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Abstract. Estimating the 6D pose of objects from images is an im-
portant problem in various applications such as robot manipulation and
virtual reality. While direct regression of images to object poses has lim-
ited accuracy, matching rendered images of an object against the input
image can produce accurate results. In this work, we propose a novel deep
neural network for 6D pose matching named DeepIM. Given an initial
pose estimation, our network is able to iteratively refine the pose by
matching the rendered image against the observed image. The network
is trained to predict a relative pose transformation using an untangled
representation of 3D location and 3D orientation and an iterative train-
ing process. Experiments on two commonly used benchmarks for 6D pose
estimation demonstrate that DeepIM achieves large improvements over
state-of-the-art methods. We furthermore show that DeepIM is able to
match previously unseen objects.
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1 Introduction

Localizing objects in 3D from images is important in many real world applica-
tions. For instance, in a robot manipulation task, the ability to recognize the
6D pose of objects, i.e., 3D location and 3D orientation of objects, provides use-
ful information for grasp and motion planning. In a virtual reality application,
6D object pose estimation enables virtual interactions between humans and ob-
jects. While several recent techniques have used depth cameras for object pose
estimation, such cameras have limitations with respect to frame rate, field of
view, resolution, and depth range, making it very difficult to detect small, thin,
transparent, or fast moving objects. Unfortunately, RGB-only 6D object pose
estimation is still a challenging problem, since the appearance of objects in the
images changes according to a number of factors, such as lighting, pose varia-
tions, and occlusions between objects. Furthermore, a robust 6D pose estimation
method needs to handle both textured and textureless objects.

Traditionally, the 6D pose estimation problem has been tackled by matching
local features extracted from an image to features in a 3D model of the ob-
ject [16,23,4]. By using the 2D-3D correspondences, the 6D pose of the object
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Fig. 1: We propose DeepIM, a deep iterative matching network for 6D object pose
estimation. The network is trained to predict a relative SE(3) transformation that can
be applied to an initial pose estimation for iterative pose refinement.

can be recovered. Unfortunately, such methods cannot handle textureless objects
well since only few local features can be extracted for them. To handle textureless
objects, two classes of approaches were proposed in the literature. Methods in
the first class learn to estimate the 3D model coordinates of pixels or key points
of the object in the input image. In this way, the 2D-3D correspondences are
established for 6D pose estimation [1,20,26]. Methods in the second class convert
the 6D pose estimation problem into a pose classification problem by discretiz-
ing the pose space [9] or into a pose regression problem [29]. These methods can
deal with textureless objects, but they are not able to achieve highly accurate
pose estimation, since small errors in the classification or regression stage di-
rectly lead to pose mismatches. A common way to improve the pose accuracy is
pose refinement: Given an initial pose estimation, a synthetic RGB image can be
rendered and used to match against the target input image. Then a new pose is
computed to increase the matching score. Existing methods for pose refinement
use either hand-crafted image features [27] or matching score functions [20].

In this work, we propose DeepIM, a new refinement technique based on a
deep neural network for iterative 6D pose matching. Given an initial 6D pose
estimation of an object in a test image, DeepIM predicts a relative SE(3) trans-
formation that matches a rendered view of the object against the observed image.
By iteratively re-rendering the object based on the improved pose estimates, the
two input images to the network become more and more similar, thereby en-
abling the network to generate more and more accurate pose estimates. Fig. 1
illustrates the iterative matching procedure of our network for pose refinement.

This work makes the following main contributions. i) We introduce a deep
network for iterative, image-based pose refinement that does not require any
hand-crafted image features, automatically learning an internal refinement mech-
anism. ii) We propose an untangled representation of the SE(3) transformation
between object poses to achieve accurate pose estimates. This representation
also enables our approach to refine pose estimates of unseen objects. iii) We
have conducted extensive experiments on the LINEMOD [9] and the Occlu-
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sion [1] datasets to evaluate the accuracy and various properties of DeepIM.
These experiments show that our approach achieves large improvements over
state-of-the-art RGB-only methods on both datasets. Furthermore, initial ex-
periments demonstrate that DeepIM is able to accurately match poses for tex-
tureless objects (T-LESS [10]) and for unseen objects [28]. The rest of the paper
is organized as follows. After reviewing related works in Section 2, we describe
our approach for pose matching in Section 3. Experiments are presented in Sec-
tion 4, and Section 5 concludes the paper.

2 Related work

RGB-D based 6D Pose Estimation: When depth information is available, it
can be combined with RGB images to improve 6D pose estimation. A common
strategy of using depth is to convert a depth image into a 3D point cloud,
and then match the 3D model of an object against the 3D point cloud. For
example, [9] render the 3D model of an object into templates of surface normals,
and then match these templates against normals computed from the point cloud.
[1,2,17] regress each pixel on the object in the input image to the 3D coordinate of
that pixel on the 3D model. When depth images are available, the 3D coordinate
regression establishes correspondences between 3D scene points and 3D model
points, from which the 6D pose of the object can be computed by solving a
least-squares problem. For pose refinement, the Iterative Closest Point (ICP)
algorithm is widely used to refine an initial pose estimate [9,17,30]. However,
ICP is sensitive to the initial estimate and may converge to local minima.

RGB based 6D Pose Estimation: Traditionally, pose estimation using RGB im-
ages is tackled by matching local features [16,23,4]. However, these methods
cannot handle textureless objects very well. Recent approaches apply machine
learning, especially deep learning, for 6D pose estimation using RGB images
only [1,13]. The state-of-the-art methods [20,11,26,29] augment deep learning
based object detection or segmentation methods [8,15,14,21] for 6D pose esti-
mation. However, the performance of these methods is still not comparable to
RGB-D based methods. We believe that this performance gap is so large due to
the lack of an effective pose refinement procedure using RGB images only. Our
work is complementary to existing 6D pose estimation methods by providing a
novel iterative pose matching network for pose refinement on RGB images.

The approaches most relevant to ours are the object pose refinement network
in [20] and the iterative hand pose estimation approaches in [3,19]. Compared
to these techniques, our network is designed to directly regress to relative SE(3)
transformations. We are able to do this due to our untangled representation of
rotation and translation and the reference frame we used for rotation, which also
allows our approach to match unseen objects. As shown in [18], the choice of
reference frame is important to achieve good pose estimation results. Our work
is also related to recent visual servoing methods based on deep neural networks
[24,5] that estimate the relative camera pose between two image frames, while
we focus on 6D pose refinement of objects.
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Fig. 2: DeepIM operates on a zoomed in, up-sampled input image, the rendered
image, and the two object masks (480× 640 in our case after zooming in).

3 DeepIM Framework

In this section, we describe our deep iterative matching network for 6D pose
estimation. Given an observed image and an initial pose estimate of an object
in the image, we design the network to directly output a relative SE(3) transfor-
mation that can be applied to the initial pose to improve the estimate. We first
present our strategy of zooming in the observed image and the rendered image
that are used as inputs of the network. Then we describe our network architec-
ture for pose matching. After that, we introduce an untangled representation of
the relative SE(3) transformation and a new loss function for pose regression.
Finally, we describe our procedure for training and testing the network.

3.1 High-resolution Zoom In

It can be difficult to extract useful features for matching if objects in the input
image are very small. To obtain enough details for pose matching, we zoom in the
observed image and the rendered image before feeding them into the network, as
shown in Fig. 2. Specifically, in the i-th stage of the iterative matching, given a 6D
pose estimate p(i−1) from the previous step, we render a synthetic image using
the 3D object model viewed according to p(i−1). We additionally generate one
foreground mask for the observed image and rendered image. The four images
are cropped using an enlarged bounding box according to the observed mask and
the rendered mask, where we make sure the enlarged bounding box has the same
aspect ratio as the input image and is centered at the 2D projection of the origin
of the 3D object model. Finally, we zoom in and perform bilinear up-sampling
to achieve the same size as the original image (480 × 640 in our experiments).
Importantly, the aspect ratio of the object is not changed during this operation.

3.2 Network Structure

Fig. 3 illustrates the network architecture of DeepIM. The observed image, the
rendered image, and the two masks, are concatenated into an eight-channel ten-
sor input to the network (3 channels for observed/rendered image, 1 channel for
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Fig. 3: DeepIM uses a FlowNetSimple backbone to predict a relative SE(3) trans-
formation to match the observed and rendered image of an object.

each mask). We use the FlowNetSimple architecture from [6] as the backbone
network, which is trained to predict optical flow between two images. We tried
using the VGG16 image classification network [25] as the backbone network, but
the results were very poor, confirming the intuition that a representation related
to optical flow is very useful for pose matching. The pose estimation branch
takes the feature map after 11 convolution layers from FlowNetSimple as input.
It contains two fully-connected layers each with dimension 256, followed by two
additional fully-connected layers for predicting the quaternion of the 3D rotation
and the 3D translation, respectively. During training, we also add two auxiliary
branches to regularize the feature representation of the network and increase
training stability. One branch is trained for predicting optical flow between the
rendered image and the observed image, and the other branch for predicting the
foreground mask of the object in the observed image.

3.3 Untangled Transformation Representation

The representation of the relative SE(3) transformation ∆p between the current
pose estimate and the target pose has important ramifications for the perfor-
mance of the network. Consider we represent the object pose and transformation
in the camera coordinate (Naive Coordinate in Fig. 4(a)). Denote the relative
rotation and translation as [R∆|t∆]. Given a source object pose [Rsrc|tsrc], the
transformed target pose would be as follows:

Rtgt = R∆Rsrc, ttgt = R∆tsrc + t∆, (1)

where [Rtgt|ttgt] denotes the target pose. The R∆tsrc term indicates that a
rotation will cause the object not only to rotate, but also translate in the image
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Fig. 4: Three different coordinate systems for the relative rotation.

even if the translation vector t∆ equals to zero. Furthermore, the translation t∆
is in the metric of the 3D space (meter, for instance), which couples object size
with distance in the metric space, thereby requiring the network to memorize the
size of each object if it has to translate a mis-match in images to distance offset.
It is obvious that such a representation is not appropriate. To eliminate such
problems, we propose to decouple the estimation of R∆ and t∆. For rotation,
we move the center of rotation from the origin of the camera to the center
of the object in the camera frame, given by the current pose estimate. Then a
rotation would not change the translation of the object in the camera frame. The
remaining question is how to choose the axes of the coordinate frame for rotation.
One way is to use the axes of the coordinate frame as specified in the 3D object
model (Model Coordinate in Fig. 4(b)). However, such a representation would
require the network to memorize the coordinate frames of each object, which
makes the training more difficult and cannot be generalized to pose matching
of unseen objects. Instead, we use axes parallel to the axes of the camera frame
when computing the relative rotation (Camera Coordinate in Fig. 4(c)). By doing
so, the network can be trained to estimate the relative rotation independently
of the coordinate frame of the 3D object model.

To estimate the relative translation, let ttgt = (xtgt, ytgt, ztgt) and tsrc =
(xsrc, ysrc, zsrc) be the target translation and the source translation. Then a
straightforward way to represent it is t∆ = (∆x,∆y,∆z) = ttgt − tsrc. However,
it is not easy for the network to estimate the relative translation in 3D space
given only 2D images without depth information. The network has to recognize
the size of the object, and map the translation in 2D space to 3D according
to the object size. Such a representation is not only difficult for the network
to learn, but also has problems when dealing with uknown objects or objects
with similar appearance but different sizes. Instead of training the network to
directly regress to the vector in the 3D space, we propose to regress to the object
changes in the 2D image space. Specifically, we train the network to regress to
the relative translation t∆ = (vx, vy, vz), where vx and vy denote the number of
pixels the object should move along the image x-axis and y-axis and vz is the
scale change of the object:

vx = fx(xtgt/ztgt − xsrc/zsrc),

vy = fy(ytgt/ztgt − ysrc/zsrc),

vz = log(zsrc/ztgt),

(2)
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where fx and fy denote the focal lengths of the camera. The scale change vz
is defined to be independent of the absolute object size or distance by using
the ratio between the distances of the rendered and observed object. We use
logarithm for vz to make sure that value zero corresponds to no change in scale
or distance. Considering the fact that fx and fy are constant for a specific
dataset, we simply fix it to 1 in training and testing the network.

Our representation of the relative transformation has several advantages.
First, rotation does not influence the estimation of translation, so that the
translation no longer needs to offset the movement caused by rotation around
the camera center. Second, the intermediate variables vx, vy, vz represent simple
translations and scale change in the image space. Third, this representation does
not require any prior knowledge of the object. Using such a representation, the
DeepIM network can operate independently of the actual size of the object and
its internal model coordinate framework. It only has to learn to transform the
rendered image such that it becomes more similar to the observed image.

3.4 Matching Loss

A straightforward way to train the pose estimation network is to use separate
loss functions for rotation and translation. For example, we can use the angu-
lar distance between two rotations to measure the rotation error and use the
L2 distance to measure the translation error. However, using two different loss
functions for rotation and translation suffers from the difficulty of balancing the
two losses. [12] proposed a geometric reprojection error as the loss function for
pose regression that computes the average distance between the 2D projections
of 3D points in the scene using the ground truth pose and the estimated pose.
Considering the fact that we want to accurately predict the object pose in 3D,
we introduce a modified version of the geometric reprojection loss in [12], and
we call it the Point Matching Loss. Given the ground truth pose p = [R|t] and
the estimated pose p̂ = [R̂|̂t], the point matching loss is computed as:

Lpose(p, p̂) =
1

n

n
∑

i=1

L1

(

(Rxi + t)− (R̂xi + t̂)
)

, (3)

where xi denotes a randomly selected 3D point on the object model and n is the
total number of points (we choose 3,000 points in our experiments). The point
matching loss computes the average L1 distance between 3D points transformed
by the ground truth pose and the estimate pose. In this way, it measures how
the transformed 3D models match against each other for pose estimation.

3.5 Training and Testing

In training, we assume that we have 3D object models and images annotated
with ground truth 6D object poses. By adding noises to the ground truth poses
as the initial poses, we can generate the required observed and rendered inputs to
the network along with the pose target output that is the pose difference between
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the ground truth pose and the noisy pose. Then we can train the network to
predict the relative transformation between the initial pose and the target pose.

During testing, we find that the iterative pose refinement can significantly
improve the accuracy. To see, let p(i) be the pose estimate after the i-th iteration
of the network. If the initial pose estimate p(0) is relatively far from the correct
pose, the rendered image xrend(p

(0)) may have only little viewpoint overlap with
the observed image xobs. In such cases, it is very difficult to accurately estimate
the relative pose transformation ∆p(0) directly. This task is even harder if the
network has no priori knowledge about the object to be matched. In general, it
is reasonable to assume that if the network improves the pose estimate p(i+1) by
updating p(i) with ∆p(i) in the i-th iteration, then the image rendered according
to this new estimate, xrend(p

(i+1)) is also more similar to the observed image
xobs than xrend(p

(i)) was in the previous iteration, thereby providing input that
can be matched more accurately.

However, we found that, if we train the network to regress the relative pose in
a single step, the estimates of the trained network do not improve over multiple
iterations in testing. To generate a more realistic data distribution for training
similar to testing, we perform multiple iterations during training as well. Specif-
ically, for each training image and pose, we apply the transformation predicted
from the network to the pose and use the transformed pose estimate as another
training example for the network in the next iteration. By repeating this process
multiple times, the training data better represents the test distribution and the
trained network also achieves significantly better results during iterative testing
(such an approach has also proven useful for iterative hand pose matching [19]).

4 Experiments

We conduct extensive experiments on the LINEMOD dataset [9] and the Occlu-
sion LINEMOD dataset [2] to evaluate our DeepIM framework for 6D object pose
estimation. We test different properties of DeepIM and show that it surpasses
other RGB-only methods by a large margin. We also show that our network can
be applied to pose matching of unseen objects during training.

4.1 Implementation Details

Training: We use the pre-trained FlowNetSimple [6] to initialize the weights in
our network. Weights of the new layers are randomly initialized, except for the
additional weights in the first conv layer that deals with the input masks and
the fully-connected layer that predicts the translation, which are initialized with
zeros. Other than predicting the pose transformation, the network also predicts
the optical flow and the foreground mask. Although including the two additional
losses in training does not increase the pose estimation performance, we found
that they help to make the training more stable. Specifically, we use the optical
flow loss Lflow as in FlowNet [6] and the sigmoid cross-entropy loss as the mask
loss Lmask. Two deconvolutional blocks in FlowNet are inherited to produce the
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feature map used for the mask and the optical flow prediction, whose spatial
scale is 0.0625. Two 1 × 1 convolutional layers with output channel 1 (mask
prediction) and 2 (flow prediction) are appended after this feature map. The
predictions are then bilinearly up-sampled to the original image size (480× 640)
to compute losses. The overall loss is L = αLpose + βLflow + γLmask, where we
use α = 0.1, β = 0.25, γ = 0.03 throughout the experiments (except some of our
ablation studies). Each training batch contains 16 images. We train the network
with 4 GPUs where each GPU processes 4 images. We generate 4 items for each
image as described in Sec. 3.1: two images and two masks. The observed mask
is randomly dilated with no more than 10 pixels to avoid over-fitting.

Testing: The mask prediction branch and the optical flow branch are removed
during testing. Since there is no ground truth segmentation of the object in
testing, we use the tightest bounding box of the rendered mask mrend instead, so
the network searches the neighborhood near the estimated pose to find the target
object to match. Unless specified, we use the pose estimates from PoseCNN [29]
as the initial poses. Our DeepIM network runs at 12 fps per object using an
NVIDIA 1080 Ti GPU with 2 iterations during testing.

4.2 Evaluation Metrics

We use the following three evaluation metrics for 6D object pose estimation. i)
The 5◦, 5cm metric considers an estimated pose to be correct if its rotation error
is within 5◦ and the translation error is below 5cm. ii) The 6D Pose metric [9]
computes the average distance between the 3D model points transformed using
the estimated pose and the ground truth pose. For symmetric objects, we use
the closet point distance in computing the average distance. An estimated pose
is correct if the average distance is within 10% of the 3D model diameter. iii)
The 2D Projection metric computes the average distance of the 3D model points
projected onto the image using the estimated pose and the ground truth pose.
An estimated pose is correct if the average distance is smaller than 5 pixels.

4.3 Experiments on the LINEMOD Dataset

The LINEMOD dataset contains 15 objects. We train and test our method on
13 of them as other methods in the literature. We follow the procedure in [2] to
split the dataset into the training and test sets, with around 200 images for each
object in the training set and 1,000 images in the test set.

Training strategy: For every image, we generate 10 random poses near the ground
truth pose, resulting in 2,000 training samples for each object in the training
set. Furthermore, we generate 10,000 synthetic images for each object where the
pose distribution is similar to the real training set. For each synthetic image,
we generate 1 random pose near its ground truth pose. Thus, we have a total
of 12,000 training samples for each object in training. The background of a
synthetic image is replaced with a randomly chosen indoor image from PASCAL



10 Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, Dieter Fox

Table 1: Ablation study of the number of iterations during training and testing.
train iter

init
1 2 4

test iter 1 2 4 1 2 4 1 2 4

5cm 5◦ 19.4 57.4 58.8 54.6 76.3 86.2 86.7 70.2 83.7 85.2
6D Pose 62.7 77.9 79.0 76.1 83.1 88.7 89.1 80.9 87.6 88.6
Proj. 2D 70.2 92.4 92.6 89.7 96.1 97.8 97.6 94.6 97.4 97.5

VOC [7]. We train the networks for 8 epochs with initial learning rate 0.0001.
The learning rate is divided by 10 after the 4th and 6th epoch, respectively.

Ablation study on iterative training and testing: Table 1 shows the results that
use different numbers of iterations during training and testing. The networks
with train iter = 1 and train iter = 2 are trained with 32 and 16 epochs
respectively to keep the total number of updates the same as train iter = 4. The
table shows that without iterative training (train iter = 1), multiple iteration
testing does not improve, potentially even making the results worse (test iter =
4). We believe that the reason is due to the fact that the network is not trained
with enough rendered poses close to their ground truth poses. The table also
shows that one more iteration during training and testing already improves the
results by a large margin. The network trained with 2 iterations and tested with
2 iterations is slightly better than the one trained with 4 iterations and tested
with 4 iterations. This may be because the LINEMOD dataset is not sufficiently
difficult to generate further improvements by using 3 or 4 iterations. Since it is
not straightforward to determine how many iterations to use in each dataset, we
use 4 iterations during training and testing in all other experiments.

Ablation study on the zoom in strategy, network structures, transformation rep-

resentations, and loss functions: Table 2 summarizes the ablation studies on
various aspects of DeepIM. The “zoom” column indicates whether the network
uses full images as its input or zoomed in bounding boxes up-sampled to the
original image size. Comparing rows 5 and 7 shows that the higher resolution
achieved via zooming in provides very significant improvements.

“Regressor”: We train the DeepIM network jointly over all objects, generating
a pose transformation independent of the specific input object (labeled “shared”
in “regressor” column). Alternatively, we could train a different 6D pose regressor
for each individual object by using a separate fully connected layer for each object
after the final FC256 layer shown in Fig. 3. This setting is labeled as “sep.” in
Table 2. Comparing rows 3 and 7 shows that both approaches provide nearly
indistinguishable results. But the shared network provides some efficiency gains.

“Network”: Similarly, instead of training a single network over all objects, we
could train separate networks, one for each object as in [20]. Comparing row 1
to 7 shows that a single, shared network provides better results than individual
ones, which indicates that training on multiple objects can help the network
learn a more general representation for matching.
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Table 2: Ablation study on different design choices of the DeepIM network on
the LINEMOD dataset.

Row
methods

5cm 5◦ 6D Pose Proj. 2D
zoom regressor network coordinate loss

1 X - sep. camera PM 83.3 87.6 96.2

2 X sep. shared model PM 79.2 87.5 95.4

3 X sep. shared camera PM 86.6 89.5 96.7

4 shared shared naive PM 16.6 44.3 62.5

5 shared shared camera PM 38.3 65.2 80.8

6 X shared shared camera Dist 86.5 79.2 96.2

7 X shared shared camera PM 85.2 88.6 97.5

“Coordinate”: This column investigates the impact of our choice of coordinate
frame to reason about object transformations, as described in Fig. 4. The row
labeled “naive” provides results when choosing the camera frame of reference as
the representation for the object pose, rows labeled “model” move the center of
rotation to the object model and choose the object model coordinate frame to
reason about rotations, and the “camera” rows provide our approach of moving
the center into the object model while keeping the camera coordinate frame for
rotations. Comparing rows 2 and 3 shows that reasoning in the camera rotation
frame provides slight improvements. Furthermore, it should be noted that only
our “camera” approach is able to operate on unseen objects. Comparing rows 4
and 5 shows the large improvements our representation achieves over the naive
approach of reasoning fully in the camera frame of reference.

“Loss”: The traditional loss for pose estimation is specified by the distance
(“Dist”) between the estimated and ground truth 6D pose coordinates, i.e., angu-
lar distance for rotation and euclidean distance for translation. Comparing rows
6 and 7 indicates that our point matching loss (“PM”) provides significantly
better results especially on the 6D pose metric, which is the most important
measure for reasoning in 3D space.

Application to different initial pose estimation networks: Table 3 provides results
when we initialize DeepIM with two different pose estimation networks. The first
one is PoseCNN [29], and the second one is a simple 6D pose estimation method
based on Faster R-CNN [22]. Specifically, we use the bounding box of the object
from Faster R-CNN to estimate the 3D translation of the object. The center
of the bounding box is treated as the center of the object. The distance of the
object is estimated by maximizing the overlap of the projection of the 3D object
model with the bounding box. To estimate the 3D rotation of the object, we
add a rotation regression branch to Faster R-CNN as in PoseCNN. As we can
see in Table 3, our network achieves very similar pose estimation accuracy even
when initialized with the estimates from the extension of Faster R-CNN, which
are not as accurate as those provided by PoseCNN [29].
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Table 3: Ablation study on two different methods for generating initial poses on
the LINEMOD dataset.

method PoseCNN
PoseCNN

+OURS
Faster R-CNN

Faster R-CNN

+OURS

5cm 5◦ 19.4 85.2 11.9 83.4

6D Pose 62.7 88.6 33.1 86.9

Proj. 2D 70.2 97.5 20.9 95.7

Table 4: Comparison with state-of-the-art methods on the LINEMOD dataset

methods [2]
BB8

w ref. [20]

SSD-6D

w ref. [11]

Tekin

et al. [26]
PoseCNN [29]

PoseCNN [29]

+OURS

5cm 5◦ 40.6 69.0 - - 19.4 85.2

6D Pose 50.2 62.7 79 55.95 62.7 88.6

Proj. 2D 73.7 89.3 - 90.37 70.2 97.5

Comparison with the state-of-the-art 6D pose estimation methods: Table 4 shows
the comparison with the best color-only techniques on the LINEMOD dataset.
DeepIM achieves very significant improvements over all prior methods, even
those that also deploy refinement steps (BB8 [20] and SSD-6D [11]).

4.4 Experiments on the Occlusion LINEMOD Dataset

The Occlusion LINEMOD dataset proposed in [2] shares the same images used
in LINEMOD [9], but annotated 8 objects in one video that are heavily occluded.

Training: For every real image, we generate 10 random poses as described in
Sec. 4.3. Considering the fact that most of the training data lacks occlusions, we
generated about 20,000 synthetic images with multiple objects in each image. By
doing so, every object has around 12,000 images which are partially occluded,
and a total of 22,000 images for each object in training. We perform the same
background replacement and training procedure as in the LINEMOD dataset.

Comparison with the state-of-the-art methods: The comparison between our
method and other RGB-only methods is shown in Fig. 5. We only show the
plots with accuracies on the 2D Projection metric because these are the only
results reported in [20] and [26] (results for eggbox and glue use a symmetric
version of this accuracy). It can be seen that our method greatly improves the
pose accuracy generated by PoseCNN and surpasses all other RGB-only methods
by a large margin. It should be noted that BB8 [20] achieves the reported re-
sults only when using ground truth bounding boxes during testing. Our method
is even competitive with the results that use depth information and ICP to refine
the estimates of PoseCNN. Fig. 6 shows some pose refinement results from our
method on the Occlusion LINEMOD dataset.
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Fig. 5: Comparison with state-of-the-art methods on the Occlusion LINEMOD
dataset [2]. Accuracies are measured via the Projection 2D metric.

Fig. 6: Examples of refined poses on the Occlusion LILNEMOD dataset using
the results from PoseCNN [29] as initial poses. The red and green lines represent
the silhouettes of the initial estimates and our refined poses, respectively.

4.5 Application to Unseen Objects and Unseen Categories

As stated in Sec 3.3, we designed the untangled pose representation such that it
is independent of the coordinate frame and the size of a specific 3D object model.
Therefore, the pose transformations correspond to operations in the image space.
This opens the question whether DeepIM can refine the poses of objects that
are not included in the training set. In this experiment, we use the 3D models
of airplanes, cars and chairs from the ModelNet dataset [28]. For each of these
categories, we train a network on no more than 200 3D models and test its
performance on 70 unseen 3D models from the same category. For training, we
generate 50 images for each model and train the network for 4 epochs. We found
that our network can perform accurate refinement on these unseen models. See
Fig. 7 for example results. We also tested our framework on refining the poses
of unseen object categories, where the training categories and the test categories
are completely different. Please see the supplementary material for more details.
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Fig. 7: Results on pose refinement of 3D models from the ModelNet dataset.
These instances were not seen in training. The red and green lines represent the
edges of the initial estimates and our refined poses.

5 Conclusion

In this work we introduce DeepIM, a novel framework for iterative pose match-
ing using color images only. Given an initial 6D pose estimation of an object, we
have designed a new deep neural network to directly output a relative pose trans-
formation that improves the pose estimate. The network automatically learns to
match object poses during training. We introduce an untangled pose represen-
tation that is also independent of the object size and the coordinate frame of
the 3D object model. In this way, the network can even match poses of un-
seen objects, as shown in our experiments. Our method significantly outper-
forms state-of-the-art 6D pose estimation methods using color images only and
provides performance close to methods that use depth images for pose refine-
ment, such as using the iterative closest point algorithm. Example visualiza-
tions of our results on LINEMOD, ModelNet, and T-LESS can be found here:
https://rse-lab.cs.washington.edu/projects/deepim.

This work opens up various directions for future research. For instance, we
expect that a stereo version of DeepIM could further improve pose accuracy.
Furthermore, DeepIM indicates that it is possible to produce accurate 6D pose
estimates using color images only, enabling the use of cameras that capture
high resolution images at high frame rates with a large field of view, providing
estimates useful for applications such as robot manipulation.
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using deep learning and geometry. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 5632–5640 (2017)

19. Oberweger, M., Wohlhart, P., Lepetit, V.: Training a feedback loop for hand pose
estimation. In: IEEE International Conference on Computer Vision (ICCV) (2015)

20. Rad, M., Lepetit, V.: BB8: A scalable, accurate, robust to partial occlusion method
for predicting the 3D poses of challenging objects without using depth. In: IEEE
International Conference on Computer Vision (ICCV) (2017)

21. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: IEEE conference on Computer Vision and Pattern
Recognition (CVPR). pp. 779–788 (2016)

22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems (NIPS) (2015)

23. Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D object modeling and recog-
nition using local affine-invariant image descriptors and multi-view spatial con-
straints. International Journal of Computer Vision (IJCV) 66(3), 231–259 (2006)

24. Saxena, A., Pandya, H., Kumar, G., Gaud, A., Krishna, K.M.: Exploring convolu-
tional networks for end-to-end visual servoing. In: IEEE International Conference
on Robotics and Automation (ICRA). pp. 3817–3823 (2017)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

26. Tekin, B., Sinha, S.N., Fua, P.: Real-time seamless single shot 6D object pose
prediction. arXiv preprint arXiv:1711.08848 (2017)
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