention layer into general CNNs to form end-to-end attention networks
for action classification. We employ Two-stream [26] architecture and investigate
VGGNet-16 [9], BN-Inception [52] and Inception-ResNet-V2 [10] respectively.
The framework of the proposed attention network is shown in Figure 2. We use
max pooling as the dawn sampling ℜ(•) because max pooling is marginally su-
perior than average pooling and convolution by our experiments. In addition,
max pooling doesn’t brings in any parameters. So we set max pooling as ℜ(•).

Training: In RGB stream, we use the dropout of 0.5 with good performance.
Since the spatial networks take RGB images as input, it is natural to use models
trained on the ImageNet [53] as initialization. In Flow stream, we use a dropout
of 0.7 to avoid over-fitting on small flow datasets. Flow model is initialized by
following [54]. Data augmentation is done by performing random cropp/flipping
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Fig. 2. The framework of the proposed network. An interaction-aware spatio-temporal
pyramid attention layer is inserted to CNN to aggregate K group of feature maps by K

frames. It utilizes multi-scale feature maps to accurately focus on the salient regions.

of all the RGB and flow frames respectively. In practice, we follow the same
segment setting [28,40] for training, that is, we uniformly divide a video into 3
segments, choose a random frame from each segment and then form a K = 3
sequences as the input of our networks. Furthermore, we also evaluate K = 1
for training. We use mini-batch SGD to optimize our model with momentum of
0.9, weight decay λ of 4e−5, β and γ of 1e−4, and a batch size of 64 for network
training. We set the learning rate as follows. For spatial networks, the learning
rate is initialized as 0.001 and decreases to its 1/10 every 4000 iterations. The
whole training procedure stops at 12000 iterations. For temporal networks, we
initialize the learning rate as 0.005, which reduces to its 1/10 after 12000 and
24000 iterations. The maximum iteration is set as 30000.

Test: During the test process on RGB and Flow streams, we investigate
the effects of K on the performance. We typically use K = 25 frames for test
and compare the results with other standard practice based methods. Further-
more, we investigate the performance of more frames (>25) in Section 4.2. We
implement our models in TensorFlow [55] with TITAN Xp×2 GPUs.

4 Experiments

We evaluate our models on three challenging action classification benchmarks,
the UCF101 [6] , HMDB51 [5] and untrimmed Charades [39] datasets. For
UCF101 and HMDB51, we follow the original evaluation scheme using three
different training and test splits. We use the split 1 for ablation analysis and
report the final performance by the average classification accuracy over these
three splits. For Charades, we follow the evaluation pipeline of [39].

4.1 Evaluations of the Proposed Attention Layer

We investigate our interaction-aware spatio-temporal pyramid attention on the
following five parts: (1) layer position of feature maps used for aggregation,



ISTPAN for Action Classification 9

(2) different fusion functions F of feature maps of pyramid, (3) numbers of
layers in pyramid, (4) loss functions with ablated regularization items, and (5)
the generality of our layer applied in different deep networks, including popular
architectures VGGNet-16 [9], BN-Inception [52] and Inception-ResNet-V2 [10].

In experiments about (1)-(4), if there is no special explanations, we choose
Inception-ResNet-V2 as the baseline and typically choose the last layers of
Inception-ResNet-A, B, and C without activation to construct a 3-scale interaction-
aware spatio-temporal pyramid attention layer and optimize our networks with-
out linteractive and lattn. The selection of layers approximately satisfies the typical
ratio of 2n on the spatial size. The sizes of these three layers are 35× 35× 320,
17× 17× 1088 and 8× 8× 2080. The experimental results are listed in Table 1.

First, to determine which layer of feature maps are suitable to be aggregated
with attention weights, we evaluate four different layers used for aggregation.
Specifically, we respectively use the last layers of Inception-ResNet-A, B, and C
without activation for aggregation. The pyramid is 1-scale and has only one layer
for evaluation. In addition, we also evaluate the performance of using the last
fully-connected layer and it is specially denoted as X1536×1(W ∈ R1536×1, b ∈
R1536×1) for aggregation. The results are shown in Table 1(a), which clearly
shows that the best performance is obtained by using the last convolutional layer
of Block C. In general, the fully-connected layer loses much information of the
spatial locations while feature maps of big spatial size is not very representative.

We explore different fusion functions F of feature maps of pyramid evalu-
ated on RGB stream. Table 1(c) lists the comparison results of different fusion
strategies. Element-wise multiplication performs better than other candidate
functions, and is therefore selected as a default fusion function. The similar con-
clusion is obtained in TLE [40], which uses element-wise multiplication to better
encode feature maps of different frames.

Next, we respectively give the performance of our spatio-temporal pyramid
attention layer of 1 scale (only using the top layer of pyramid), 2 scales (top 2
layers), 3 scales and 4 scales, as shown in Table 1(b). The results using Inception-
ResNet-V2 without our attention layer are shown in Table 1(e). The results show
that our 1-scale attention promotes 1.1%/0.9% performance on RGB/Flow and
the performance can be further promoted by increasing the number of scales (3
scales promote 2.1%/2.4% on RGB/Flow). When we add the forth scale by using
Conv2d 4a 3x3 (71× 71× 92 ) in Inception-ResNet-V2, the performance drops.
It can be explained that spatio-temporal pyramid attention is indeed effective
because more information from multi-scale feature maps of different receptive
fields is considered to the aggregation of local features. However, when feature
maps of bigger size are used, the receptive fields of these feature maps get narrow.
Then, too local features of these narrow receptive fields will bring in the noise
that leads to the drop of performance. We hence use the architecture of 3 layers
(3 scales) to obtain the spatio-temporal pyramid in the following experiments.

Subsequently, we evaluate the effectiveness of our loss items linteractive and
lattn, as shown in Table 1(d). The results using two loss items are shown in
Table 1(e). The comparison results show that linteractive + lattn are effective
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Table 1. Evaluations of (a) position of the top layer of pyramid; (b) different scales
with Inception-ResNet-V2 (I-R-V2); (c) fusion functions with 3 scales; (d) loss functions
with I-R-V2 and our attention layer; and 3) our layer on VGGNet-16, BN-Inception
and Inception-ResNet-V2. K = 3 for training, K=25 for testing, on UCF101 split 1.

(a) Position of the top layer of pyramid.

Block (Inception-ResNet-V2) RGB Flow

Block A (35× 35× 320) 85.8% 83.5%

Block B (17× 17× 1088) 86.1% 83.7%

Block C (8× 8× 2080) 86.3% 84.0%

FC (1536) 85.5% 83.4%

(b) Different scales.

Scale RGB Flow

1 scale 86.3% 84.0%

2 scales 86.8% 84.8%

3 scales 87.3% 85.5%

4 scales 86.5% 85.0%

(c) Performance of different fusion functions.

Fusion Function (F ) Accuracy #RGB

Element-wise Maximum 85.7%

Element-wise Sum 86.4%

Element-wise Multiplication 87.3%

(d) Loss functions with 3 scales.

Stream linter lattn no loss

RGB 87.8% 87.5% 87.3%

Flow 86.1% 85.7% 85.5%

Late fusion 94.7% 94.4% 94.2%

(e) Performance of the proposed attention layer on popular networks.

Stream/(linter + lattn) VGGNet-16 BN-Inception Inception-ResNet-V2

RGB 80.4% 84.5% 85.2%
RGB (3 scales) 83.8% 86.7% 88.2%

Flow 85.5% 87.2% 83.1%
Flow (3 scales) 87.1% 87.9% 86.5%

Late fusion 90.7% 92.0% 92.6%
Late fusion (3 scales) 92.8% 94.6% 95.1%

by improving the performance 0.9%/1.0%/0.9% on RGB/Flow/Late fusion (3
scales). Furthermore, each of them also improves the performance individually
compared to the results without these two loss items.

Finally, to investigate the generality of our attention layer, we respectively
plug it into VGGNet-16, BN-Inception and Inception-Resnet-V2. The results are
listed as shown in Table 1(e). The late fusion approach means that the prediction
scores of the RGB and Flow streams are averaged as the final video classification,
as other methods [26,28,39,40] do. For VGGNet-16, our attention network re-
spectively promotes 3.4%/1.6%/2.1% on RGB/Flow/Late fusion on the UCF101
split 1. For BN-Inception, our model respectively promotes 2.2%/0.7%/2.6% on
RGB/Flow/Late fusion. For Inception-Resnet-V2, our model respectively pro-
motes 3.0%/3.4%/2.5% on RGB/Flow/Late fusion. The improved results with
our attention layer on these three deep networks prove the generality of our
layer for general deep networks. The results without our layer are obtained by
Two-Stream [26] standard process.
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(a) K of training (b) K for testing

Fig. 3. Comparisons of different K sampled frames per video for training and testing
process on UCF101 split1. We use 3-scale spatio-temporal pyramid interactive attention
with Inception-ResNet-V2 to predict video. Specifically, we respectively investigate
{K = 1, 3} frames for training and {K = 1, 5, 10, 15, 20, 25, 30} frames for testing.

4.2 Evaluations of Temporal Aggregation

We investigate how the number K of sampled frames for training and test af-
fects our layer based on Inception-Resnet-V2. We first evaluate the performance
with settings of K = 1, 3 for training and K = 25 for test. When K = 1, we
randomly sample a frame from a video. When K = 3, we randomly sample a
frame from each of K segments averagely divided from a video. The results are
shown in Table 3(a). It can be seen training the model with temporal sequences
contributes to the accuracy, as shown in Temporal Segment Networks [28]. For
fair comparison, we select K = 3 for training in the later experiments.

Then, we evaluate K for test, as shown in 3(b). It can be seen that the
performance gradually rises when more frames are sampled per video. Although
more frames may bring irreverent information, our attention layer is able to
select out the most effective information. We achieve the performance of 95.2%
when the most frames K = 30 are selected because of the limited GPU memory.
For further GPU of higher capacity, the performance of our model is probable
to be better. For fair comparison, we typically show our results when K = 25
frames [26,28,54,39] for test are uniformly sampled from videos.

4.3 Comparison to State of the Art

In Table 2(a), we list recent state-of-the-art methods and comparable methods.
We list our results based on two baselines of BN-Inception and Inception-Resnet-
V2. It can be seen that the attention based method, such as Soft Attention +
LSTM, is not very satisfying. Our method (BN-Inception) outperforms TSN
(BN-Inception) by 0.8%/1.1% on UCF101/HMDB51 when the same K = 25
uniformly sampled frames are used for evaluation. In addition, we obtain com-
petitive performance comparing our method (BN-Inception, 94.8%/69.6%) with
Attention Cluster (ResNet-152, 94.6%/69.2%) where ResNet-152 [61,7] (single
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Table 2. Comparisons with the state of the art on UCF101, HMDB51 and untrimmed
Charades datasets.

(a) Comparisons on UCF101 and HMDB51 over 3 splits

Algorithm UCF101 HMDB51

C3D [34] 85.2% -
Soft Attention + LSTM [13] - 41.3%
Two-Stream + LSTM [57] 88.6% -

TDD+FV [19] 90.3% 63.2%
RNN+FV [58] 88.0% 54.3%

LTC [33] 91.7% 64.8%
ST-ResNet [29] 93.5% 66.4%

TSN (BN-Inception) [28] 94.0% 68.5%
AdaScan [59] 89.4% 54.9%

ActionVLAD [39] 92.7% 66.9%
TLE (BN-Inception) [40] 95.6% 71.1%

Attention Cluster (ResNet-152) [47] 94.6% 69.2%

Ours (25 frames+BN-Inception) 94.8% 69.6%
Ours (25 frames+Inception-ResNet-v2) 95.3% 70.5%

Ours (30 frames+Inception-ResNet-v2) 95.5% 70.7%

(b) Comparisons on the untrimmed Charades

Algorithm mAP wAP

Two-stream + iDT (best reported) 18.6% -
RGB stream (BN-inception, TSN style training) 16.8% 23.1%

ActionVLAD (RGB, BN-inception) 17.6% 25.1%

all losses/linter/lattn/no loss

Ours (RGB, BN-Inception, 3 scales) 20.2%/19.8%/18.7%/18.3% 28.5%

crop, 76.8%) is more superior than BN-Inception [52] (single crop, 74.8%) with
top-1 accuracy on ImageNet [53]. We also add our model to Inception-ResNet-
V2 and obtain the improved performance 95.3%/70.5%, which is comparable to
the best performance with TLE. By sampling more frames per video, we further
improve our performance to 95.5%/70.7%. To prove the effectiveness, we further
evaluate our model on the untrimmed Charades datasets in Table 2(b) by fol-
lowing the pipeline of another spatio-temporal aggregation method ActionVLAD
[39]. Our model (3 scales+all losses) exceeds TSN 3.4%(mAP)/5.4%(weighted-
AP/wAP) and ActionVLAD 2.6%(mAP)/3.4%(wAP).

4.4 Visualization Analysis

We visualize what the proposed attention layer pays attention to over the frames
and from different spatial positions. Specifically, let l(kj ,wj ,hj) ∈ R1×Ci denote

the vector in position (kj , wj , hj) of Fi ∈ RK×Wi×Hi×Ci . Actually, l(kj ,wj ,hj)

is a local feature which describes a receptive field centered at the position
(wj , hj) in the kj-th frame. By Equation 3, Awm∗hm,kj∗wj∗hj

∈ RWiHi×KWiHi
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a)

b)

c)

d)

e)

f)

(a) Sampled RGB frames per video

g)

h)

i)

j)

k)

l)

(b) Flow

Fig. 4. Visualization of salient receptive fields in different frames from appearance
(RGB) and motion (Flow) streams. Each row shows 5 frames from videos where
blue,green and red regions respectively corresponds to the center of salient receptive
fields by using 1 scale, 2 scales and 3 scales to obtain attention of different layers.
Specifically, a)-c) and g)-i) respectively show the results of action ’ApplyEyeMakeup’
from RGB and Flow. d)-f) and j)-l) show the results of action ’iceDancing’.

(kj ∈ [1,K], wm, wj ∈ [1,Wi], hm, hj ∈ [1, Hi]) represents the attention score
of l(kj ,wj ,hj) contributing to spatial position (wm, hm) in the attention maps

M
′

i ∈ RWi×Hi×Ci . We define the receptive fields with high attention scores as
salient receptive fields and highlight them.

Firstly, we visualize the salient receptive fields ofK input frames contributing
to the fixed position (wm, hm) in F

′

i . Namely for one frame, salient receptive fields
centered at the positions satisfied {(wj , hj)|Awm∗hm,kj∗wj∗hj

> threshold, kj =
1, ..,K,wm = 1, hm = 1}. Then we set a threshold 0.5 to show salient attention
regions for 5 input frames, as shown in Figure 4. The results show that our
attention layer can pay attention to different key positions of actions over the
frames. Moreover, we also shows the obtained salient regions by three methods
which respectively use feature maps of 1 scale, 2 scales, and 3 scales to obtain
the multi-scale attention scores A. It can be seen that the method using 3 scales
pays attention to more specific and accurate action regions in every frame.

Secondly, for one fixed input frame we visualize the salient receptive fields
contributing to different positions (wm, hm) in attention feature maps F

′

i . Namely,
for one position, every salient spatial regions centered at the positions satisfied
{(wj , hj)|Awm∗hm,kj∗wj∗hj

> threshold, kj = 1, wm = 1, ..,Wi, hm = 1, .., Hi}.
Then we set a higher threshold 0.7 for stronger discrimination, as shown in Fig-
ure 5. The results show that different positions (wm, hm) have different scopes of
attention. From Figure 5(a) it can be seen that action ’PlayingGuitar’ is divided
into multiple parts (’microphone’, parts of ’guitar’, hands) which are separately
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a)

b)

c)

d)

Fig. 5. Visualization of salient receptive fields for different positions in attention fea-
ture maps from appearance (RGB) stream where 3-scale attention is used. Each column
represents results of different positions (wm, hm). a) ’PlayingGuitar’, b) ’PlayingFlute’,
c) ’ParallelBars’, d) ’Skijet’.

focused on from multiple positions in aggregated feature maps. The similar re-
sults can be seen in Figure 5(b)-(d).

5 Conclusion

We have proposed an interaction-aware self-attention which is inspired by PCA
to further use non-local information in feature maps. By constructing a spa-
tial feature pyramid, our model improve the attention accuracy resulting in
promoted classification accuracy. In addition, we have naturally extended our
spatial model to a temporal model for action classification. The temporal model
can accept changing input of any numbers and we have explored the influence of
different training frames and test frames. We have investigated the performance
of the proposed attention layer on three popular deep networks, VGG16, BN-
Inception and Inception-ResNet-V2. The promoted performances have proven
the generality of our model.
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