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Abstract. We propose a learning-based framework for acquiring a light
field through a coded aperture camera. Acquiring a light field is a chal-
lenging task due to the amount of data. To make the acquisition process
efficient, coded aperture cameras were successfully adopted; using these
cameras, a light field is computationally reconstructed from several im-
ages that are acquired with different aperture patterns. However, it is
still difficult to reconstruct a high-quality light field from only a few ac-
quired images. To tackle this limitation, we formulated the entire pipeline
of light field acquisition from the perspective of an auto-encoder. This
auto-encoder was implemented as a stack of fully convolutional layers
and was trained end-to-end by using a collection of training samples. We
experimentally show that our method can successfully learn good image-
acquisition and reconstruction strategies. With our method, light fields
consisting of 5 × 5 or 8 × 8 images can be successfully reconstructed
only from a few acquired images. Moreover, our method achieved supe-
rior performance over several state-of-the-art methods. We also applied
our method to a real prototype camera to show that it is capable of
capturing a real 3-D scene.
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1 Introduction

The notion of a light field, which describes all light-rays traveling in 3-D free
space [1–3], has been utilized in various applications, such as view synthesis [4–
6], depth estimation [7–9], synthetic refocusing [10, 11], super resolution [12, 7],
3D displays [13–16], and object recognition [17, 18]. Several researchers have
published light field datasets [19–22] for accelerating research in this field. A
light field dataset is usually represented as a set of multi-view images that are
aligned densely with tiny viewpoint intervals.

Acquiring a light field is a challenging task due to the amount of data be-
cause a light field typically consists of dozens of images. Several researchers
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have employed direct approaches such as using a moving camera gantry [2] or
multiple cameras [23–25] to capture a target from different viewpoints. These
approaches are costly in terms of the hardware or the time required to capture
the entire light field. Meanwhile, lens-array based cameras [26, 27, 11, 28] and
coded aperture/mask cameras [29–35] have also been utilized to achieve more
efficient acquisition. In the case of lens-array based cameras, an entire light field
can be captured with a single acquired image, but the spatial resolution of each
image is in a trade-off relationship with the number of viewpoints. In contrast,
coded aperture/mask cameras can capture a light field with the same spatial
resolution as that of an image sensor, but the quality of the light field is in a
trade-off relationship with the number of acquired images 3. Other researchers
used view synthesis techniques [7, 6, 36, 37] to generate a dense light field from
a few images that were acquired with sparser intervals or even from one image.
However, view synthesis involves added difficulty in terms of accurately esti-
mating depth/disparity from the given images and reproducing view-dependent
phenomena such as non-Lambertian reflections and occlusions.

This paper is focused on the problem of efficiently acquiring a light field by
using a coded aperture camera. Using this camera, a light field is computation-
ally reconstructed from several images that are acquired with different aperture
patterns. Earlier methods [30–32] could not drastically reduce the number of
images required to reconstruct a light field. However, with recent methods [33,
35], the number of acquired images has been reduced to only a few for a light
field consisting of 5 × 5 viewpoints. We want to further improve the trade-off
relationship between the number of acquired images and the quality of the re-
constructed light field. The key to achieving this goal is to find good aperture
patterns and a corresponding good reconstruction algorithm.

It is important to understand the principles behind reducing the number
of acquired images. In previous works, this problem has been tackled from the
perspective of compressive sensing [38–40]. Compressive sensing is a framework
for reconstructing a signal from a reduced number of samples, where inherent
structures in a target signal are exploited to seek the optimal sampling and recon-
struction strategies. Along this theme, light-field acquisition has been formalized
from the perspective of sparse representation using a learned dictionary [33] and
approximation using the most significant basis vectors [35]. These methods can
successfully reconstruct a light field from only a few acquired images. However,
they often fail to reconstruct the details of the light field due to the limited
representation capability of the dictionary and basis. Moreover, sparse recon-
struction requires significant computational time due to the inherent complexity
of the iterative algorithms that are used.

In contrast, we view the problem of acquiring a light field from the perspective
of an auto-encoder [41, 42]. An auto-encoder employs a simple structure, in which
an encoder network is connected to a decoder network, and it is trained to best
approximate the identity mapping between the input and output. In our method,

3 Dappled photography [29] is categorized as a coded mask method, but there is a
trade-off between the maximum spatial and angular frequencies.
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an encoder and decoder correspond to the image acquisition and reconstruction
processes, respectively, because the original light field is once reduced (encoded)
to only a few images through the physical imaging process of the coded aperture
camera, and these images are then combined to reconstruct (decode) a light
field with the same size as the original one. We implemented this auto-encoder
as a fully convolutional neural network (CNN) and trained it end-to-end by
using a collection of training samples. The parameters of the trained network
correspond to the aperture patterns and reconstruction algorithm that are jointly
optimized over the training dataset. In short, our method can learn to capture
and reconstruct a light field through a coded aperture camera by utilizing the
powerful framework of a deep neural network (DNN).

We implemented our method by using Chainer [43] and trained it by using
samples taken from 51 light-field datasets. We experimentally show that our
method can successfully learn good image-acquisition and reconstruction strate-
gies. By using our method, light fields consisting of 5 × 5 or 8 × 8 images can
be reconstructed with high quality from only a few acquired images. Moreover,
our method achieved superior performance over several state-of-the-art methods
[33, 6, 35, 36] including both compressive-sensing based and view-synthesis based
approaches. We also applied our method to a real prototype camera to show that
it is capable of capturing a real 3-D scene.

We briefly review the related works on the usage of DNNs for similar ap-
plications. DNNs have been utilized to optimize the imaging pipelines includ-
ing camera designs for color image acquisition [44], depth estimation [45], and
high-speed video acquisition [46]. A learning based approach was also used for
temporal interpolation of light field video [47]. As the most similar work to ours,
compressively sampled light fields were successfully reconstructed using DNNs
in [48]. However, in contrast to our method, the compression process (camera de-
sign) in [48] was not optimized in the training stage but determined beforehand.
To the best of our knowledge, we are the first to use a DNN for designing the
entire pipeline of a computational camera for light-field acquisition. Moreover,
the difference between the network architectures resulted in significant difference
in the reconstruction time: 6.7 minutes for [48] and only 1 second for ours.

2 Proposed Method

2.1 Light field capturing through coded aperture camera

A schematic diagram of a coded aperture camera is illustrated in Fig. 1. An
architecture that is equivalent to this diagram can be implemented by using
relay optics and an LCoS (liquid crystal on silicon) device [31, 33, 49]. Here, we
present a mathematical formulation for acquiring a light field through a coded
aperture camera.

All incoming light rays that will be recorded by this camera are parameterized
with four variables (s, t, u, v), where (s, t) and (u, v) denote the intersections with
the aperture and imaging planes, respectively. Therefore, the light field is defined
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Fig. 1: Schematic diagram and implementation of coded aperture camera.

over 4-D space (s, t, u, v), with which the light intensity is described as l(s, t, u, v).
The light field is equivalently described as a set of rectified multi-view images
called “sub-aperture images”, {xs,t(u, v) = l(s, t, u, v)}, where (s, t) corresponds
to the viewpoint defined on the aperture plane.

We consider a coded aperture design where the transmittance of the aperture
can be controlled for each position and for each acquisition. Let an(s, t) be the
transmittance at position (s, t) for the n-th acquisition (n = 1, . . . , N). The
observed image yn(u, v) is formed as

yn(u, v) =

∫∫
an(s, t)l(s, t, u, v)dsdt =

∫∫
an(s, t)xs,t(u, v)dsdt. (1)

When the aperture plane is quantized into a finite number of square blocks, they
can be numbered by an integer m (m = 1, . . . ,M). Equation (1) is rewritten as

yn(u, v) =

M∑
m=1

an,mxm(u, v), (2)

where M is the total number of blocks, and an,m [equivalent to an(s, t)] is the
transmittance of the aperture at position m for the n-th acquisition.

Reconstructing the light field is equivalent to estimating M sub-aperture
images xm(u, v) from the N given observations yn(u, v). In particular, we are
interested in the case of N ≪ M , where the entire light field could be recon-
structed from only a few observed images. To this end, we need to find good
transmittance patterns an,m and a corresponding reconstruction method.

In the remainder of this paper, we assume that each image has only a single
channel for simplicity, and this applies to both xm(u, v) and yn(u, v). When
dealing with a color image, we simply divide it into three independent single-
channel images and apply the same procedure to them.

2.2 Formulation as convolutional neural network

The observation (image acquisition) process of a coded aperture camera, which
is given by Eq. (2), can be written in a form of a mapping as

f : X → Y (3)
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Fig. 2: Modeling light-field acquisition using CNN

where X represents a vector that contains all the pixels of xm(u, v) for all m ∈
{1, ...,M}. When each image has U×V pixels, the length of the vector is UVM .
Similarly, Y represents a vector that contains all the pixels of yn(u, v) for all
n ∈ {1, ..., N}. The reconstruction is also written as

g : Y → X̂ (4)

where X̂ corresponds to an estimate of X . The composite mapping h = g ◦ f

should be as close to the identity as possible, under the condition that N ≪ M .
This problem can be regarded as that of an auto-encoder, where the encoder
and decoder correspond to f and g, respectively. The goal of optimization is
formulated with the squared error loss as

argmin
f,g

|X − X̂ |2 = argmin
f,g

∑
m

∑
u,v

|xm(u, v)− x̂m(u, v)|2 (5)

where an estimate of xm(u, v) is written as x̂m(u, v).
On top of this formulation, we implemented composite mapping h = g ◦ f as

a stack of 2-D convolutional layers. The entire network can be trained end-to-
end by using a collection of training samples. The learned parameters in f and
g correspond to the aperture patterns an,m and the reconstruction algorithm,
respectively, both of which are jointly optimized over the training dataset. In
short, our method can learn to capture a light field through a coded aperture
camera by utilizing the powerful framework of a DNN. This network can easily
be applied to a physical coded-aperture camera. The mapping f is conducted
by the physical imaging process of the camera, the aperture patterns of which
are configured in accordance to the learned parameters in f . Then, the images
acquired by the cameras are inputted to the network corresponding to g, by
which we can computationally reconstruct a target light field.

An example with M = 25 and N = 2 is illustrated in Fig. 2. The architecture
of our network is summarized below. Note that this is only an example we have
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found through trial and error, and one may find other architectures that are
essentially equivalent in spirit but can perform better than ours.

In a 2-D convolutional network, data are represented as 2-D images with mul-
tiple channels. For the l-th convolution layer, the relationship between the input
xl
c(u, v) and output xl+1

c′ (u, v), where c and c′ denote channels, is represented as

xl+1
c′ (u, v) =

∑
c

kc,c′(u, v) ∗ x
l
c(u, v) + bc′ (6)

which is optionally followed by an activation function. The 2-D convolution
kernels represented by kc,c′(u, v) and the bias terms bc′ are optimized through
the training stage. We used one-pixel stride and an appropriate zero padding
to keep the image size unchanged before and after the convolution. Meanwhile,
the number of channels (the range for c and c′) can arbitrarily be changed
between the input and output. Therefore, the image size (height and width)
is kept constant throughout the network, but only the number of channels is
changed as the data proceed in the network. To apply this data structure to
our purpose, we treated the indices n and m as the channels. Therefore, the
viewpoint m corresponds to the channels in the input and output data, and the
index for the acquired images n corresponds to the channel of the intermediate
data between f and g.

The mapping f has a few restrictions because it corresponds to the physical
imaging process described by Eq. (2); the transmittance an,m should be limited
within [0, 1], each pixel (u, v) cannot be mixed with other neighbors, and the
number of channels should be reduced from M to N . We implemented this
using a single 2-D convolution layer with 1 × 1 convolution kernels, where the
weights are limited within the range [0, 1], and bc′ = 0 for all c′. In this case,
kc,c′ is equivalent to ac′,c, and Eq. (6) corresponds to Eq. (2). To keep the range
limitation during the training stage, we clipped the weights within [0, 1] each
time when the network was updated by using the gradient information obtained
from a mini-batch. To better simulate the physical imaging process, Gaussian
noise with standard deviation σ was added to the output of this network. This
network is called the “image acquisition network” and denoted as NA.

Meanwhile, the mapping g can take an arbitrary form because it is a truly
computational process. We decomposed this mapping into two networks, which
are denoted as NR1 and NR2, respectively, where R stands for reconstruction. In
the former network NR1, the number of channels is gradually increased from M

to N by using several convolution layers with 5×5 kernels and linear activations,
resulting in a tentative reconstruction of the target light field. This tentative
result is further refined by the latter network NR2 that employs the structure of
very deep super resolution (VDSR) [50]. Here, 19 convolution layers with 3× 3
kernels and ReLU activations are followed by the addition of the tentative light
field itself, which forces the network to learn only the residual (difference between
the tentative result and ground truth). The former and latter networks are also
called the “tentative reconstruction and refinement networks,” respectively.
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Table 1: Network architecture for reconstruction
M N Tentative reconstruction Refinement

1 1 → 2 → 5 → 12 → 25
25 (5× 5) 2 2 → 5 → 12 → 25 25 → 64 → 64, ...., 64 → 25

4 4 → 7 → 13 → 25

1 1 → 2 → 4 → 8 → 16 → 32 → 64
64 (8× 8) 2 2 → 4 → 8 → 16 → 32 → 64 64 → 64 → 64, ...., 64 → 64

4 4 → 8 → 16 → 32 → 64

Table 2: Datasets used for training and testing
M Stage Datasets

25 (5 × 5) Training Chess, Lego Bulldozer, Lego Truck, Eucalyptus Flowers, Amethyst,
Bracelet, The Stanford Bunny, Jelly Beans, Lego Knights, Tarot Cards
and Crystal Ball (small angular extent), Treasure Chest (Stanford [20]),
Red Dragon, Happy Buddha, Messerschmitt, Dice, Green Dragon, Mini
Cooper, Butterfly, Lucy (MIT [19]), Bedroom, Bicycle, Herbs, Origami,
Boxes, Cotton, Sideboard, Antinous, Boardgames, Dishes, Greek, Mu-
seum, Pens, Pillows, Platonic, Rosemary, Table, Tomb, Town, Vinyl
(New HCI [21]), Buddha, Buddha 2, StillLife, Papillon, MonaRoom, Me-
dieval, Horse, Couple, Cube, Maria, Pyramide, Statue (Old HCI [22])

Testing Dragon and Bunnies, Fish (MIT [19]), Dino, Kitchen, Medieval2, Tower
(New HCI [21])

64 (8 × 8) Training Chess, Lego Bulldozer, Lego Truck, Eucalyptus Flowers, Amethyst,
Bracelet, The Stanford Bunny, Jelly Beans, Lego Knights, Tarot Cards
and Crystal Ball (small angular extent), Treasure Chest Bedroom (Stan-
ford [20]), Bicycle, Herbs, Origami, Boxes, Cotton, Sideboard, Antinous,
Boardgames, Dishes, Greek, Museum, Pens, Pillows, Platonic, Rose-
mary, Table, Tomb, Town, Vinyl (New HCI [21])

Testing Dino, Kitchen, Medieval2, Tower (New HCI [21])

2.3 Implementation and training details

We considered several network configurations for different values of M and N ,
as summarized in Table 1. The number of viewpoints in the target light field
(M) was set to 25 (5 × 5) or 64 (8 × 8). The number of acquired images (N)
was set to 1, 2, or 4. We employed different network architectures for NR1 for
different numbers of N . The numbers connected by arrows in the table indicate
the transition in the number of channels. The design principle here is to increase
the number of channels gradually from N to M . Meanwhile, NR2 was only
subject to M , and the number of channels for the intermediate layers was set to
64 for both M = 25 and M = 64. All of these architectures were found through
trial and error, and there might be room for improvement.

In the training stage, each training sample is a set of 2-D image blocks with
64 × 64 pixels that are extracted from the same positions in the multi-view
images. As mentioned earlier, a viewpoint is considered to be a channel, and
thus, each sample is represented as an M channel image that has 64 × 64 pixels.
The training samples were collected from several light field datasets provided at
[19–22], the details of which are summarized in Table 2. Three color channels
of each dataset were used as three individual datasets. Moreover, we extracted
many training samples from each dataset by changing the position of the 2-
D blocks; we took blocks every 32 pixels both in the horizontal and vertical
directions. We also augmented the data by changing the intensity levels of each
sample uniformly; we multiplied 1.0, 0.9, 0.8, 0.7, 0.6 and 0.5 with the original
samples. Samples that were too smooth, i.e., those in which the intensity was
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Fig. 3: Performance analysis of our method with different noise levels (left) and
different network architectures and training schemes (right).

almost uniform across 64 × 64 pixels, were removed from the training samples.
Finally, we collected 295,200 and 166,680 samples for M = 25 and M = 64,
respectively. Similar to the case with VDSR [50], our network can be trained
with a small training dataset because it consists of only convolutional layers
with small kernels, and thus, the number of parameters does not increase too
much. In the testing stage, the entire light field can be handled at once because
fully convolutional networks can accept images with arbitrary size.

Our method was implemented by using Chainer [43] version 3.2.0, a Python
based framework for neural networks. The batch size for training was set to 15.
We used a built-in Adam optimizer [51]. The number of epochs was fixed to 20
for all experiments. The training with M = 25 and N = 2 took approximately 4
hours on a PC equipped with an NVIDIA Geforce GTX 1080 Ti. In the testing
stage, it took about 0.5 sec to reconstruct the entire light field with 840 × 593
pixels and 25 viewpoints. Our software will be made public soon [52].

3 Experiments

3.1 Network design and performance

One of the key factors of our network is the noise that is added to the acquired
images. Ideally, the noise level assumed in the training stage should be close to
that in real situations. However, it is impractical to train different networks for all
possible noise levels. It is more likely that a network trained with a certain noise
level will be applied to different noise levels. To see the effect of the discrepancy
in noise levels, we used different noise levels in the training and testing stages.
Here, the noise level σ was defined with respect to the image intensity range
[0, 1] for acquired images yn(u, v). The results obtained with the Dragon and
Bunnies dataset and N = 2 are summarized in Fig. 3 (left) 4. When noise in
the testing stage was larger than that in the training stage, the reconstruction
quality was largely degraded. Meanwhile, in the opposite case, the degradation
was moderate. Therefore, we concluded that assuming a high noise level in the

4 The PSNR values were obtained from the mean-squared errors over all viewpoints,
pixels, and color channels. These values correspond to a logarithmic representation
of the loss function given by Eq. (5).
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Fig. 5: Central views reconstructed by our method. Differences from ground truth
(magnified by 5) are also presented.

training stage is a safe strategy. We use σ=0.005 in the training stage in the
remainder of this paper.

We next compared different network architectures and training schemes. We
tested three cases: (a) NA +NR1, (b) NA +NR1 +NR2, where NA +NR1 and
NR2 were trained individually and then concatenated and fine-tuned, and (c)
NA+NR1+NR2, where the entire network was trained end-to-end from scratch.
As shown in Fig. 3 (right), the importance of the refinement network NR2 is
clear. Meanwhile, the difference between (b) and (c) was negligible despite the
fact that (b) required additional complexity for the training stage. Therefore,
we adopted training strategy (c) for the remainder of this paper.

We then evaluated the performance of our method over several datasets.
The number of viewpoints M was set to 25 (5 × 5) and 64 (8 × 8), and the
number of acquired images N was set to 1, 2, and 4. The noise level for testing
was set to 0.005. The obtained aperture patterns and quantitative scores in
PSNR are summarized in Fig. 4. Several reconstructed images are presented in
Fig. 5. From these results, we can see that the reconstruction quality improved
as the number of acquired images increased. With N=1, our method could not
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Fig. 6: Analysis on aperture patterns with M = 25 and N = 2.

correctly reproduce the disparities among the viewpoints. However, by changing
N from 1 to 2, the reconstruction quality improved significantly; fine details (see
the close-ups) were successfully produced, and the correct amount of disparities
was observed among the viewpoints. Meanwhile, the quality improvement from
N = 2 to N = 4 was moderate. We observed the same tendency both with
M = 25 and 64, though M = 64 was more challenging than 25 due to the
increased number of viewpoints and less number of training samples.

3.2 Analysis on aperture patterns

To analyze the effect of aperture patterns, we conducted another experiment.
We used several aperture patterns with M = 25 and N = 2, as summarized in
Fig. 6 (a). For (i), we used a set of aperture patterns that was trained normally,
which is denoted as “ours (normal)” or simply “ours”. For (ii)–(vii), we fixed the
aperture patterns during the training stage; in this case, only the reconstruction
network was optimized for the training dataset. We generated a set of random
aperture patterns for (ii) and changed its brightness constantly for (iii)–(v). The
patterns for (vi) corresponds to light field reconstruction from a pair of stereo
images. The patterns in (vii) took randomized binary values, which serves as
a simulation for binary apertures. Finally, the patterns in (viii) were trained
over the dataset under the constraint that the second pattern was the first one
rotated 90 degrees. This was easily implemented by using the same convolution
kernels for the first and second image acquisition but tweaking the order of
channels in the input data. This pattern set may have a practical value because
it can be implemented by using a static aperture pattern (such as a printed
one, instead of an expensive electronic device such as an LCoS) with a simple
rotation mechanism. This is denoted as “ours (rotated).” We set the noise level
for testing to 0.005.
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3.3 Comparison with state-of-the-art methods

Several interesting indications are found from the results shown in Fig. 6(b)(c).
First, a good reconstruction quality was attained even with non-optimized aper-
ture patterns such as (ii) and (vii), probably because the reconstruction network
is capable of adapting to different aperture patterns. Second, the brightness of
the apertures (the total amount of light) is important for the quality. The quality
degradation observed in (iii)–(vi) can be attributed to the bad signal-to-noise
ratio of the acquired images. Finally, the rotated patterns in (viii) achieved qual-
ity close to that of normally trained patterns (i), suggesting the possibility of
developing a camera with a rotatable static aperture in the future.

We compared our method against four state-of-the-art methods [33, 6, 35, 36],
for which we used the software provided by the respective authors. To make the
comparison fair, the configurations for the methods were kept unchanged from
the original implementations as much as possible. To see the results more closely,
please refer to the supplementary video.

We first present a comparison with two compressive-sensing based methods:
Marwah’s method [33] using a sparse dictionary and Yagi’s method [35] using
the most significant basis vectors selected by PCA or NMF. The number of view-
points M was set to 25 (5 × 5) in accordance with the original implementations.
The noise level was set to σ = 0 and σ = 0.005. The results are summarized in
Fig. 7. As shown in the graphs of the figure, our method performed clearly better
than Yagi’s method. Marwah’s method achieved slightly better scores than ours
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with N = 1, but with N = 2 and N = 4, it was inferior to our method with
significant margins. Moreover, the main drawback of Marwah’s method is the
computational complexity; it took 11 – 90 hours to reconstruct a single light field
on our desktop computer. Shown in the bottom are reconstructed central views
and the differences from the ground truth obtained with Dragon and Bunnies,
N = 2, and σ=0.005. We can see that a better visual quality was achieved by
our method over the others.
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We next show another comparison with two view-synthesis based methods.
Kalantari’s method [6] can reconstruct a light field with 8 × 8 viewpoints given
the four corner images. It was reported that this method performed better than
several state-of-the-art view synthesis methods. Meanwhile, Srinivasan’s method
[36] can reconstruct a light field with 8 × 8 viewpoints only from one image
corresponding to the central viewpoint (actually, it is located at the bottom-right
nearest neighbor to the center). No noise was applied for these two methods.
As for our method, the number of viewpoints M was set to 64 (8 × 8) as
well, but noise with σ = 0.005 was applied. The results are summarized in
Fig. 8. Srinivasan’s method produced natural-looking images with around 30 –
60 seconds computation time, but it failed to reproduce correct disparities among
the viewpoints. Kalantari’s method achieved better quality than Srinivasan’s
method, but it required four images as the input and took about 30 minutes
without GPU boost. Our method achieved overall better reconstruction quality
than the other two with much less computation time (about 1 second).

3.4 Experiment using real camera

Finally, we conducted an experiment using a real coded-aperture camera. We
adopted the same hardware design as the ones reported in [31, 33, 49]. The res-
olution of the camera (FLIR GRAS-14S5C-C) was 1384 × 1036 pixels, which
corresponds to the spatial resolution of the light field acquired with it. The ex-
posure time was set to 40 msec. We used a Nikon Rayfact lens (25 mm F1.4
SF2514MC). The aperture was implemented as an LCoS display (Forth Dimen-
sion Displays, SXGA-3DM) with 1280 × 1024 pixels. We divided the central area
of the LCoS display into 5× 5 regions, each with 150 × 150 pixels. Accordingly,
the angular resolution of the light field was 5 × 5. We found that light rays could
not completely be shut off by using the black aperture (all of the 25 regions were
set to 0), which means that an image acquired with the black aperture was not
completely black. Therefore, we subtracted the image acquired with the black
aperture from each of the acquired images before using them for reconstruction.

The experimental setup and reconstructed light fields are presented in Fig. 9.
We used four sets of aperture patterns: ours (normal), ours (rotated), NMF
[35], and sequential pinholes.5 For the former three methods, the number of
acquired images was set to 2. The reconstruction was performed with the trained
reconstruction networks for the first and second ones and the method presented
in [35] for the third one. The last one, sequential pinholes, corresponds to the
direct acquisition of 25 images, where only 1 region out of 25 on the aperture was
opened in sequence. As shown in the bottom of Fig. 9, our method achieved a
striking reconstruction quality with only two acquired images. The results with
our methods were even better than those obtained with 25 sequentially acquired
images because pinhole patterns suffer from noise due to a lack of light. We also

5 We did not test Marwah’s method [33] with our real camera because this method
was designed for an optical configuration different from our camera, and the recon-
struction with this method would require prohibitively expensive computation.
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CameraPrimary lens

LCoS device

Experimental setup Reconstructed light field

Ours (normal) Ours (rotated) Yagi (NMF) Sequential

Fig. 9: Experiment using real coded-aperture camera

observed natural disparities among the viewpoints in the reconstructed results.
Please refer to the supplementary video for more detail.

4 Conclusion

We proposed a learning-based framework for acquiring a light field through a
coded aperture camera to reduce the required number of acquired images to only
a few. This framework was formulated from the perspective of an auto-encoder.
This auto-encoder was implemented as a stack of fully convolutional layers and
was trained end-to-end by using a collection of training samples. We experimen-
tally showed that our method can successfully learn good image-acquisition and
reconstruction strategies. Using our method, light fields consisting of 5 × 5 or
8 × 8 images can be reconstructed with high quality from only a few acquired
images. Moreover, our method achieved superior performance over several state-
of-the-art methods. We also applied our method to a real prototype camera to
show that it is capable of capturing a real 3-D scene.

Our future work includes several directions. The performance of our method
could be improved by tweaking the architecture of the reconstruction network or
increasing the number of training samples. The squared loss used in our method
could be replaced with or supplemented by other loss functions that are closer to
the perceptual image quality such as VGG loss and the framework of a generative
adversarial network (GAN) [53]. The development of a camera with a rotatable
static aperture pattern would also be an interesting direction.
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