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Abstract. The key point of image-text matching is how to accurately
measure the similarity between visual and textual inputs. Despite the
great progress of associating the deep cross-modal embeddings with the
bi-directional ranking loss, developing the strategies for mining useful
triplets and selecting appropriate margins remains a challenge in real
applications. In this paper, we propose a cross-modal projection match-
ing (CMPM) loss and a cross-modal projection classification (CMPC)
loss for learning discriminative image-text embeddings. The CMPM loss
minimizes the KL divergence between the projection compatibility dis-
tributions and the normalized matching distributions defined with all
the positive and negative samples in a mini-batch. The CMPC loss at-
tempts to categorize the vector projection of representations from one
modality onto another with the improved norm-softmax loss, for fur-
ther enhancing the feature compactness of each class. Extensive analysis
and experiments on multiple datasets demonstrate the superiority of the
proposed approach.
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1 Introduction

Exploring the relationship between image and natural language has recently
attracted great interest among researchers, due to its great importance in vari-
ous applications, such as bi-directional image and text retrieval [44, 22], natural
language object retrieval [10], image captioning [43, 35], and visual question an-
swering (VQA) [1,18]. A critical task for these applications is to measure the
similarity between visual data and textual descriptions. Existing deep learning
approaches either attempts to learn joint embeddings [39, 44,40, 21] for image
and text in a shared latent space, or build a similarity learning network [16,
15,22,11,40] to compute the matching score for image-text pairs. The joint
embedding learning based methods have shown great potential in learning dis-
criminative cross-modal representations and computation efficiency at the test
stage.

Generally, the joint embedding learning framework for image-text matching
adopts the two-branch [40, 39, 44, 21] architecture (as shown in Fig. 1), where one
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Fig. 1. Deep image-text embedding learning

branch extracts the image features and the other one encodes the text represen-
tations, and then the discriminative cross-modal embeddings are learned with
designed objective functions. The most commonly used functions include canon-
ical correlation analysis (CCA) [44], and bi-directional ranking loss [39, 40, 21].
Compared with CCA based methods, the bi-directional ranking loss produces
better stability and performance [40] and is being more and more widely used
in cross-modal matching [39,21]. Nevertheless, it suffers from sampling useful
triplets and selecting appropriate margins in real applications.

Despite the great success of these deep learning techniques in matching im-
age and text with only the pair correspondence, some recent works [28, 16, 15]
explore more effective cross-modal matching algorithms with identity-level an-
notations. These research efforts demonstrated that the discrimination ability
of the learned image-text embeddings can be greatly enhanced via introducing
category classification loss as either auxiliary task [28] or pre-trained initial-
ization [16,15]. Consider the fact that independent classification may not fully
exploit the identity information for cross-modal feature learning, [15] developed
the Cross-Modal Cross-Entropy (CMCE) loss which employs the cross-modal
sample-to-identity affinity for category prediction, whereas this strategy requires
to allocate additional identity feature buffer, which could bring large memory
consumption when there are large number of subjects.

To address these problems, we propose a cross-modal projection matching
(CMPM) loss and a cross-modal projection classification (CMPC) loss, which
introduces the cross-modal feature projection operation for learning discrimi-
native image-text embeddings. The CMPM loss attempts to minimize the KL
divergence between projection compatibility distributions and the normalized
matching distributions, in order to increase the variance between unmatched
samples and the association between the matched ones. The CMPM loss func-
tion does not need to select specific triplets or tune the margin parameter, and
exhibits great stability with various batch size. For the assistant classification
task with identity labels, the CMPC loss attempts to classify the vector projec-
tion of the features from one modality onto the matched features from another
modality, instead of independently categorizing the original features. Extensive
experiments and analysis demonstrate the superiority of the proposed approach
for efficiently learning discriminative image-text embeddings.
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2 Related Work

2.1 Deep Image-Text Matching

Most existing approaches for matching image and text based on deep learning
can be roughly divided into two categories: 1) joint embedding learning [39, 15,
44,40, 21] and 2) pairwise similarity learning [15, 28,22, 11, 40].

Joint embedding learning aims to find a joint latent space under which the
embeddings of images and texts can be directly compared. This type of ap-
proaches usually associate features from two modalities with correlation loss [44],
and the bi-directional ranking loss [39,40,21]. The deep canonical correlation
analysis (DCCA) [44] aims to learn nonlinear transformations of two views of
data with the deep networks such that the resulting representations are highly
linearly correlated, while the major caveat of DCCA is the eigenvalue problem
brought by unstable covariance estimation in each mini-batch [23,40]. The bi-
directional ranking loss [39,40,21] extends the triplet loss [29], which requires
the distance between matched samples to be smaller than unmatched ones by a
margin for image-to-text and text-to-image ranking. Whereas the bi-directional
ranking loss inherits the disadvantage of selecting negative samples and margins
from the triplet loss.

Pairwise similarity learning focus on designing a similarity network which
predicts the matching score for image-text pairs. Apart from the efforts [40]
to measure the global similarity between image and text, many of the research
works [15,28,22, 11, 26] attempt to maximize the alignments between image re-
gions and textual fragments. However, this strategy may lack efficiency involving
preparing all the image-text pairs to predict the matching score at the test stage.

For image-text matching with identity-level annotations, Reed et al. [28] pro-
posed to learn discriminative image-text joint embeddings with the indication
of class labels, and collected two datasets of fine-grained visual descriptions,
while [16] attempted to search persons with language description under the as-
sistance of identity classification. As an improvement, Li et al. [15] developed a
two-stage learning strategy for textual-visual matching. Stage-1 pre-trains the
network with the cross-modal cross-entropy (CMCE) loss under the supervi-
sion of identity labels, and stage-2 retrains the network with latent co-attention
restriction under the supervision of pairwise labels.

2.2 Discriminative Feature Learning

Recent years have witnessed the advance of deep neural networks for learn-
ing discriminative features, which has great importance in many visual tasks,
such as face recognition [32, 29,41, 20, 19], face verification [33,37], and person
re-identification [42,8,2]. Intuitively, discriminative features should be able to
maximize both the inter-class separability and the intra-class compactness.

As the most widely used supervision loss for learning strong representations,
cross-entropy loss (or softmax loss) [32, 33,42] has achieved significant success in
various applications. Nevertheless, many research works have been focusing on
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improvements to generate more discriminative features. Wen et al. [41] proposed
the center loss to assist the softmax loss for face recognition, where the distance
between samples and the corresponding class centres are minimized to improve
the intra-class compactness. Liu et al. developed the L-softmax [20] which in-
troduces the angular margin into softmax loss for further increasing the feature
separability, and refined it to A-softmax [19] by adding the normalization of
the classification weights. It is notable that the A/L-softmax imposes feature
discriminativeness by incorporating the angular margin to achieve remarkable
results in face recognition. However, the strong restriction of angular and weights
makes models difficult to converge [36, 3, 38] in real applications, especially when
the training data has too many subjects. Ranjan et al. [27] proposed to normalize
the features to strengthen the verification signal and better model the difficult
samples. Wang et al. [37] modified the softmax loss by normalizing both the fea-
tures and the classification weights, which achieves performance improvements
with much easier implementation.

On the other hand, deep metric learning gains increasing popularity by learn-
ing general distance metrics, under which the distance between relevant samples
are smaller than that of irrelevant ones. Hadsell et al. [5] proposed the contrastive
loss to minimize the distance between similar points and restrict the distance
between dissimilar points to be smaller than a margin. Schroff et al. [29] designed
the triplet loss to encourage a relative distance constraint between matched face
pairs and unmatched ones, and it has proved effective for matching pedestri-
ans from different cameras in [8]. Recently, quadruplet loss [2] added a negative
pair constrain to the triplet loss such that the intra-class variations and inter-
class similarities are further reduced. It also introduced the adaptive margin to
compute distance penalization and select negative samples.

Unfortunately, there are two main challenges when applying the above loss
functions: sampling useful data units (i.e. positive and negative pairs, triplets,
or quadruplets) and determining appropriate margins. Generating all possible
triplets would result in heavy computation and slower convergence [29] while
sampling the hardest negatives may cause the network to converge to a bad lo-
cal optimum [29, 31]. [29] proposed to choose semi-hard negative samples from
within a mini-batch online, while this strategy requires large batch size to select
useful negative samples. Song et al. [31] optimized the smoothed upper bound
of the original triplet loss and utilized all the negative samples within a mini-
batch, and Sohn et al. [30] proposed the N-pair loss in the form of multi-class
softmax loss with the request of carefully selected imposter examples. To avoid
highly-sensitive parameters, the Histogram loss [34] is developed to estimate the
similarity distributions of all the positive and negative pairs in a mini-batch and
then minimize the probability that a random negative pair has a higher similar-
ity than a random positive pair, under which the large batch size is preferred
to achieve better performance. Nevertheless, these modifications for learning
embeddings to preserve the association relationship of samples are specifically
designed for single-modal applications, and may not readily adapt to the cross-
modal matching problems.
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3 The Proposed Algorithm

3.1 Network Architecture

The framework of our proposed method is shown in Fig. 1. We can see that the
image-text matching architecture consists of three components: a visual CNN
to extract image features, a bi-directional LSTM (Bi-LSTM) to encode text
features, and a joint learning module for associating the cross-modal represen-
tations.

Given a sentence, we apply basic tokenizing and split it into words, and then
sequentially process them with a Bi-LSTM. The hidden states of forward and
backward directions are concatenated, and the initial text representations are
obtained with a max-pooling strategy. For an image, we employ MobileNet [9]
and extract its initial feature from the last pooling layer. In the association
module, the extracted image and text features are embedded into a shared la-
tent space, where the compatibility between matched features and the variance
between unmatched samples are maximized.

In this paper, we focus on learning the discriminative features in the as-
sociation module, and describe the proposed cross-modal projection matching
(CMPM) and cross-modal projection classification (CMPC) loss function in the
following sections.

3.2 Cross-Modal Projection Matching

We introduce a novel image-text matching loss termed as Cross-Modal Projec-
tion Matching (CMPM), which incorporates the cross-modal projection into KL
divergence to associate the representations across different modalities.

Given a mini-batch with n image and text samples, for each image x; the
image-text pairs are constructed as {(xi,2;),¥i;}7—;, Where y; ; = 1 means
that (z;, 2;) is a matched pair, while y; ; = 0 indicates the unmatched ones. The
probability of matching x; to z; is defined as

_ exp(e] %) 5 _ %
ST, exple] 20) ; @)

Pij =

where Z; denotes the normalized text feature. Geometrically w;'— Z; represents the
scalar projection image feature x; onto text feature z; and p;; can be viewed
as the percent of scalar projection of (x;,2;) among all pairs {(z;, z;)}}—; in
a mini batch. Fig. 2 (a) shows the geometrical explanation of the cross-modal
projection. We can see that the more similar image feature to text feature, the
larger the scalar projection would be. Note that the scalar projection can be
negative if the two vectors lie in opposite directions, such as ar:;r Zj shown in the
figure.

Considering the fact that there might be more than one matched text samples
for &; in a mini-batch, we normalize the true matching probability of (x;, z;) as

Gij = ST (2)
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Fig. 2. Interpretation of cross-modal projection and matching. (a) The image feature
x; is projected onto different text directions, and the scalar projection of @; onto the
matched text z; is larger than that of unmatched text z; and zj. (b) For the image
x1 with z; and z3 as matched candidates (green arrowed line) in a mini-batch, and
the other texts as unmatched samples (red arrowed line), the CMPM loss attempts to
find a distribution p; having low probability where the true matching distribution g
has low probability

The matching loss of associating @; with correctly matched text samples is
defined as

n
L;= le pi,j log q:;’ié (3)
where € is a small number to avoid numerical problems, and the matching loss
from image to text in a mini-batch is computed by

Ligg =231 1L, (4)

Note that Eq. 3 actually represents the KL divergence from distribution g; to
p;, and minimizing K L(p;||q;) attempts to select a p; that has low probability
where g; has low probability [4]. Fig. 2 (b) illustrates the proposed matching
loss with a mini-batch data, we can see that the true matching distribution g
for image &1 has multiple modes with more than one matched text candidates
in the mini batch, and the proposed matching loss attempts to select a single
mode distribution p; to avoid putting probability mass in the low-probability
areas between modes of gy, such that the compatibility of the unmatched image-
text pairs are minimized while the relevance of the matched pairs are maximized.
Note that given an image, all the positive and negative text candidates in a mini-
batch are taken into consideration for computing the matching loss, getting rid
of the dedicated sampling procedures in traditional bi-directional ranking loss.

It might raise the concerns about using K L(g;||p;) to maximize the com-
patibility of matched pairs for learning discriminative embeddings. As explained
in [4], KL(q;||p;) would try to find p; as a blur mode, towards generating high
probability where g; has high probability. This may cause difficulties for distin-
guishing matched and unmatched pairs when there are multiple positive pairs
in a mini-batch. The advantages of K L(p;||q;) over KL(q;||p;) will be further
demonstrated in experiments.
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In image-text embedding learning, the matching loss is often computed in two
directions [39, 40, 21]: the image-to-text matching loss requires the matched text
to be closer to the image than unmatched ones, and in verse the text-to-image
matching loss constrains the related text to rank before unrelated ones. Similarly,
the matching loss Lo; from text to image can be formulated by exchanging x
and z in Eq. 1—4, and the bi-directional CMPM loss is calculated by

['cmpm = £i2t + £t2i (5)

3.3 Cross-Modal Projection Classification

For image-text matching with identity-level annotations, the classification loss
applied to each modality helps to learn more discriminative features. However,
the matching relationships of image-text pairs may not be sufficiently exploited
in separate classification tasks. In this section, we develop a novel classification
function where the cross-modal projection is integrated into the norm-softmax
loss to further enhance the compactness of the matched embeddings.

Norm-softmax First we revisit the traditional softmax loss by looking into
the decision criteria of softmax classifiers. Given the extracted image features
X = {x;}}¥, from visual CNN, text features Z = {z;}, from Bi-LSTM, and
the label set ) = {y; }}¥, from M classes, the original softmax loss for classifying
images can be computed as

1 exp(W, x; +b,,)
£so maxr — x7 -1 & - 6

where y; indicates the label of x; , W,, and W, represent the y;-th and j-th
column of weight matrix W, and b,, and b; respectively denote the y;-th and
j-th element of bias vector b.

To improve the discriminative ability of the image feature x; during classifi-
cation, we impose weight normalization on the softmax loss as with [37,19], and
reformulate Eq. 6 as

| erp(W] )
Lzmage N ; ZOQ( Zj eacp(WjTa:i)) s.t. HWJ” 1 (7)

Compared with the original softmax loss, the norm-softmax loss normalizes
all the weight vectors into the same length in order to reduce the impact of
weight magnitude in distinguishing different samples. Here we omit the bias b
for simplifying analysis and in fact found it makes no difference as with [20, 19].

The intuitive explanation of the norm-softmax loss is shown in Fig. 3. We
can see that, for the original softmax, the classification results depends on
IWellllz]| cos(0k), (k = 1,2), where 0 indicates the angle between & and Wi.
For the norm-softmax, all the weight vectors are normalized into the same length,
and the classification results can be only depended on ||| cos(6y). This restric-
tion encourages the feature x to distribute more compactly along the weight
vector in order to be correctly classified.
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(a) softmax loss (b)norm-softmax loss

Fig. 3. Geometric interpretation of softmax and norm-softmax

Cross-Modal Projection In this paper, we attempt to classify the projec-
tion of image features onto the corresponding text features instead of categoriz-
ing the original feature representations. The cross-modal projection integrates
the image-text similarity into classification and thus strengthens the association
within matched pairs.

By incorporating the cross-modal projection into the norm-softmax, we can
reformulated Eq. 7 as

cap(W,| &) N _
Lip = 5 S -log(spmimay) st IWill=r, & =alz 2 ()

where &; denotes the vector projection of image feature x; onto normalized text
feature Z;. Intuitively, all the matched text samples needs to lie in the direction
of W,,, for the image feature x; to project onto, in order to promote correct
categorization. The text classification loss function can be written as

Lipi = 7> —lo (M) st ||Will=r, 2 =2%; - & 9
tpi N £ g EjeIp(WjTﬁi) J 5 i i i % ()

The final CMPC loss can be calculated with
£cmpc = ['ipt + [/tpi (10)

3.4 Objective Functions

For matching tasks with only pairwise correspondence, we can utilize the pro-
posed CMPM loss for learning discriminative image-text embeddings. If identity
labels are available, we adopt the joint of the proposed CMPM loss and CMPC
loss for more accurately associating the cross-modal representations. The overall
objective function is formulated as

L= Ecmpm + ['cmpc (11)

At the test stage, given an image and text, we first extract the image feature
x and text feature z with the visual CNN and Bi-LSTM network, respectively.
Then the cosine distance between x and z is computed for image-to-text and
text-to-image retrieval evaluation.
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4 Experiments

4.1 Datasets and Settings

Datasets Five datasets are used in our experiments. The Flickr30K [45] dataset
contains 31,783 images with each one annotated by five text descriptions. We
adopt the data split in [12] to use 29,783 images for training, 1,000 images for
validation, and 1,000 images for testing. The MSCOCO [17] dataset consists of
12,3287 images and each one is also described by five sentences. Following the
protocol of [12], we split the data into 82,783 training, 30,504 validation, and
5,000 test images, and report the evaluation results on both 5K and 1K (5 fold)
test images. The CUHK-PEDES [16] dataset contains 40, 206 pedestrian images
of 13,003 identities, with each image described by two textual descriptions. The
dataset is split into 11, 003 training identities with 34, 054 images, 1000 validation
persons with 3,078 images and 1000 test individuals with 3,074 images. The
Caltech-UCSD Birds (CUB) [28] dataset consists of 11,788 bird images from
200 different categories. Each image is labelled with 10 visual descriptions. The
dataset is split into 100 training, 50 validation and 50 test categories. The Ozford-
102 Flowers (Flowers) [28] dataset contains 8, 189 flower images of 102 different
categories, and each image has 10 textual descriptions. The data splits provide
62 training, 20 validation, and 20 test categories.

Evaluation Metrics We adopt Recall@K (K=1, 5, 10) [12] and AP@50 [28] for
retrieval evaluation. Recall@K (or R@QK) indicates the percentage of the queries
where at least one ground-truth is retrieved among the top-K results, and AP@50
represents the percent of top-50 scoring images whose class matches that of the
text query, averaged over all the test classes.

Implementation Details All the models are implemented in TensorFlow with
a NVIDIA GEFORCE GTX 1080 GPU. For all the datasets, we use MobileNet [9]
and Bi-LSTM for learning visual and textual features, respectively. The adam
optimizer [13] is employed for optimization with {r = 0.0002. For Flickr30K and
MSCOCO, we also report the results with ResNet-152 [7] as image feature ex-
tractor, where we start training with Ir = 0.0002 for 15 epochs with fixed image
encoder and then training the whole model with [r = 0.00002 for 30 epochs.

4.2 Results on the Flickr30K dataset

We summarize the comparison of retrieval results on the Filckr30K dataset in
Table 1. We can see that with MobileNet as image encoder, the proposed CMPM
loss achieves competitive results of R@Q1=37.1% for image-to-text retrieval, and
R@1=29.1% for text-to-image retrieval. The performance can be improved to
48.3% and 35.7% respectively by employing ResNet-152 as with RRF-Net [21]
and DAN [26]. We also explore the assistant effect of the CMPC loss by training
the classifiers single category per image, and we observe that the retrieval results
can be further improved by around 1.3%, demonstrating the effectiveness of
cross-modal projection learning for image-text matching.
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Table 1. Comparison of bi-directional retrieval results (RQK (%)) on Flickr30K

Image-to-Text Text-to-Image
Method Ra@l R@5 R@10 | Ral R@5 R@I10
DCCA [44] 16.7 39.3 52.9 12.6 31.0 43.0
DVSA [12] 22.2 48.2 61.4 15.2 37.7 50.5
m-CNN [22] 33.6 64.1 74.9 26.2 56.3 69.6
VQA-A [18] 33.9 62.5 74.5 24.9 52.6 64.8
DSPE [39] 40.3  68.9 79.9 29.7  60.1 72.1
sm-LSTM [11] 42.5 71.9 81.5 30.2 60.4 72.3
RRF-Net [21] 476 774 87.1 35.4 68.3 79.9
DAN [26] 55.0 81.8 89.0 39.4 69.2 79.1
CMPM (MobileNet) 371  65.8 76.3 29.1  56.3 67.7
CMPM+CMPC (MobileNet) 40.3  66.9 76.7 30.4 58.2 68.5
CMPM (ResNet-152) 48.3 75.6 84.5 35.7 63.6 74.1
CMPM +CMPC (ResNet-152) | 49.6  76.8 86.1 373  65.7 75.5

4.3 Results on the MSCOCO dataset

We compare the proposed appproach with state-of-the-art methods on the MS-
COCO dataset in Table 2. We can see that for 1K test images the proposed
CMPM loss achieves RQ1=56.1% and 44.6% with image and text as quires,
respectively. For 5K test images the algorithm achieves RQ1=31.1% and 22.9%,
outperforming the second best by 7.0% and 5.3%, which further verifies the
superiority of the proposed loss functions.

4.4 Results on the CUHK-PEDES dataset

Table 3 compares the proposed method against existing approaches on the
CUHK-PEDES dataset. We can see that the proposed CMPM loss achieves
44.02% of RQ1 and 77.00% of R@Q10, outperforming the second best performer [15]
by a large margin. When we add the CMPC loss supervised by the identity-
level annotations, the text-to-image retrieval performance is further improved
to 49.37% for R@Q1 and 79.27% for RQ10. This illustrates the effectiveness of
the CMPM loss for person search applications, and the promotion effect of the
CMPC loss when the category labels are available in real applications.

4.5 Results on the CUB and Flowers dataset

The comparison of image-to-text and text-to-image retrieval results on the CUB
and Flowers dataset is shown in Table 4. Consider that the bi-directional losses
are implemented in our approach, we choose the symmetric results [15] of the
existing methods for fair comparison. We can see that the proposed algorithm
outperforms the state-of-the-art, achieving 64.3% of R@1 for image-to-text re-
trieval and 67.9% of AP@50 for text-to-image retrieval on CUB, and reporting
the best RQ1 of 68.90% for image-to-text retrieval and the second best AP@50
of 69.70% for text-to-image retrieval on Flowers.
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Table 2. Comparison of bi-directional retrieval results (RQK(%)) on MSCOCO

Image-to-Text Text-to-Image
Method Ral R@5 R@I0 | Ral R@5 R@10
1K test images
DVSA [12] 38.4  69.9 80.5 27.4  60.2 74.8
GMM-FV [14] 394 67.9 80.9 25.1  59.8 76.6
m-CNN [22] 42.8 73.1 84.1 32.6 68.6 82.8
VQA-A [18] 50.5  80.1 89.7 37.0 70.9 82.9
DSPE [39] 50.1  79.7 89.2 39.6 75.2 86.9
sm-LSTM [11] 53.2  83.1 91.5 40.7  75.8 87.4
RRF-Net [21] 56.4 85.3 91.5 439 78.1 88.6
CMPM (MobileNet) 51.4  80.8 89.8 40.9 739 85.2
CMPM+CMPC (MobileNet) | 52.9  83.8 92.1 41.3 746 85.9
CMPM (ResNet-152) 56.1 86.3 92.9 | 44.6 78.8 89.0
5K test images
DVSA [12] 16.5 39.2 52.0 10.7  29.6 42.2
GMM-FV [14] 17.3  39.0 50.2 10.8  28.3 40.1
VQA-A [18] 23.5  50.7 63.6 16.7  40.5 53.8
CMPM (MobileNet) 23.9 515 65.4 18.9 438 56.9
CMPM+CMPC (MobileNet) | 24.6  52.3 66.4 19.1  44.6 58.4
CMPM (ResNet-152) 31.1 60.7 739 | 229 50.2 63.8

Table 3. Comparison of text-to-image retrieval results (RQK (%)) on CUHK-PEDES

Text-to-Image

Method R@1  RQI0

deeper LSTM Q+norm I [1] 17.19 57.82
iBOWIMG [46] 8.00 30.56
NeuralTalk [35] 13.66 41.72
Word CNN-RNN [28] 10.48 36.66
GNA-RNN [16] 19.05 53.64
GMM-+HGLMM [14] 15.03  42.27
Latent Co-attention [15] 25.94 60.48
CMPM 44.02 77.00
CMPM+CMPC 49.37 79.27

5 Ablation Studies

To investigate the effect of each component of the proposed CMPM and CMPC
loss, we perform a series of ablation studies on the CUHK-PEDES dataset.
We conduct further comparative experiments in three aspects: comparison of
the CMPM loss with other matching losses under various batch size, impact of
cross-modal projection and weight normalization for the CMPC loss, and the
cross-modal feature distribution learned with different losses.
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Table 4. Comparison of image-to-text (RQK(%)) and text-to-image (APQK(%)) re-
trieval results on the CUB and Flowers dataset

CUB Flowers
Method Image-to-Text Text-to-Image | Image-to-Text Text-to-Image
R@1 AP@50 R@1 AP@50

Bow [6] 44.1 39.6 57.7 57.3
Word2Vec [25] 38.6 33.5 54.2 52.1
Word CNN [28] 51.0 43.3 60.7 56.3
Word CNN-RNN [28] 56.8 48.7 65.6 59.6
GMM+HGLMM [14] 36.5 35.6 54.8 52.8
Triplet [15] 52.5 52.4 64.3 64.9
Latent Co-attention [15] 61.5 57.6 68.4 70.1
CMPM 62.1 64.6 66.1 67.7
CMPM+CMPC 64.3 67.9 68.9 69.7

5.1 Analysis of Cross-Modal Matching

Table 5 compares the proposed CMPM loss with the commonly used bi-directional
ranking (Bi-rank) loss [39,40,21], the most similar N-pair loss [30], and His-
togram Loss [34] with different batch size on the CUHK-PEDES dataset. We add
the image-to-text retrieval evaluation for more comprehensive analysis of learned
embeddings, since good cross-modal embeddings should be able to perform bi-
directional matching tasks. Note that all the loss functions are implemented in
the bi-directional mode and the triplets are online sampled.

Table 5. R@Q1 (%) comparison of cross-modal matching functions with different batch
size on the CUHK-PEDES dataset

Text-to-Image Image-to-Text
16 32 64 128 16 32 64 128
Bi-rank [21] 31.11 37.85 42.11 41.42 | 32.56 41.28 47.46 46.88
Histogram [34] | 14.68 19.20 21.70 21.31 | 4.78 13.53 13.04 2.88
N-pair [30] 34.57 4555 45.68 39.33 | 17.66 13.66 12.07 10.83
KL(q:||p:) 42.58 43.81 41.89 36.06 | 41.87 38.81 22.35 19.97
CMPM 42.28 43.42 44.02 4243 | 51.95 52.09 51.98 48.67

Matching Loss

From the table we can see that the previous matching loss fluctuates greatly
when the batch size varies between 16 and 128. The bi-directional ranking loss
depends on larger batch size to generate comparative matching accuracies, due
to the negative sampling requirements [29]. The Histogram loss [34] performs
much worse than other methods for cross-modal matching. The N-pair loss [30]
produce better text-to-image retrieval results with moderate batch size, while
the image-to-text matching performance are much worse. This might due to the
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scalar gap of image and text embeddings from different networks. The K L(q;||p;)
discussed in Section 3.2 generates satisfying results when the batch size is small,
while deteriorates with larger batch size of 128. This further verifies the analysis
that, when there are more positive pairs in larger mini batches, the inappropriate
KL direction blurring the multiple modes could cause ambiguities for image-text
matching. In contrast, the proposed CMPM loss produces much more stable
matching results with different batch size (R@Q1 remains above 42% for text-to-
image retrieval), and the advantages are more obvious when the batch size are
too small or too large, exhibiting great superiority and broad applicability.

5.2 Analysis of Cross-Modal Classification

Table 6. R@Q1 (%) comparison of different components of the cross-modal projection
learning on the CUHK-PEDES dataset

Matching Classification Text-to-Image Image-to-Text
CMPM softmax  normW  CMP R@1 R@10 R@1 R@10
44.02 77.00 51.98 87.02
45.38 78.43 55.14 89.30
47.12 78.38 56.51 90.50
46.95 79.40 55.82 89.17
49.37 79.45 57.71 91.28
16.93 40.90 17.63 43.98
42.25 73.29 50.72 85.95

ERYANENENE RN
ANENENENENE N
WX N X N X% X%
ANENENENERRe

Table 6 illustrates the impact of the softmax loss, weight normalization
(normW) and cross-modal projection (CMP) in image-text embedding learn-
ing on the CUHK-PEDES dataset. We can see that adding the supervision
loss indeed improves the matching performance, while the original softmax loss
offers limited assistance. By adding the weight normalization, the RQ1 rates
are increased from 45.38% to 47.12% for image-to-text retrieval, and 55.14%
to 56.51% for text-to-image retrieval. The cross-modal projection further im-
proves the bi-directional retrieval results by 2.25% and 1.20%. We also notice
that the CMPC loss alone achieves competitive results for image-text match-
ing and weight normalization brings significant improvements. This indicates
the effectiveness of weight normalization and cross-modal projection in learning
discriminative cross-modal representations.

5.3 Feature Visualization

To better understand the effect of the proposed cross-modal matching loss and
cross-modal classification loss for learning discriminative image-text embeddings,
we show the t-SNE [24] visualization the test feature distribution learned using
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Fig. 4. Comparison of feature distribution learned with the proposed approach

the CMPM loss and CMPM+CMPC loss on the CUHK-PEDES dataset. From
Fig. 4 (a) we can see that the CMPM loss learns image-text embeddings dis-
tributed along radial spokes, where the image and text features from the same
class approximately lie in the same direction. This type of angular distribu-
tion is consistent with the traditional softmax loss [19], and therefore the added
CMPC loss naturally improves the compactness of the features along each spoke
as shown in Fig. 4 (b). We can also observe that the radius of image feature
areas is smaller than text features, which indicates the scalar gap brought by
different networks (i.e., the CNN network for image and Bi-LSTM for text). In
experiments we obtain the average length (value of ¢ norm) of 52.62 for image
features and 128.92 for text features. The cross-modal distribution shows the
importance of feature normalization in cross-modal projection for bridging the
scalar gap in image-text embedding learning.

6 Conclusions

In this paper, we proposed a novel cross-modal projection matching loss (CMPM)
and cross-modal projection classification (CMPC) loss, for learning deep dis-
criminative image-text embeddings. The CMPM loss utilize the KL divergence
to minimize the compatibility score of the unmatched image-text pairs while
maximizing the relevance between the matched ones. It shows great stability
and superiority for associating image and text under various batch size, without
triplet sampling and margin selection that hampers the traditional bi-directional
ranking loss. The CMPC loss incorporates the matching relationship into the
auxiliary classification task, which further enhances the representation compact-
ness of each category. In the future, we will work on how to better interact the
matching task and classification task in identity-aware matching problems.
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