
Move Forward and Tell: A Progressive

Generator of Video Descriptions

Yilei Xiong, Bo Dai, and Dahua Lin

CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong
{xy014,db014,dhlin}@ie.cuhk.edu.hk

Abstract. We present an efficient framework that can generate a co-
herent paragraph to describe a given video. Previous works on video
captioning usually focus on video clips. They typically treat an entire
video as a whole and generate the caption conditioned on a single embed-
ding. On the contrary, we consider videos with rich temporal structures
and aim to generate paragraph descriptions that can preserve the story
flow while being coherent and concise. Towards this goal, we propose
a new approach, which produces a descriptive paragraph by assembling
temporally localized descriptions. Given a video, it selects a sequence of
distinctive clips and generates sentences thereon in a coherent manner.
Particularly, the selection of clips and the production of sentences are
done jointly and progressively driven by a recurrent network – what to
describe next depends on what have been said before. Here, the recurrent
network is learned via self-critical sequence training with both sentence-
level and paragraph-level rewards. On the ActivityNet Captions dataset,
our method demonstrated the capability of generating high-quality para-
graph descriptions for videos. Compared to those by other methods, the
descriptions produced by our method are often more relevant, more co-
herent, and more concise.

Keywords: Video Captioning · Move Forward and Tell · Recurrent Net-
work · Reinforcement Learning · Repetition Evaluation

1 Introduction

Textual descriptions are an important way to characterize images and videos.
Compared to class labels or semantic tags, descriptions are usually more informa-
tive and distinctive. In recent years, image captioning, a task to generate short
descriptions for given images, becomes an active research topic [1, 8, 25, 30] and
has seen remarkable progress thanks to the wide adoption of recurrent neural
networks. However, how to extend the captioning techniques to describe videos
remains an open question.

Over the past several years, various methods have been proposed for gen-
erating video descriptions. Early efforts [28] simply extend the encoder-decoder
paradigm in image captioning to videos. Such methods follow a similar pipeline,
namely embedding an entire video into a feature vector, feeding it to a decoding
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Fig. 1. As shown in this figure, our framework localizes important events in a video,
and picks a sequence of coherent and independent events, on which generates a coherent
and concise descriptive paragraph for the video.

network to obtain a descriptive sentence. However, for a video with rich temporal
structures, a single sentence is often not enough to capture all important aspects
of the underlying events. Recently, a new stream of efforts emerge [10,20], which
attempt to use multiple sentences to cover a video. Whereas such methods can
provide more complete characterization of a video, they are still subject to var-
ious issues, e.g. lack of coherence among sentences and high redundancy. These
issues, to a large extent, are ascribed to two reasons: (1) failing to align the tem-
poral structure of the given video with the narrative structure of the generated
description; and (2) neglecting the dependencies among sentences.

In this work, we aim to develop a new framework for generating paragraph
descriptions for videos with rich temporal structures. The goal is to generate
descriptions that are relevant, coherent, and concise. According to the discus-
sion above, the key to achieving this goal lies in two aspects: (1) associate the
temporal structures in the given video with the linguistic generation process;
and (2) encourage coherence among sentences in an effective way.

Specifically, our approach is based on two key observations. First, a natural
video is usually composed of multiple short and meaningful segments that reflect
a certain step in a procedure or an episode of a story. We refer to such video
segments as events. While a single sentence may not be enough to describe
a long video, it often suffices to characterize an individual event. Second, when
people describe a video with a paragraph, there exist strong logical and linguistic
relations among consecutive sentences. What to describe in a sentence depends
strongly on what have been said.

Inspired by these observations, we devise a two-stage framework. This frame-
work first localizes candidate events from the video through video action de-
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tection. On top of these candidates, the framework then generate a coherent
paragraph in a progressive manner. At each step, it selects the next event to
describe and produces a sentence therefor, both conditioned on what have been
said before. The progressive generation process is driven by a variant of LSTM
network that takes into account both temporal and linguistic structures. To ef-
fectively learn this network, we adopt the self-critical sequence training method
and introduce rewards in two different levels, namely the sentence level and the
paragraph level. On ActivityNet Captions [10], the proposed framework out-
performs previous ones under multiple metrics. Qualitatively, the descriptions
produced by our method are generally more relevant, more coherent, and more
concise.

The key contribution of this work lies in a new framework for generating
descriptions for given videos. This framework is distinguished from previous
ones in three key aspects: (1) It aligns the temporal structure of the given video
and the narrative structure of the generated description via a recurrent network.
(2) It maintains coherence among the sentences in a paragraph by explicitly
conditioning what to say next on both the temporal structures and what have
been said. (3) It is learned via reinforcement learning, guided by rewards in both
the sentence level and the paragraph level.

2 Related Work

Image Captioning Early attempts of image captioning rely on visual con-
cept detection, followed by templates filling [11] or nearest neighbour retriev-
ing [6]. Recently, Vinyals et al [24] proposed the encoder-decoder paradigm,
which extracts image features using a CNN, followed by an RNN as the decoder
to generate captions based on the features. This model outperforms classical
methods and becomes the backbone of state-of-the-art captioning models. Many
variants [2, 3, 27] are proposed following the encoder-decoder paradigm, For ex-
ample, Xu et al [27] improved it by introducing an attention mechanism to guide
the decoding process.

While many methods for image captioning can be seamlessly converted into
methods for video captioning, video contains richer semantic content that spreads
on the temporal dimension, directly applying methods for image captioning often
lead to the loss of temporal information.

Video Dense Captioning Video dense captioning, is a topic that closely re-
lated to video captioning, where it densely generates multiple sentences, covering
different time spans of the input video. Specifically, Krishna et al [10] proposed
a method that obtains a series of proposals from the input video and uses a
captioning model to generate a sentence for each, where the temporal relation-
ships among the proposals are taken into account. On the other hand, Shen et
al [20] proposed a weakly-supervised method, which uses multi-instance multi-
label learning to detect words from the input video and then uses these words to
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select spatial regions to form region sequences. Finally, it employs a sequence-
to-sequence submodule to transfer region sequences into captions.

Although closely related, video dense captioning is different from video cap-
tioning. Particularly, a model for video dense captioning could generate multiple
captions, each covers a small period of the input video, where the periods can be
overlapped with each other, leading to a lot of redundancy in the corresponding
captions. On the contrary, a model for video captioning should generate a single
description consisting of several coherent sentences for the entire input video.

Video Captioning Our method targets the topic of video captioning. Related
works can be roughly divided into two categories based on whether a single
sentence or a paragraph is generated for each input video. In the first category,
a single sentence is generated. Among all the works in this category, Rohrbach
et al [18] detected a set of visual concepts at first, including verbs, objects and
places, and then applied an LSTM net to fuse these concepts into a caption.
Yu et al [30] and Pan et al [13] followed a similar way, but respectively using
a semantic attention model and a transfer unit to select detected concepts and
generate a caption. Instead of relying on visual concepts, Hori et al [8] and
Venugopalan et al [23] use features from multiple sources including appearance
and motion to improve quality of the generated caption. There are also efforts
devoted to improving the decoder side. Wang et al [25] added a memory network
before the LSTM net during the decoding process to share features at different
timestamps. Baraldi et al [1] applied a boundary detecting module to share
features hierarchically. While they are able to produce great captions, a single
sentence is difficult to capture all semantic information in a video, as one video
usually contains several distintive events.

The second category is to generate a paragraph to describe a video. Our
method belongs to this category. In this category, Yu et al [29] applied hierar-
chical recurrent neural networks, where a sentence generator is used to generate
a single sentence according to a specific topic, and a paragraph generator is used
to capture inter-sentence statistics and feed the sentence generator with a series
of topics. The most similar work to our method is the one presented in [19]. This
method first select a subset of clips from the input video, and then use a decoder
to generate sentence from these clips to form a paragraph summary of the entire
video. Our method is different from these existing works from two aspects. (1)
When generating each sentence of the paragraph, the method in [29] requires
the features from the entire video, which is expensive for very long videos, while
our method only requires features in selected proposals. (2) In [19], the clips are
selected according to frame quality in advance as a preprocessing step, without
taking into account the coherence of narration. This way will lead to redundancy
in the resulting paragraph. On the contrary, our method selects key events along
with the generation of captions in a progressive way. The selection of the next
key event depends on what has been said before in preceding captions. Also,
this process takes into account temporal and semantic relationships among the
selected events in order to ensure the coherence of the resultant paragraph.
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Fig. 2. An overview of our framework, which at first localize important events from the
entire video. It then generates a coherent and concise descriptive paragraph upon these
localized events. Specifically, an LSTM net, serves as a selection module, will pick out
a sequence of coherent and semantically independent events, based on appearances,
temporal locations of events, as well as their semantic relationships. And based on this
selected sequence, another LSTM net, serves as a captioning module, will generate
a single sentence for each event in the sequence conditioned on previous generated
sentences, which are then concatenated sequentially as the output of our framework.

3 Generation Framework

Our task is to develop a framework that can generate coherent paragraphs to
describe given videos. Specifically, a good description should possess three prop-
erties: (1) Relevant : the narration aligns well with the events in their temporal
order. (2) Coherent : the sentences are organized into a logical and fluent nar-
rative flow. (3) Concise: each sentence conveys a distinctive message, without
repeating what has been said.

3.1 Overview

A natural video often comprises multiple events that are located sparsely along
the temporal range. Here, events refer to those video segments that contain
distinctive semantics that need to be conveyed. Taking the entire video as input
for generating the description is inefficient, and is likely to obscure key messages
when facing numerous noisy clips. Therefore, we propose a framework as shown
in Figure 2, which generates a descriptive paragraph in two stages, namely event
localization and paragraph generation. In event localization, we localize candidate
events in the video with a high recall. In paragraph generation, we first filter
out redundant or trivial candidates, so as to get a sequence of important and
distinctive events. We then use this sequence to generate a single descriptive
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paragraph for the entire video in a progressive manner, taking into account the
coherence among sentences.

3.2 Event Localization

To localize event candidates, we adopted the clip proposal generation scheme
presented in [31], using the released codes. This scheme was shown to be ef-
fective in locating important clips from untrimmed videos with high accuracy.
Specifically, following [31], we calculate frame-wise importance scores, and then
group the frames into clips of via a watershed procedure. This method outputs
a collection of clips as event candidates. These clips have varying durations and
can overlap with each other. As our focus is on paragraph generation, we refer
readers to [31] for more details of event localization.

Note that not all the candidates derived in this stage is worthy of descrip-
tion. The paragraph generation will select a subset of candidates that contain
important and distinctive messages, along with the generation process.

3.3 Progressive Event Selection and Captioning

Given a sequence of events, there are various ways to generate a descriptive
paragraph. While the most straightforward way is to generate a single sentence
for each event in the sequence, it is very likely to introduce a large amount of
redundancy. To generate coherent and concise description, we can select a subset
of distinctive events and generate sentences thereon. The key challenge here is
to stride a good balance between sufficient coverage and conciseness.

In this work, we develop a progressive generation framework that couples two
recurrent networks, one for event selection and the other for caption generation.

Event Selection With all event candidates arranged in the chronological or-
der, denoted as (e1, . . . , eT ), the event selection network begins with the first
candidate in the sequence and moves forward gradually as follows:

h0 = 0, ht = LSTM(ht−1,vt, rt, ckt
), (1)

pt = sigmoid(wT
p ht), yt = 1[pt > δ]. (2)

Specifically, it initializes the latent state vector h0 to be zeros. At each step t, it
updates the latent state ht with an LSTM cell and computes pt, the probability
of et containing relevant and distinctive information, by applying a sigmoid
function to wT

p ht. If pt is above a threshold δ, yt would be set to 1, indicating
that the candidate et will be selected for sentence generation.

The updating of ht depends on four different inputs: (1) ht−1: the latent state
at the preceding step. (2) vt: the visual feature of et, extracted using a Temporal
Segmental Network (TSN) [26]. (3) rt: the range feature, similar as the image
mask in [4], represented by a binary mask that indicates the normalized time
span of et relative to the entire duration. (4) ckt

: the caption feature of ekt
,
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where kt is the index of the last selected event candidate (before t). Here, the
caption feature is from the caption generation network, which we will present
next. Particularly, ckt

is chosen to be the latent state of the caption generation
network at the final decoding step when generating the description for ekt

.
With the previous caption feature ckt

incorporated, the event selection net-
work is aware of what have been said in the past when making a selection. This
allows it to avoid selecting the candidates that are semantically redundant.

Caption Generation On top of the selected events, the caption generation
network will produce a sequence of sentences, one for each event, as follows:

g
(k)
0 =

{

0, k = 1

g
(k−1)
∗ , k > 1

, g
(k)
l = LSTM(g

(k)
l−1,u

(k)
l , w

(k)
l−1), (3)

s
(k)
l = Wsg

(k)
l , w

(k)
l ∼ softmax(s

(k)
l ). (4)

Here, g
(k)
l denotes the latent state at the l-th step of the caption generation

network when describing the k-th selected event. u
(k)
l denotes a visual feature

of a subregion of the event. Here, the computation of u
(k)
l follows the scheme

presented in [16], which allows the network to dynamically attend to different

subregions as it proceeds1. w
(k)
l is the word produced at the l-th step, which is

sampled from softmax(s
(k)
l ).

This network is similar to a standard LSTM for image captioning except for

an important difference: When k > 1, the latent state is initialized to g
(k−1)
∗ ,

the latent state at the last decoding step while generating the previous sentence.
This means that the generation of each sentence (except the first one) is condi-
tioned on the preceding one, which allows the generation to take into account
the coherence among sentences.

Discussions The event selection network and the caption generation network
work hand in hand with each other when generating a description for a given
video. On one hand, the selection of next event candidate depends on what has
been said. Particularly, one input to the event selection network is ckt

, which is

set to the g
(kt)
∗ , the last latent state of the caption generation network in generat-

ing the previous sentence. On the other hand, the caption generation network is
invoked only when the event selection network outputs yt = 1, and the generation
of the current sentence depends on those that come before. The collaboration
between both networks allows the framework to produce paragraphs that can
cover major messages, while being coherent and concise.

Note that one may also use Non-Maximum Suppression (NMS) to directly
remove temporal overlapped events. This simple way is limited compared to
ours, as it only considers temporal overlap while ignoring the semantic relevance.

1 We provide more details of the computation of u
(k)
l

in the supplemental materials
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Another way is to first generate sentences for all events and then select a subset of
important ones based on text summarization [19]. This approach, however, does
not provide a mechanism to encourage linguistic coherence among sentences,
which is crucial for generating high-quality descriptions.

4 Training

Three modules in our framework need to be trained, namely event localization,
caption generation, and event selection. In particular, we train the event lo-
calization module simply following the procedure presented in [31]. The other
two modules, the caption generation network and the event selection network,
are trained separately. We first train the caption generation network using the
ground-truth event captions. Thereon, we then train the event selection network,
which requires the caption generation states as input.

4.1 Training Caption Generation Network

The caption generation network models the distribution of each word condi-
tioned on previous ones and other inputs, including the visual features of the
corresponding event u(k) and the final latent state of for the preceding sentence

g
(k−1)
∗ . Hence, this distribution can be expressed as pθ(wl|w1:l−1;u

(k),g
(k−1)
∗ ),

where θ denotes the network parameters. We train this network through two
stages: (1) initial supervised training, and (2) reinforcement learning.

The initial supervised training is performed based on pairs of events and
their corresponding ground-truth descriptions, with the standard cross entropy

loss. Note that this network requires g
(k−1)
∗ as input, which is provided on the

fly during training. In particular, we feed the ground-truth sentences for each
video one by one. At each iteration, we cache the final latent state for the current
sentence and use it as an input for the next one.

Supervised training encourages the caption generation network to emulate
the training sentences word by word. To further improve the quality of the
resultant sentences, we resort to reinforcement learning. In this work, we em-
ploy the Self-Critical Sequence Training (SCST) [16] technique. Particularly, we
consider the caption generation network as an “agent”, and choosing a word an
“action”. Following the practice in [16], we update the network parameters using
approximated policy gradient in the reinforcement learning stage.

The key to reinforcement learning is the design of the rewards. In our design,
we provide rewards at two levels, namely the sentence-level and the paragraph-
level. As mentioned, the network takes in the ground-truth events of a video
sequentially, producing one sentence for each event (conditioned on the previous
state). These sentences together form a paragraph. When a sentence is generated,
it receives a sentence-level reward. When the entire paragraph is completed, it
receives a paragraph-level reward. The reward is defined to be the CIDEr [22]
metric between the generated sentence/paragraph and the ground truth.
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4.2 Training Event Selection Network

The event selection network is a recurrent network that takes a sequence of can-
didate events as input and produces a sequence of binary indicators (for selecting
a subset of candidates to retain). We train this network in a supervised manner.
Here, the key question is how to obtain the training samples. We accomplish
this in two steps: (1) labeling and (2) generating training sequences.

First, for each video, we use the event localization module to produce a
series of event candidates as (e1, . . . , eT ). At the same time, we also have a set of
ground-truth events provided by the training set, denoted as (e∗1, . . . , e

∗

T∗). For
each ground-truth event e∗j , we find the candidate ei that has the highest overlap
with it, in terms of the temporal IoU, and label it as positive, i.e. setting yi = 1.
All the other event candidates are labeled as negative.

Second, to generate training sequences, we consider three different ways:

– (S1) Complete sequences, which simply uses the whole sequence of candidates
for every video, i.e. (e1, e2, · · · , em).

– (S2) Subsampling at intervals, which samples event candidates at varying
intervals, e.g. (e2, e4, · · · , em), to obtain a larger set of sequences.

– (S3) Subsampling negatives, which keeps all positive candidates, while ran-
domly sampling the same number of negative candidates in between.

Note that the positive and negative candidates are highly imbalanced. For
each video, positive candidates are sparsely located, while negative ones are
abundant. The scheme (S3) explicitly rebalances their numbers. Our experiment
shows that (S3) often yields the best performance.

The event selection network is trained with the help of the caption generation
network. To be more specific, whenever the event selection network yields a
positive prediction, the caption feature ckt

will be updated based on the caption
generation network, which will be fed as an input to the next recurrent step.

5 Experiment

We report our experiments on ActivityNet Captions [10], where we compared
the proposed framework to various baselines, and conducted ablation studies to
investigate its characteristics.

5.1 Experiment Settings

The ActivityNet Captions dataset [10] is the largest publicly available dataset
for video captioning. This dataset contains 10, 009 videos for training, and 4, 917
for validation. Compared to previous datasets [7, 15, 17], it has two orders of
magnitude more videos. The videos in this dataset are 3 minutes long on average.
Each video in the training set has one set of human labeled annotations, and
each video in the validation set has two such sets. Here, a set of annotations
is a series of sentences, each aligned with a long or short segment in the video.
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About 10% of all segments have overlaps with each other. On average, each set
of annotations contains 3.65 sentences.

While ActivityNet Captions was originally designed for the task of video
dense captioning, we adapt it to our task with the ground-truth paragraphs
derived by sequentially concatenating the sentences within each set of segment-
based annotations. As a result, for each video in the training set, there is one
ground-truth paragraph, and for each video in the validation set, there are two
ground-truth paragraphs. Since the annotations for testing videos are not pub-
licly accessible, we randomly split the validation set in half, resulting in 2, 458
videos for tuning hyperparameters, and 2, 459 videos for performance evaluation.

We set δ = 0.3, L = 100 in the event selection module, and N = 10 in the
captioning module. We separately train the three modules in our framework. In
particular, the event localization module is trained according to [31], where the
localized events have a recall of 63.77% at 0.7 tIoU threshold. For captioning
module, the LSTM hidden size is fixed to 512. As discussed in section 4, we
first train the model under the cross-entropy objective using ADAM [9] with an
initial learning rate of 4× 10−4. We choose the model with best CIDEr score on
the validation set. We then run SCST training initialized with this model. The
reward metric is CIDEr, for both sentence and paragraph reward. SCST train-
ing uses ADAM with a learning rate 5 × 10−5. One batch contains at least 80
events, since events in the same video are fed into a batch simultaneously. For the
event selection module, we train it on a collection of labeled training sequences
prepared as described in Section 4, where each training sequence contains 64
candidate events. We use cross-entropy as the loss function and SGD with mo-
mentum as the optimizer. The learning rate is initialized to 0.1 and scaled down
by a factor of 0.1 every 10, 000 iterations. We set the SGD momentum to 0.9,
weight decay to 0.0005, and batch size to 80. 2

5.2 Evaluation

We evaluate the performance using multiple metrics, including BLEU [14], ME-
TEOR [5], CIDEr [22] and Rouge-L [12]. Besides, we notice there exists a general
problem for video captioning results, i.e., repetition or redundancy. This may be
due to that captioning module can’t distinguish detailed events. For example,
the captioner may take both ironing collar and ironing sleeve as ironing. Describ-
ing repeated things definitely hurts the coherence of the descriptions. However
this can not reflect in the above metrics.

To measure this effect, a recent work proposes Self-BLEU [32] by evaluating
how one sentence resembles the rest a generated paragraph. We also propose
another metric, called Repetition Evaluation (RE). Given a generating descrip-
tion ci, the number of time an n-gram wk occurs in it is denoted as hk(ci). The
Repetition Evaluation computes a redundancy score for every description ci:

RE(ci) =

∑

k max (hk(ci)− 1, 0)
∑

k hk(ci)
, (5)

2 Code will be made publicly available soon
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where the gram length, n, takes a large number, like 4 in our experiments. The
corpus-level score is the mean score across all descriptions. Ideally, a description
with n repetitions would get a score around (n− 1)/n.

5.3 Comparison with Other Methods

We compared our framework with various baselines, which we describe as below.
(1) Sentence-Concat : a simple baseline that equally splits a video into four

disjoint parts, and describes each part with a single sentence using the caption-
ing model as ours. The final paragraph is derived by concatenating these four
sentences. Using this baseline, we are able to study the effect of localizing events
in the input video.

(2) Hierarchical-RNN [29]: a more sophisticated way to generate paragraphs
from a video, where a topic RNN generates a sequence of topics to control the
generation of each individual sentence. With the topic embeddings as input, a
sentence RNN generates a sentence for each topic in the sequence.

(3) Dense-Caption [10]: one of the state-of-the-art methods for video dense
captioning, which generates a single sentence for each candidate event and then
concatenate them all into a paragraph, regardless of their similarities. This base-
line is used to demonstrate the differences between video dense captioning and
video captioning.

(4) Dense-Caption-NMS : a method based on the above Dense-Caption. It se-
lects events from candidate events of Dense-Caption using Non-Maximum Sup-
pression (NMS), removing those that are highly overlapped with others on tem-
poral range.

(5) Semantic-Sum [19]: a recent method that also identifies the video seg-
ments as ours. We find that this method gets best performance when setting
sentence length as 3 and using Latent Semantic Analysis [21] in summarization
module.

(6) Move Forward and Tell (MFT): our proposed framework which progres-
sively select events and produce sentences conditioned on what have been said
before.

(7)GT-Event : this baseline directly applies our captioning module on ground-
truth events. In principle, this should serve as a performance upper bound, as it
has access to the ground-truth event locations.

Table 1 presents the results for different methods on ActivityNet Captions,
from which we have the following observations: (1) Dense-Caption performs
very poorly since there are many redundant proposals and therefore repeated
sentences indicating by RE and Self-BLEU metrics. The RE score is terribly
high, meaning two thirds of the descriptions are likely redundant. This clearly
shows the differences between video dense captioning and video captioning. (2)
Sentence-Concat and Dense-Caption-NMS are at a comparable level, much bet-
ter than Dense-Caption. These two methods may benefit from a common as-
pect, i.e. their events are almost not overlapped. But some important events
may not be localized here. (3) Hierarchical-RNN improves the result to the next
level, achieving 25.53% Rouge-L. This suggests that it produces more coherent
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Table 1. Comparison results of video captioning. The last method GT-Event uses
ground truth information and can be seen as the upper bound of event selecting. The
value is in %. For metrics RE and Self-BLEU, the lower is better. For the others, the
higher is better

Model CIDEr BLEU@4 BLEU@3 BLEU@2 BLEU@1 Rouge-L METEOR RE Self-BLEU

Sentence-Concat 4.51 4.18 6.45 10.41 17.52 22.59 8.79 18.41 49.40
Hierarchical-RNN [29] 6.99 7.32 12.13 21.23 39.02 25.53 10.79 18.79 54.38
Dense-Caption [10] 0.29 0.99 1.51 2.33 3.52 8.63 6.75 64.05 89.79
Dense-Caption-NMS 3.52 4.45 6.96 11.21 18.09 21.41 12.08 23.98 62.46
Semantic-Sum [19] 10.43 6.44 11.21 20.36 37.22 25.44 12.66 29.94 67.49
MFT (Ours) 14.15 8.45 13.52 22.26 39.11 25.88 14.75 17.59 45.80

GT-Event 19.56 10.33 16.44 27.24 46.77 29.70 15.09 15.88 42.95

Table 2. This table compares different training schemes for our model. See section 4
for the detail of schemes

Training Scheme CIDEr BLEU@4 BLEU@3 BLEU@2 BLEU@1 Rouge-L METEOR RE Self-BLEU

(S1) Complete sequenses 9.25 7.12 11.56 19.18 33.80 23.84 11.06 26.11 51.41
(S2) Subsampling at intervals 8.04 6.49 10.52 17.58 31.16 21.27 10.16 24.09 46.19
(P1) Supervised training only 12.81 8.53 13.25 21.76 37.68 25.53 13.24 19.10 46.77
(P1 + P2 & S3) Ours 14.15 8.45 13.52 22.26 39.11 25.88 14.75 17.59 45.80

result by modelling the sentence relationships. (4) Semantic-Sum further im-
proves the result, achieving 10.43% CIDEr. This shows the effect of localizing
video events for captioning. (5) Our method MFT significantly outperforms all
above methods, e.g. it attains 14.15% for CIDEr, compared to 10.43% from
Semantic-Sum. It also performs comparably well with GT-Event, a method uti-
lizing ground-truth events.

5.4 Ablation Studies

Training Scheme In section 4, we introduce our training strategies. For cap-
tion generation network, the training includes two phases – (P1) initial super-
vised training and (P2) reinforcement learning. For event selection network, we
propose three different ways to generate training sequences. (S1) complete se-
quences, (S2) subsampling at intervals and (S3) subsampling negatives where our
model adopts scheme (S3).

Table 2 shows the performance under different training schemes. First of
all, among all three schemes of generating training sequences for event selec-
tion network, (S3) subsampling negatives performs best. (S1) scheme only gets
9.25% CIDEr while (S2) scheme gets 8.04% CIDEr, a considerable drop from our
model. This indicates the importance of balancing the positive candidates and
negative candidates. Besides, by utilizing the reinforcement learning for caption
generation network, our model gains performance improvement, especially for
the target metric, CIDEr. Our model yields 14.15% CIDEr score while only us-
ing supervised training yields 12.81%. Other metrics get consistent improvement
with reinforcement learning, including RE and Self-BLEU metrics.
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Table 3. This table lists the results of using different feature combinations for event
selection, where the full combination is shown to be the best configuration

Feature CIDEr BLEU@4 BLEU@3 BLEU@2 BLEU@1 Rouge-L METEOR RE Self-BLEU

Visual 10.19 6.41 10.41 17.50 31.47 25.74 12.05 29.00 56.57
Visual + range 10.54 7.53 12.16 20.32 36.58 25.42 11.86 27.62 54.11
Visual + caption 11.29 7.90 12.61 20.83 36.55 23.82 13.24 18.92 49.14
Visual + range + caption 14.15 8.45 13.52 22.26 39.11 25.88 14.75 17.59 45.80

Feature for Event Selection In this part, we study the effect of using different
features for event selection. Specifically, the following combinations are tested.
(1) visual : using visual features v in isolation, which serves as a baseline for
other combinations. (2) visual + range: combining visual features v with range
features t, which provides the temporal ranges in the original videos in addition
to visual features. (3) visual + caption: combining visual features v with caption
feature c, which provides event selection module the ability to know what have
been said. (4) visual + range + caption: using all features.

As shown in Table 3, compared to visual, both visual + range and visual
+ caption outperforms it by a significant margin, indicating both the temporal
range features and the caption features are complementary to the visual infor-
mation. It is reasonable as the visual features contain no temporal information,
which is explicitly captured in temporal range features, and semantically cap-
tured in caption features. Moreover, caption features and temporal range features
are also complementary to each other, as the full combination visual + range +
caption outperforms both visual + range and visual + caption.

5.5 Human Study

To have a more pertinent assessment, we also conduct a human study, where 20
users are asked to pick the best descriptive paragraph among those generated by
the proposed MFT, Hierarchical-RNN, and Semantic-Sum, in terms of relevance,
coherence and conciseness respectively. Figure 3 shows that MFT generates the
best ones across all aspects.
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Fig. 3. The figure shows the results of human evaluation, which compares paragraphs
generated by different methods, with respect to relevance, coherence and conciseness.
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5.6 Qualitative Example

In Figure 4, we also include one qualitative example, where a video is shown with
paragraphs generated byDense-Caption-NMS, Hierarchical-RNN, Semantic-Sum
and our method MFT. As shown in Figure 4, compared to the baselines, our
method produces more concise and more coherent paragraphs. We will provide
more qualitative results in the supplementary materials.

Dense-

Caption-

NMS 

A gymnast is seen walking ready to a beam and leads into her performing a routine. The girl then 

begins to do a routine and flips flips and flips and flips off the beam. He mounts his arms up and down 

on the mat. A woman is seen standing on a horse and begins walking around. A girl is seen standing 

on a beam beam with her arms around and performing flips… (remaining skipped)

Hierarchical-

RNN

A gymnast is seen performing a routine and leads into several people performing a gymnastics routine. 

The gymnast performs a routine on a beam. The gymnast dismounts and lands on the pommel horse.

Semantic-

Sum

A gymnast is seen standing ready with her arms up in the air. A man is seen standing before a beam 

and begins performing a gymnastics routine. A man is seen standing ready to perform a routine on the 

bars.

MFT 

(ours)

A gymnast is seen standing ready to a beam and performing a gymnastics routine on a beam. The girl 

performs several flips and flips around the beam and ends by jumping off the beam.

Ground-Truth A girl jumps onto a balance beam. She does a gymnastics routine on the balance beam. She does a 

flip off the balance beam and lands on a mat.

Fig. 4. This figure lists a qualitative example, where paragraphs generated by Dense-

Caption-NMS, Hierarchical-RNN, Semantic-Sum and our method MFT are shown.

6 Conclusion

We presented a new framework for generating coherent descriptions for given
videos. The generated paragraphs well align with the temporal structure of the
given video, covering major semantics without redundancy. Specifically, it se-
quentially locates important events via an LSTM net, which selects events from
a candidate pool, based on their appearances, temporal locations and mutual
semantic relationships. When respectively describing events in the acquired se-
quence, it explicitly decides what to say next based on temporal structure and
what have been said. On ActivityNet Captions, our method significantly outper-
formed others on a wide range of metrics, while producing more coherent and
more concise paragraphs.
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