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Abstract. In this paper, we propose a simple and general framework
for training very tiny CNNs (e.g. VGG with the number of channels
reduced to 1

32
) for object detection. Due to limited representation ability,

it is challenging to train very tiny networks for complicated tasks like
detection. To the best of our knowledge, our method, called Quantization
Mimic, is the first one focusing on very tiny networks. We utilize two
types of acceleration methods: mimic and quantization. Mimic improves
the performance of a student network by transfering knowledge from
a teacher network. Quantization converts a full-precision network to a
quantized one without large degradation of performance. If the teacher
network is quantized, the search scope of the student network will be
smaller. Using this feature of the quantization, we propose Quantization
Mimic. It first quantizes the large network, then mimic a quantized small
network. The quantization operation can help student network to better
match the feature maps from teacher network. To evaluate our approach,
we carry out experiments on various popular CNNs including VGG and
Resnet, as well as different detection frameworks including Faster R-CNN
and R-FCN. Experiments on Pascal VOC and WIDER FACE verify that
our Quantization Mimic algorithm can be applied on various settings and
outperforms state-of-the-art model acceleration methods given limited
computing resouces.

Keywords: Model acceleration, model compression, quantization, mimic,
object detection

1 Introduction

In recent years, CNN achieved great success on various computer vision tasks.
However, due to their huge model size and computation complexity, many CNN

†The work was done during an internship at SenseTime
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Fig. 1. The pipeline of our method. First we train a full-precision teacher network.
Then we operate quantization on the feature map of full-precision teacher network and
we get a quantized network. Finally we use this quantized network as teacher model
to teach a quantized student network. We emphasize that we do both quantization
operation on feature maps of student and teacher networks in training stages.

models cannot be applied on real world devices directly. Many previous works
focus on how to accelerate CNNs. They can be roughly divided to four cate-
gories: quantization (e.g. BinaryNet [1]), group convolution based method (e.g.
MobileNet [2]), pruning (e.g. channel pruning[3]) and mimic (e.g. Li et al.[4]).

Although most of these works can accelerate models without degradation of
performance, their speed-up ratios are limited (e.g. compress VGG to VGG-1-
41). Few methods are experimented on very tiny models (e.g. compress VGG to
VGG-1-16). ”Very tiny” is a relative concept and we define it as a model whose
channel numbers of every layer is less than or equal to 1

16
compared with original

model. Our experiments show that our method outperform other approaches for
very tiny models.

As two kinds of model acceleration methods, quantization and mimic are
widely used to compress model. Quantization methods can transfer a full-precision
model to a quantized model2 while maintaining similar accuracy. However, us-
ing quantization method to directly speed up models usually need extra specific
implementation (e.g. FPGA) and specific instruction set. Mimic methods can
be used on different frameworks and easy to implement. The essence of these
methods is knowledge transfer in which student networks learn the high-level
representations from teacher networks. However, when applied on very tiny net-

1In this paper -1-n network means a network whose channel numbers of every layer
is reduced to 1

n
compared with original network.

2The quantized network in this paper means a network whose output feature map
is quantized but not means parameter is quantized
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works, mimic method does not work well either. This is also caused by the very
limited representation capacity.

It is a natural hypothesis that if we use quantization method to discretize the
feature map of the teacher model, the search scope of the student network will get
shrinked and it will be easier to transfer knowledge. And quantization on student
network can increase the matching ratio on the discrete feature map from teacher
network. In this paper, we propose a new approach utilizing the advantages of
quantization and mimic methods to train very tiny networks. Figure 1 illustrates
the pipeline. Quantization operation is applied to the feature map of the teacher
model and the student model. The quantized feature map of the teacher model
is used as supervision of the student model. We propose that this quantization
operation can facilitate feature map matching between two networks and make
knowledge transfer easier.

To summarize, the contributions of this paper are as follows:

– We propose an effective algorithm to train very tiny networks. To the best
of our knowledge, this is the first work focusing on very tiny networks.

– We utilize quantized feature maps to facilitate knowledge distilling, i.e. quan-
tization and mimic.

– We use a complicated task object detection instead of image classification
to verify our method. Sufficient experiments on various CNNs, frameworks
and datasets validate our approach effective.

– The method is easy to implement and has no special limitation during train-
ing and inference.

2 Related Work

2.1 Object Detections

The target of object detection [5,6,7,8,9,10] is to locate and classify the objects
in images. Before the success of convolutional neural network, some traditional
pattern recognition algorithms (HOG [11], DPM [12] et al.) are used on this task.
Recently, R-CNN [13] and its variants become the popular method for object
detection task. The SPP-Net [14] and Fast R-CNN [15] reuse feature maps to
speed up R-CNN framework. Beyond the pipeline of Fast R-CNN, Faster R-
CNN add region proposal networks and use joint-train method during training.
R-FCN utilize position-sensitive score maps to reduce more computation. YOLO
[16] and SSD [17] are the typical algorithms of region-free methods. Although
the frameworks used in this paper are from region proposal solutions family,
Quantization Mimic can easily transform to YOLO and SSD methods.

2.2 Model Compression and Acceleration

Group Convolution Based Methods: The main point of this kind of meth-
ods is to use group convolution for acceleration. Mobilenet [2] and Googlenet
Xception [18] utilize Depthwise Convolution to extract features and Pointwise
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Convolution to merge features. Beyond these works, Zhang et al.[19] propose a
general group convolution algorithm and show that Xception is the special case
of their method. Group operation will block the information flow between dif-
ferent group convolutions and most recently, Shufflenet [20] introduces channel
shuffle approach to solve this problem.

Quantization: Quantization methods [21,22] can reduce the size of models ef-
ficiently and speed up for special implementation. BinaryConnect [23], binarized
neural network (BNN) [1] and LBCNN [24] replace floating convolutional filter
with binary filter. Furthermore, INQ [25] introduce a training method to quantize
model whose weights are constrained to be either powers of two or zero without
a decrease on performance. Despite these advantages, quantization models can
only be used to speed up on special devices.

Pruning and Sparse connection: [26,27] set sparse constraint during train-
ing for pruning. [28,29] focus on the importance of different filter weights and
do pruning operation according to weights importance. And these methods are
training-based, which are more costly. Recently He et al.[3] propose an inference-
time pruning method, using LASSO regression and least square construction to
select channels in classification and detection task. Furthermore, Molchanov et

al.[30] combine transfer learning and greedy criteria-based pruning. We use He
et al.[3] and Molchanov et al.[30] for comparing our alogrithm and we will show
that it is difficult for them to prune a large network (such as VGG) to a very tiny
network (such as VGG-1-32). Sparse connection [31,32,33,34] can be considered
as parameter-wise pruning method, eliminating connection between neurons.

Mimic: The principle of mimic is Knowledge Transfer. As a pioneering work,
Knowledge Distillation (KD) [35] defines soft targets as outputs of the teacher
network. Compared with labels, soft targets provide extra information about
inter-class similarities. FitNet [36] develops Knowledge Transfer as whole feature
map mimic learning to compress wide and shallow networks to thin and deep
networks. Li et al.[4] extend mimic techniques for object detection task. We use
their joint-train version as our baseline.

3 Our Approach

In this section, we first introduce the quantization method and mimic method
we use separately, then combine them and propose the pipeline of Quanzition
Mimic algorithm. In §3.4 we show the theoretical analysis of our approach.

3.1 Quantization

[23,21,22] use quantization method to compress models directly. Unlike them,
we use quantization to limit the range and help mimic learning. In details, the
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Fig. 2. Quantized ReLU function. The new activation function is defined as f̃ =
Q (f),where f is the original activation function.

quantization for teacher network is to discretize its output and in the meanwhile
we can guarantee the accuracy of teacher network when doing quantization. And
quantizing the output of student network can help it match the discrete output
of teacher network, which is the goal of mimic learning. In our work, we do
quantization operation on the last activation layer of the teacher network.

INQ [25] constrains the output to be either zero or power of two. Different
from them, we use uniform quantization for the following reason. R-FCN [37]
and Faster R-CNN [38] use RoI pooling operation which is a kind of max pooling
operation. The output of RoI pooling layer is determined by the max response
of every block in RoIs. So it is important to describe strong response of feature
maps more accurately. Uniform quantization can better describe large value than
power of two quantization. We define the element-wise quantization function Q

as:

Q (f) = β if
α+ β

2
< f ≤ γ + β

2
(1)

where α ,β and γ are the adjacent entries in the code dictionary D:

D = {0, s, 2s, 3s..} (2)

where s is the stride of uniform quantization. We use function Q to convert
full-precision feature maps to quantized feature maps:

f̃ = Q (f) (3)

where f is the feature map. Figure 2 illustrates quantized ReLU function. As
for backward propagation, inspired by BNN [1], we use the full-precision gradi-
ent. We find that quantized gradient will cause the student network difficult to
converge.

3.2 Mimic

In popular CNN detectors, the feature map from feature extractors (e.g. VGG,
Resnet) will affect both localization and classification accuracy. We use L2 re-
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gression to let student networks learn the feature map from the teacher networks
and utilize Li et al.[4] joint-train version as our backbone. Unlike soft target [35]
whose dimension is equal to the number of categories, the dimension of feature
maps is related to the size of inputs and networks architecture. Sometimes num-
ber can be millions. Simply mimicking the whole feature maps is difficult for
student network to converge. Faster R-CNN [38] and R-FCN [37] are region-
based detectors and both of them use RoI-Pooling operation. So the region of
interest plays more important role than other regions. We use mimic learning
between the region of interest on students and teachers feature maps. The whole
loss function of mimic learning is described as follows.

L = Lr
cls + Lr

reg + Ld
cls + Ld

reg + λLm (4)

Lm =
1

2N

∑

i

∥∥f i
t − r

(
f i
s

)∥∥2
2

(5)

where Lr
cls,L

r
reg are the loss function of region proposal networks [15] while

Ld
cls,L

d
reg are the function of R-FCN or Faster R-CNN detectors. We define Lm

as the mimic-loss and λ is the loss weight. N is the number of region proposals.
f i
t and f i

s represent the ith region proposal on teacher and student networks
feature maps. Function r transfers the feature map from student network to the
same size of teacher network. The mimic learning is on the last year of feature
extractor networks.

Though RoI mimic learning reduces the dimension of feature maps and helps
student network convergence, very tiny network is sensitive to mimic loss weight
λ. If λ is small, it will weaken the effectiveness of mimic learning. In the contrast,
large λ will also bring bad results. Due to the poor learning capacity of very tiny
network, large λ will cause it focus on the learning of teacher network’s feature
map at the begining of training. In this way, it will ignore other loss. We name
this phenomenon as ‘gradient focus’ and we set λ as 0.1, 1 and 10 for experiments.

3.3 Quantization Mimic

The pipeline of our algorithm is as follows: First we train a full-precision teacher
network. Then we use function Q to compress full-precision teacher network to
a quantized network. To get high performance compressed model, we finetune
on full-precision network. Finally, we utilize quantized teacher network to teach
student network using mimic loss as supervision. And during training, we both
quantize the feature map of teacher and student network. Figure 3 illustrates
our method.

Because of quantization operation, the mimic loss Lm is redefined as:

Lm =
1

2N

∑

i

∥∥∥Q
(
f
i

t

)
−Q

(
r
(
f
i

s

))∥∥∥
2

2

(6)

where quantization function Q is defined in Equation 1
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Fig. 3. The effect of quantizatuon operation. We use quantized teacher network to
guide quantized student network. The quantization on teacher network can discretize
its feature maps and convert a continous high dimension space to a discrete high
dimension space. And for student network, quantization helps low dimension manifold
to match a discrete high dimension feature map. In this way, mimic learning becomes
easier .

3.4 Analysis

We will show that the quantization of both teacher and student networks will
facilitate feature maps matching between student and teacher networks and help
student network learn better. Figure 3 shows the effect of quantization operation.
We assume that fn

t is the feature map of full-precision teacher network with the
input In. The width, height and channel numbers of fn

t are Wn
t ,H

n
t and Cn

t .We
squeeze fn

t as a column vector yn whose dimension is Wn
t H

n
t C

n
t . The target of

mimic learning is to get approximate solution of the following equation:

Y = wsI (7)

Y = [y1, y2, ..., yn] (8)

I = [I1, I2, ..., In] (9)

where ws is the weights of student network. However, due to the high dimen-
sionality of yn and large image numbers, the rank of Y can be very high. On the
other hand, very tiny networks have few parameters and the rank of ws is low.
Therefore, it is difficult for very tiny student networks to mimic high dimension
feature maps directly. The target of Quantization Mimic is changed as:

Q (Y ) = Q (wsI) (10)

where Q is quantization function. The quantization operation on the output of
teacher network discretizes its feature maps. Furthermore, because of the range



8 Wei et al.

Fig. 4. A manifold in 3-dimension space. The manifold intersect all 8 cubes. The point
’*’ represent the center of cube, which is the vector after quantization operation.

of element in feature maps is bounded, the value of every entry in matrix Q (Y )
is discrete and finite. For example, if the range of element in fn

t is [0, 40] and the
stride of uniform quantization is 8, the possible value of entry in Q (Y ) is from
{0, 8, 16, 24, 32, 40}. In this way, we convert continuous high dimension space to
discrete high dimension space.

The quantization on student networks makes it easier to match the Q (fn
t ).

Every axis of target space for student network can be separated by entries in
code dictionary. And the whole space is separated by several high dimension
cubes.

For simplicity, we assume the dimension of target space φ is 3, i.e. , the
dimension of yn is 3. The code dictionary is selected as {1, 3}. Because of quan-
tization operation, this 3-dimension space is separated by 8 cubes (See Figure 4).
If a vector v is in cube c , after quantization operation, it will be the center of
cube c. For example, v = [1.2, 2.2, 1.8]

T
,Q (v) = [1, 3, 1]

T
, and [1, 3, 1]

T
is the

center of a cube.
We suppose that feature maps of student network consist a low dimension

manifold. The goal of mimic learning is to use this manifold to fit all 8 cube
centers, i.e. , we want these 8 centers on the manifold. However, after introducing
quantization on student network, if the manifold intersect a cube, the manifold
can achieve the center of this cube. Thus, instead of matching all centers, we only
need the manifold to intersect 8 cubes, which weaken matching conditions. And
in this way, there are more suitable manifolds , which promotes feature maps
matching between two networks. Experiments in §4.1 shows that our approach
is still effective in high dimension case. Figure 4 illustrates a manifold in 3-
dimension space which intersect all cubes.

3.5 Implementation Details

We train networks with Caffe [39] using C++ on 8 Nvidia GPU Titan X Pas-
cal. We use stochastic gradient descent (SGD) algorithm. The weight decay is
0.0005 and momentum is 0.9. We set uniform quantization stride as 1 for all
experiments.
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VGG with R-FCN: In this experiment we rescale the images such that their
shorter side is 600 and we use original images for test. We use gray images as
input. The learning rate is 0.001 for the first 50K iterations and 0.0001 for the
next 30K iterations. The teacher network is VGG-1-4 with R-FCN and we set
mimic loss weight λ as 1. For RPN anchors, we use one aspect ratio and 4 scales
with box areas of 42, 82, 162, 322. 2000 RoIs are used to sample the features
on the feature maps of teacher and student networks. The ROI output size of
R-FCN detector is set as 3×3. We utilize OHEM [40] algorithm to help training.

Resnet with Faster R-CNN: We rescale all the images such that shorter side is
600 for both training and test. We totally train 40K iterations. The learning rate
is 0.001 for the first 30K iterations and 0.001 for the last 10k iterations. We set
λ as 0.1, 1 and 10 for Resnet experiment respectively. And for RPN anchors, we
use 2 aspect ratios (2:1, 3:1) and 3 scales with box areas of 42, 82 and 162. 128
RoIs are used to sample the features on the feature maps of teacher and student
networks. The ROI output size of Faster R-CNN detector is set as 7× 7.

4 Experiments

To prove the generalization ability of our method, we evaluate our approach
for different frameworks on different datasets. In detail, we use VGG with R-
FCN and Resnet with Faster R-CNN as our backbones. Results are reported on
WIDER FACE [41] and Pascal VOC [42].

4.1 Experiments on WIDER FACE Dataset

WIDER FACE dataset [41] contains about 32K images with 394K annotated
faces. The size of faces in WIDER FACE dataset vary a lot. The validation and
Test set are divided into easy , medium and hard subsets. We find that VGG and
VGG-1-4 have similar performance on WIDER FACE dataset (See Table 3) and
we use VGG-1-4 with R-FCN detector as our teacher network (large model).
To show the superiority of our algorithm, VGG-1-32 with R-FCN detector is
selected as the student network (small model). Table 1 illustrate the speed and
size of our very tiny model student network compared with large models. It has
extremely small size and fast speed.

Main Results We implement our algorithm on VGG-1-32 with R-FCN detec-
tor. We compare our method with Li et al.[4], He et al.[3] and group convolution
based accelerating method including using Depthwise Convolution and Group
Convolution. The results are shown in Table 2 (we set input as 1000× 600 and
compute the complexity). For fair comparison, we use the same implementation
details for all experiments. We involve Depthwise Convolution and Group Con-
volution into VGG-1-32 structures, guaranteeing the similar complexity with
the original network. For example, we extend the channel numbers of every con-
volution layers c to ⌈

√
3c⌉ and we set group number as 3. We also compare
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Table 1. The comparision between VGG, VGG-1-4, VGG-1-32 with R-FCN detector
on speed and size. The size is calculated theoretically. VGG-1-32 with R-FCN has tiny
size and amazing speed, which can be applied on embedded devices. Tested on Titan
X GPU with a single image of which the longer side is resized to 1024.

Method Speed Size

VGG
with R-FCN

103.6ms 79.8M

VGG-1-4
with R-FCN

30.2ms 5.04M

VGG-1-32
with R-FCN

9.6ms 0.132M

Table 2. Comparison with other methods. The results show that our method outper-
forms others (higher is better). Group convolution based approach(Depthwise Convo-
lution and Group Convolution) don‘t work well on the very tiny model. Quantization
Mimic also outperforms than Li et al., who only uses mimic learning.

solution
complexity

(MFLOPS)
easy mediumhard

scratch 227 71.3 55.4 23.8

Depthwise Convolution 232 69.1 51.1 21.6

Group Convolution(group 2) 286 67.8 51.9 22.4

Group Convolution(group 3) 273 65.8 50.8 22.1

He et al.[3] 227 68.0 50.7 22.1

Molchanov et al.[30] 227 73.2 58.2 25.2

Li et al.[4](only mimic) 227 71.9 58.2 25.6

Quantization Mimic 227 73.9 62.1 27.6

with pruning methods [3] and [30]. The pruning ratio is set as 8, which means
the model we get after pruning has the same size with VGG-1-32. The results
demonstrate that our algorithm outperforms other methods. We find that group
convolution based methods are not suitable for very tiny networks. This is mainly
because very tiny networks usually have small channel numbers and using group
convolutions will block the information flow. Compared with pruning methods
[30][3], Quantization Mimic also works better. We argue that pruning methods
can get good results on large models (e.g. , VGG and Resnet). However, none of
these works try to prune a network to 1

16
times. Compared with mimic method

[4], Quantization Mimic outperforms it by 2.0 points, 3.9 points and 1.9 points
on easy, medium and hard subsets. We find that quantized teacher network has
better performance than full-precision teacher network. Ablation experiments
are conducted to diagnose how Quantization Mimic brings improvement.

Table 3 further shows the effectiveness of our approach. We can see that our
method can increase AP of very tiny models by 2.6 points, 6.7 points and 3.7
points on easy, medium and hard subsets respectively. Results on medium and
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Table 3. The comparision between VGG and VGG-1-4 on the WIDER FACE dataset.
We suggest that VGG has abundant structures and it has similar performance with
VGG-1-4. And we choose VGG-1-4 as teacher model.

Model solution easy mediumhard

VGG full-precision 83.9 61.0 26.8

VGG-1-4
full-precision 82.4 62.5 26.3

quantized 83.7 65.0 27.4

VGG-1-32
scratch 71.3 55.4 23.8

Quantization Mimic 73.9 62.1 27.6

Table 4. Quantization vs. Nonquantization: The ablation study shows that the perfor-
mance of student network depends on the performance of teacher network. The results
also suggest that quantization method do help mimic learning.

teacher

quantization?

student

quantization?
easy mediumhard

71.9 58.2 25.6

X 73.0 59.3 25.6

X X 73.9 62.1 27.6

hard subsets, the small model can even achieve comparable results with large
model.

Ablation Study on Quantization Operation To verify the effectiveness of
quantization operation, we do several experiments. As demonstrated in Table 4,
the performance of teacher network directly impact the performance of student
network. Also, the quantization operation help mimic learning and improves the
performance of student network. For the same quantized teacher network, doing
quantization operation on the student network increase AP by 0.9 point, 2.8
points and 2.0 points on three subsets.

We notice that quantization operation has regularization effect on network.
To exclude that it is the regularization that bring improvement of performance,
we also do experiments with and without quantization on student network. In
Table 5, we find that only doing quantization has no influence on the perfor-
mance, i.e. , the improvement comes from Quantization Mimic.

To further show that quantization operation can help student networks learn
better, we illustrate the matching ratio of each RoI. In §3.4 we show that quanti-
zation operation promotes feature map matching between two networks. And in
§3.2, we introduce that our mimic learning is based on RoIs. Thus, we consider
the matching ratio of each RoI, i.e. , the percantage of elements in a RoI whose
distance between two feature maps smaller than a threshold. We define the dis-
tance between ith entries of two feature maps as |f i

t−f i
s|, where f i

t and f i
s are the

ith element of teacher and student feature maps. If this distance is smaller than
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Table 5. The influence of quantization only on small networks. The results suggest
quantization only does not bring improvement.

Model quantization? easy mediumhard

VGG-1-32
X 71.9 55.2 23.7

71.3 55.4 23.8

Fig. 5. Histogram of matching ratio. The plot suggests that using quantiation operation
both on teacher and student networks can help student network’s feature maps to better
match teacher network’s. The horizontal axis represents bin of matching ratio, i.e. the
percentage of matched entries in a RoI. The vertical axis represents the frequency of
RoIs within this bin.

a threshold (we set 0.3 in this paper), then these two entries match. We evaluate
on the validation set of WIDER FACE. We compare the results between full-
precision and quantized network. The horizontal axis represents bin of matching
ratio, i.e. the percentage of matched entries in a RoI. Figure 5 demonstrates
the results. The result shows that quantization operation can increase matching
ratio of RoIs and promote feature maps matching process. Thus, quantization
operation can help mimic learning.

Ablation Study on Quantization Method Different quantization method
will bring different effects. The quantization methods we use in our work is uni-
form quantization. Another popular quantization method is power of 2 quantiza-
tion, constraining the output to be either zero or power of 2. Table 6 illustrates
the comparison of uniform quantization and power of 2 quantization. Teacher
networks using different quantization methods have similar performance. How-
ever, the student network using uniform quantization is much better than using
power of 2 quantization. We think this is probably because that our mimic
learning is based on RoIs and strong responses in these areas are more impor-
tant. So we should describe large number more accurately. And for power of 2
quantization method, it describes small numbers (e.g. the number less than 1)
accurately but roughly for large numbers. Thus, uniform quantization method
is more reasonable and can bring better results.
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Table 6. Uniform Quantization vs. Power of 2 Quantization: Using uniform quantiza-
tion as quantization method can get better result than using power of 2 quantization.

Model Quantization method easy mediumhard

VGG-1-4 power of 2 83.9 64.8 27.8

(teacher) uniform(stride:1) 83.7 65.0 27.4

VGG-1-32 power of 2 73.0 59.5 26.6

(student) uniform(stride:1) 73.9 62.1 27.6

Table 7. The comparision between Resnet18-1-16 with Faster R-CNN detector fine-
tuned on Imagenet dataset and using Quantization Mimic method. Our method can
also bring huge improvement for very tiny networks on complicated common object
tasks.

Model solution mAP

Resnet18
full-precision 72.9
quantized 73.3

Resnet18-1-16
scratch 40.5

Quantization Mimic 47.0

4.2 Experiments on Pascal VOC Dataset

We also carry out experiments on more complicated common object detection
task. In this section we implement our approach on Resnet18 with Faster R-CNN
detector for Pascal VOC object detection benchmark [42]. The experiments show
that Quantization Mimic can extend to more complicated tasks.

Following [38], we use Pascal VOC 2007 test set for test and trainval im-
ages in VOC 2007 and VOC 2012 for training (07+12). Hyperparameters in
Faster R-CNN are same as [38]. Mean Average Precision (mAP) is used as the
criterion to evaluate the performance of model. We use Resnet18 with Faster
R-CNN framework as teacher networks. And Resnet18-1-16 with Faster R-CNN
framework are selected as student networks accordingly. We aim at improving
the performance of the student works using Quantization Mimic method.

Main Results First we compare the model using Quantization Mimic method
with the model trained from scratch . Because of the poor learning ability of
very tiny models, it is difficult to train them on complicated task, such as clas-
sification on Imagenet [43] and common object detections on Pascal VOC. Our
method can improve a large margin of performance for very tiny networks on
common object detections. Table 7 illustrates the results. We suggest that our
method increase mAP 6.5 points for Resnet18-1-16 with Faster R-CNN frame-
work. Relatively, we improve the performance for 16.0%. The experiments also
show that Quantization Mimic is easy to implement and can be extended to
different frameworks.

We also do experiments compared with other accelerating and compressing
methods. Same as the experiments on WIDER FACE dataset, we compare our
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Table 8. Comparison with backbone on Resnet18-1-16 with Faster R-CNN framework.
Our method outperforms our backbone Li et al.[4] methods for Resnet18 (higher is
better).

Model solution mAP

Resnet-1-16
Li et al.[4](only mimic) 44.6
Quantization Mimic 47.0

method with Li et al.[4], who only use mimic learning. In Table 8, our method
outperforms than Li et al.[4]. Our results are 2.4 points higher than our backbone,
Li et al.[4] on Resnet-1-16, which is a large margin.

Ablation Study on Mimic Loss Weight We propose that very tiny networks
can be sensitive to loss weight in multi-loss task. We do this experiment on
Resnet18-1-16 to find a suitable mimic loss weight. In Table 9, we can see that
the result of λ = 1 is much better than the result of λ = 0.1 and λ = 10.
We suggest that if mimic loss is too small (e.g. λ = 0.1) , the effectiveness of
mimic learning will decline. However, if we set mimic loss weight too large (e.g.
λ = 10), the very tiny network will mainly focus the gradient produced by mimic
loss and ignore other gradients. And we call this phenomenon as ‘gradient focus’
phenomenon.

Table 9. Mimic Loss Weight λ: The results show that very tiny networks are sensitive
to the mimic loss weight. Either too large or too small loss weight will decrease the
effectiveness of mimic learning.

Model mimic loss weight mAP

Resnet18-1-16
10 44.1
1 47.0

0.1 43.0

5 Conclusion

In this paper, we propose Quantization Mimic to improve the performance of
very tiny CNNs. We show quantization operation on both teacher and student
networks can promote feature map matching. It becomes easier for the stu-
dent network to learn after quantization operation. The experiments on WIDER
FACE and Pascal VOC dataset demonstrate that quantization mimic outper-
forms state-of-the-art methods. We hope our approach can facilitate future re-
search on training very tiny CNNs for cutting-edge applications.
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