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Abstract. In this paper we investigate image generation guided by hand
sketch. When the input sketch is badly drawn, the output of common
image-to-image translation follows the input edges due to the hard con-
dition imposed by the translation process. Instead, we propose to use
sketch as weak constraint, where the output edges do not necessarily
follow the input edges. We address this problem using a novel joint im-

age completion approach, where the sketch provides the image context
for completing, or generating the output image. We train a generated
adversarial network, i.e, contextual GAN to learn the joint distribution
of sketch and the corresponding image by using joint images. Our con-
textual GAN has several advantages. First, the simple joint image repre-
sentation allows for simple and effective learning of joint distribution in
the same image-sketch space, which avoids complicated issues in cross-
domain learning. Second, while the output is related to its input overall,
the generated features exhibit more freedom in appearance and do not
strictly align with the input features as previous conditional GANs do.
Third, from the joint image’s point of view, image and sketch are of
no difference, thus exactly the same deep joint image completion net-
work can be used for image-to-sketch generation. Experiments evaluated
on three different datasets show that our contextual GAN can generate
more realistic images than state-of-the-art conditional GANs on chal-
lenging inputs and generalize well on common categories.

Keywords: Image Generation · Contextual Completion.

1 Introduction

Image translation generates impressive photographic results in a variety of ap-
plications demonstrated in [9]. Common approaches of conditional generated
adversarial networks (cGAN) incorporate hard condition like pixel-wise corre-
spondence [9] alongside the translation process, which makes the output strictly
align with the input edges. This can be highly problematic in sketch-to-image

⋆ This work was partially done when Yongyi Lu was an intern at Tencent Youtu.
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Input CE pix2pix Ours Input CE pix2pix OursOurs

Fig. 1. Freehand sketch to image results by two conditional GANs (i.e., CE [17], and
pix2pix [9]) and our contextual GAN. Even the sketches are badly drawn they are still
expressive in conveying features of birds and cars. Our method does not require strict
alignment while still faithful to the input, resulting in more realistic images.

Joint Image Context: Generated:

Ours
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Real Context: Completed:Mask

Mask

Fig. 2. Image generation posed as image completion. Top: Semantic image inpainting
with the uncropped part as context [33]. Bottom: Joint image completion with the
sketch as the “uncropped” context, with the cropped part on the right. Our joint
image concatenates a sketch and its corresponding image side-by-side.

generation when the input is a free-hand sketch. Figure 1 shows casual sketches
of different objects, where the free-hand sketch and its natural photographic
object do not strictly align to each other. In such case, conditional GAN (e.g.,
pix2pix [9]) is incapable of generating realistic and visually comfortable images.

Our goal of sketch-to-image generation is to automatically generate a photo-
graphic image of the hand-sketched object. Even a poorly drawn sketch allows
non-artists to easily specify an object’s attributes in many situations which may
be clumsy to specify in verbose text description. On the other hand, the trans-
lation should respect the sparse input content, but might need some deviation
in shape to generate a realistic image.

In order to tackle these challenges, we propose a novel contextual generative
adversarial network for sketch-to-image generation. We pose the image genera-
tion problem as an image completion problem, with sketch providing a weak con-
textual constraint. Figure 2 illustrates the core concept. In conventional image
completion, the corrupted part of an input image is completed using surround-
ing image content as context. In the bird completion example, the unmasked,
partial bird features are the contextual information. By analogy, in our joint
sketch-image completion, the “corrupted” part consists of the entire image to
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Fig. 3. Illustration of the whole GAN spectrum in image generation task. Our contex-
tual GAN is in stark contrast to unconditional GAN and conditional GAN in that we
use sketch as context (a weak constraint) instead of generating from noise or with hard
condition, which has not been well studied in previous approaches.

be generated, while the “context” is provided by the input sketch for the “com-
pletion” or generation of the photographic object. In this way, we change our
objective from common image-to-image translation in conditional GAN (sketch
as hard condition) to completing the missing entire image in joint image comple-
tion (sketch as context). Please refer to Figure 3 to get a sense of the difference
between our proposed contextual GAN and common conditional GANs in the
whole GAN spectrum.

Based on this novel joint sketch-image completion idea we propose a new and
simple contextual GAN framework. A generative adversarial network is trained
to learn the joint distribution and capture the inherent correspondence between a
sketch and its corresponding image using the defined joint image. This approach
encodes the “corrupted” joint image into the closest “uncorrupted” joint image
in the latent space via back propagation, which can be used to predict and hence
generate the output image part of the joint image. To infer a closest mapping,
we use sketch as a weak constraint and define our objective function which is
composed of a contextual loss as well as traditional GAN loss. We also propose
a straight-forward scheme for better initialization of sketch.

This novel approach has several advantages: (1) there are no separate do-
mains for image and sketch learning; only one network is used to understand a
joint sketch-image pair which is a single image. This is in stark contrast with im-
age translation where only sketch is treated as input. (2) By using weak sketch
constraint, while related to its input edges, the generated image may exhibit
different poses and shapes beyond the input sketches which may not strictly cor-
respond to photographic objects. (3) From the joint image’s point of view, image
and sketch are of no difference, so they can be swapped to provide the context
for completion for the other. Thus, exactly the same sketch-to-image generation
approach/network can be used for the reverse or image-to-sketch generation.

Our proposed framework is generic which can employ any state-of-the-art
generative model. Capitalizing on the GAN for image completion [33], we pro-
pose a two-phase recipe to learn the sketch-image correspondence inherent in
a joint image as well as imposing the weak sketch constraint. For training, the
network learns the sketch-image correspondence using uncropped joint images.
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In completion, we search for an encoding of the provided corrupted image using
only the sketch to provide the weak context for “completing” the image based
on a modified objective. This encoding is then used to reconstruct the image by
feeding it to the generator which generates the photographic object from sketch.
Experimental results show that our contextual GAN can generate more realis-
tic and natural images than state-of-the-art conditional GANs on challenging
inputs, e.g. poorly drawn sketches shown in Figure 1, while producing compara-
ble results to state-of-the-arts on good sketches where the edges correspond to
photographic objects.

2 Related Work

The rapid development of deep learning has accounted for recent exciting progress
in image generation, especially the introduction of generative adversarial net-
works (GAN) [8]. Conditioning variables were then introduced to GAN [16, 27,
35]. Related to our contextual GAN for joint images is deep image completion
with perceptual and contextual losses [33]. Pretrained with uncorrupted data,
the G and D networks are trained to reconstruct a complete image. Their im-
pressive examples show that even a large region of a facial image is cropped
from the input, the generated complete facial image looks very realistic. An-
other impressive work on image completion [17] is based on autoencoders with
a standard reconstruction loss and an adversarial loss. Autoencoders have also
been successfully applied to generating images from visual attributes [32]. Anal-
ogous to image completion, where the uncropped part of the image provides the
proper context for facial image completion, in our sketch-to-image generation,
the entire input sketch is regarded as the “uncropped context” for completing
the entire natural image part of the joint image.

Another way of generating images from sketches requires a huge database
from which images are retrieved. In [34], a database of sketch-photo pairs was
collected, and deep learning was used to learn a joint embedding. The Sketchy
Database [20] contributed a collection of sketch-photo pairs which were used to
train a cross-domain CNN to embed them in the same space. In recent works,
the mapping between sketches and images was studied in sketch-based image
retrieval, where the sketch and the image were learned in separate networks.
In [4], several triplet CNNs were evaluated for measuring the similarity between
sketches and photos. Triplet networks are used to learn joint embeddings. While
classical representations were proposed to retrieve images from sketch queries [11,
3, 21], recent methods used sophisticated feature representations [6, 22, 5, 19]. Re-
cent cross-domain embedding methods trained deep networks to learn a common
feature space for sketches and 3D models [25], and images and 3D models [14].
Siamese networks trained with contrastive loss [7] and triplet or ranking loss [26]
were proposed. On the other hand, we do not require such sketch-photo collec-
tions or regard sketch and image as two separate domains, as they form the same
joint image. This allows for an effective encoding for the “corrupted” joint image
in the latent space and leads to stable training.
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3 Approach

Recent work in semantic inpainting regards inpainting as a constrained image
generation problem [33], where the generated content is supposed to be well
aligned with the surrounding pixels while maintaining semantic reality based on
the observed context. Analogously, we pose the image generation problem as an
image completion problem, with sketch providing a weak contextual constraint.
Our deep model is built on the GAN architecture proposed in [18] with the
following technical revisions.

3.1 Joint Sketch-Image Representation

Sketch-to-image generation is a nontrivial task since sketches are often highly
abstract with sparse visual content, and they are sometimes badly drawn. Rather
than following traditional ways of separating sketch and image, we propose to
model them in a joint input space. Specifically, based on a corpus containing
samples with real images (B) and their aligned sketch styles (A), we spatially
concatenate them into a joint sketch-image pair (AB), as shown in Figure 2. In
our framework, the joint image naturally captures the contextual information,
i.e., correspondence between the sketch and image portions, which is effective
for learning their joint distribution using GAN.

Specifically, we train a GAN model using joint images, the generator then
automatically predicts the corrupted image part based on the context of the
corresponding sketch part. The generator embeds the joint images onto a non-
linear joint space z, i.e., z is a joint embedding of sketch and image, whereas in
previous work (e.g., [36]) z is only an embedding of image. As a result, instead of
constraining the generated image directly with entire z (hard constraint), we are
able to constrain the generated image indirectly via the sketch part of the joint
embedding z of the input, thus remains faithful while exhibiting some degree of
freedom in the appearance of the output image. Figure 4 illustrates this pipeline
which will be detailed in subsequent sections.

3.2 Objective Function

To get the closest mapping of the corrupted joint image and the reconstructed
joint image, we need to search for a generated joint image G(ẑ) in which the
sketch portion best resembles the input sketch. Given the randomly sampled in-
put z ∼ pz, we define our loss function to comprise of two losses in our objective:

Contextual Loss. We use a contextual loss [18] to measure the context sim-
ilarity between the uncorrupted portions, i.e., the input sketch portion and the
reconstructed sketch, which is defined as:

Lcontextual(z) = DKL(M⊙ y,M⊙G(z)) (1)

where M is the binary mask of the corrupted joint image and ⊙ denotes the
Hadamard production. Different from [18], since a sketch is a binary image rather
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(a) Refined initialization. (b) Completion pipeline.

Fig. 4. Contextual GAN pipeline. (a) Initialization: red box represents better initializa-
tion based on KL-divergence. (b) Given the initialization B, we use back propagation
on the loss defined in Eq. (3) to map the corrupted image A to the latent space. The
mapped vector is then passed through the G network to generate the missing image C.

than a natural image, we use the KL-divergence to measure the similarity be-
tween the distribution of two sketches which tends to produce better alignment
of sketches. Ideally, all the pixels at the sketch portions are the same between
y and G(z), i.e., Lcontextual(z) = 0, and we penalize G(z) for not generating a
sketch similar to the observed input sketch y.

Perceptual Loss. The perceptual loss maintains the semantic content of the
predicted image, which is defined using the adversarial loss of the G network:

Lperceptual(z) = log(1−D(G(z))) (2)

The objective function for ẑ is then the weighted sum of the two losses:

ẑ = argmin
z

(Lcontextual(z) + λLperceptual(z)) (3)

where λ is a hyperparameter to constrain the generated image with the input.
A small λ will guarantee similar appearance of the input and output.

3.3 Contextual GAN

Our contextual GAN consists of the training stage and completion stage. The
training stage is the same as the traditional GAN training except that our train-
ing samples are joint images. After training, we learn a generative network G

that achieves the objective of reproducing the joint image data distribution, i.e.,
mapping samples from noise distribution pz to the data distribution pdata.

Projection through Back Propagation. Our goal is to encode the corrupted
joint image input (i.e., the image portion that has been masked out) to the closest
image on the manifold of G in the latent space, so that we can use this closest
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Fig. 5. Manifold traversing (with four iterations as shown) when updating latent vector
z using back-propagation. z(0) is random noise picked via our initialization scheme; z(k)

denotes the k-th iteration; and ẑ the final solution.

joint image as our predicted results. Instead of maximizing D(y), we compute
the ẑ vector that minimizes our objective function in Eq. (3). This means that
we are projecting the corrupted input onto the z space of the generator through
the iterative back propagation. Specifically, the input is a vector z initialized
with uniformly random noise, and a joint image with only the sketch on the left
with the image on the right being masked out. We back propagate the loss in
Eq. (3) to update the randomly sampled input z of network G. Note that in this
stage only the input vector z is updated using gradient descent, the weights of the
networkG andD remain unchanged. Figure 5 provides visualization of traversing
the latent space during back-propagation (with four iterations as shown). Note
that [33] also adopts similar gradient descent optimization on inverse mapping.

After back-propagation, the corrupted input y′s closest mapping vector ẑ

in the latent space is then passed through G network to generate G(ẑ). The
resulting image fills in the missing values of y (the image portion) with G(ẑ):

xgenerated = M⊙ y + (1−M)⊙G(ẑ) (4)

Initialization. We use a uniformly sampled noise vector as input. An obvious
problem is that the generated image is affected by the initialization. If the ini-
tialized sketch portion of G(z) perceptually exhibits a large gap from the input
sketch, it will be hard for the corrupted image to be mapped to the closest z in
the latent space with gradient descent. This will result in failure samples even if
we set a very small λ in Eq. (3). To address this problem, we refine the initializa-
tion as follows: we sample N uniformly random noise vectors, and obtain their
respective initialized sketches via the forward pass. Then we compute the pair-
wise KL-divergence between the input sketch and these N initialized sketches.
The one which gives the lowest KL-divergence represents the best initialization
among the N samples and will be used as the initialized sketch. This process is
illustrated in Figure 4. We set N = 10 in our implementation.

Network Architecture Figure 6 shows the complete network. Following [18],
a 100-D random noise vector, uniformly sampled from −1 to 1, is fed into the
generator G. Then, a 8192× 2 linear layer reshapes the input to 4× 8× 512. We
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Fig. 6. The G and D network architecture for Contextual GAN.

use five up-convolutional layers with kernel size 5 and stride 2. We also have a
batch normalization layer after each up-convolutional layer except the last one
to accelerate the training and stabilize the learning. The leaky rectified linear
unit (LReLU) activation is used in all layers. Finally, tanh is applied in the
output layer. This series of up-convolutions and non-linearities conduct a non-
linear weighted upsampling of the latent space, and generates a higher resolution
image of 64× 128.

For the discriminator, the input is an image of dimension 64×128×3, followed
by 4 convolutional layers where the feature map’s dimension is halved, and the
number of channels is doubled from the previous layer. Specifically, we add 4
convolutional layers with kernel size 5 and stride 2 to produce a 4×8×512 output.
We then add a fully connected layer to reshape the output to one dimension,
followed by a softmax layer for computing loss.

3.4 Network Generalization

Real freehand sketches exhibit a large variety of styles and it may be very dif-
ferent from synthesis sketches automatically generated from images. To improve
the network generality and to avoid overfitting to some particular style of sketch-
image pairs, we augment our training data by using multiple styles of sketches
as the training set. Specifically, we use the XDoG edge detector proposed in [29],
the Photocopy effect [1] in Photoshop and the FDoG filter proposed in [10] to
produce different styles of sketches. To better resemble hand-drawn sketches, we
also simplify the edge images using [23].

We split the data in each style into a training set and a testing set and train
different style models. Instead of training all style models from scratch, we first
obtain the pre-trained XDoG style model. The networks are then finetuned using
sketches of other styles, i.e., the photocopy style, the simplification and FDoG.
The reason is that we find XDoG is more similar to the original photographic
image and contains more details. In this way, we can guarantee the network
is first trained with a good local minima before augmenting the network with
other sketch styles. We show in the experimental session that the augmenting
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styles help generalize the sketch-image correspondence better, while allowing
some degree of freedom in appearance.

4 Datasets and Implementation

In this section we describe the datasets used in training and implementations.
We tested our network using 3 categories of images: face, bird, and car. Since

the available sketch datasets are very limited, we applied several tools to produce
sketches from images for training. We obtained the raw face, bird and car images
from the Large-scale CelebFaces Attributes (CelebA) dataset [15], the Caltech-
UCSD Birds-200-2011 [24] dataset and the Stanford’s Cars Dataset [13].

4.1 Data Preprocessing

For the face category, the CelebA dataset contains around 200K images. We
cropped and aligned the face region using OpenFace dlib [2]. We obtained 400K
images with 2 different landmark maps for alignment. We generate three styles
of sketches respectively and finally, we obtained 1200K face sketch-image pairs.

For the bird category, the CUB-200-2011 dataset contains only 11.7K raw
images. We first produced three styles of sketches using the above methods. To
remove background as much as possible, we cropped the object and correspond-
ing sketches based on the annotated bounding boxes. To augment this dataset
for training, we randomly cropped 4 images per image, and flipped them hori-
zontally. Finally, we obtained around 100K bird sketch-image pairs.

For the car category, we simply used the 16K car images from Stanford’s
Cars Dataset [13] and produced one style of sketch.

4.2 Implementation

We pretrain the network for each category using contextual GAN. We use the
Adam optimizer [12] with a learning rate of 0.0002 and a beta of 0.5 for both
the generator and discriminator network. The network is trained with a batch
size of 64 and epochs of 200, which takes 6 to 48 hours for training depending on
the size of the training set. After obtaining a well-trained model of XDoG style,
we then finetune it using other styles of sketches sequentially at a lower learning
rate (e.g., 1e−5) using the same network structure to obtain other styles’ models.

The input z is updated during completion, using a contextual loss and a
perceptual loss with a λ of 0.01 and a momentum of 0.9. Stochastic clipping is
applied during back-propagation. We set a relatively small λ so contextual loss is
more important in test-time optimization so that the sketch portion in generated
image best resembles the input sketch. The generator and the discriminator are
fixed during back-propagation. For the experimental results, this update can
be done in 500 iterations (the loss Eq. (3) converges very fast with our refined
initialization, typically becomes stable after 100 iterations, which takes <1s).
We use the same network architecture for all of the three categories.
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5 Results

In this section we will present our experimental results and comparison on the
benchmark datasets described above. We also test our contextual GAN using
in our opinion quite ugly hand-drawn sketches. These hand-drawn sketches are
never presented in the training examples.

5.1 Benchmark Datasets

As stated above, we first train a base model using the network we described
above on one style, i.e., the XDOG style, and then finetune it on other styles:
the photocopy effect and simplification style. This strategy is more effective
compared to training with all different styles together. Ideally we can generate
images using arbitrary styles of sketch providing that the pretrained model learns
semantically correct content as well as faithful correspondence. We will test using
hand-drawn sketches never seen by the network.

CelebA Figure 7 shows some of our results on the CelebA dataset with three
different styles, which demonstrates that our method can successfully predict or
“complete” the missing image part given the uncorrupted content, and generate
a high-quality image that corresponds well to the given sketch. Note that the
generated results not only capture the important details from and thus remains
faithful to the input sketch, but also exhibit some degree of freedom in the
appearance, in comparison to state-of-the-art image generation methods such as
pixel-to-pixel approach [9] where the generated results conform strictly to the
input sketch’s edge profile.

CUB We further validate the robustness of the proposed framework using the
CUB bird dataset. Compared to face and car, the CUB bird images contain
much more texture information (e.g., the feather) which makes learning sketches
as well as the correspondence more difficult. To get rid of the negative effect, we
adopt relative total variation smoothing [31] to preprocess the sketches which
was designed to separate structure from texture. Then, we combine them with
the original images to form our joint images. Results are shown in Figure 8.

Car To demonstrate that our framework is generic and can be applied to other
categories of images, we also tested it on car images. Unlike face and bird, the
car dataset is even more challenging because of the cluttered background and
different poses of car. Figure 9 shows sampled results using our approach. Note
that the first two input sketches are identical. However, our network is able to
generate two different images, i.e., cars with different shapes and colors while the
input sketch still constrains the generated car features but not requiring them
to be in strict alignment with the sketch.
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XDoG

PC

Sim

Fig. 7. Results on CelebA dataset in three sketch styles: XDoG, Photocopy (PC) and
simplified (Sim). Best viewed in color.

XDoG

PC

Sim

Fig. 8. Results on CUB dataset in three sketch styles: XDoG, Photocopy (PC) and
simplified (Sim). Best viewed in color.

Fig. 9. Results on Car dataset in FDoG style.

Comparison on Hand-Drawn Sketches We also investigated our model’s
capability of generating images from (ugly) free-hand sketches. We collect 50
free-hand sketches for each of the 3 categories. Each of the sketches is drawn
given a random image. We compare our results with Context Encoder (CE) [17]
and Image-to-Image Translation (pix2pix) [9]. Figure 10 demonstrates sample
results. For fair of comparison, all methods are tested with the same style model
(simplification for the face and bird datasets, FDoG for the car dataset) using
the default parameter settings, without finetuning on the hand-drawn data.
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input CE pix2pix Ours input CE pix2pix Ours input CE pix2pix Ours

Fig. 10. Comparison with CE [17] and pix2pix [9] using ugly/poorly drawn sketches
on three different classes. For each group, from left to right: input sketches, CE results,
pix2pix results and our results. Our method is resilient to corrupted/abstract inputs
given in bad quality. Best viewed in color.

From Figure 10 we learn that when directly applied to free-hand sketches
without finetuning, pix2pix is unable to generate photo-realistic natural images
given the ugly/abstract sketch inputs. Though it can learn accurate semantic
contents, e.g., eyes, nose, mouth etc., it tends to strictly follow the shape of the
input sketch even if the output falls far apart from the learned data distribution
and has a high adversarial loss (in our case, the perceptual loss). CE is even
worse when it comes to the car dataset. By contrast, our results show that the
proposed framework is resilient to corrupted inputs given in bad quality, where
we manage to map the input to the closest z in the latent space and use this
closest vector to generate images that reflect the semantics of the input sketch
while looking natural and realistic. Note that pix2pix produces deterministic
outputs with little stochasticity, while our method is able to produce stochastic
output by updating the manifold z, which is likely to capture a fuller spectrum
of the data distribution. Figure 5 gives an evidence by providing visualization of
traversing the latent space during back-propagation (detailed in section 3.3).

5.2 Quantitative Evaluation

While we clearly outperform CE [17] and pix2pix [9] 5on badly drawn sketches,
we further conducted two quantitative experiments on good sketches for sake
of fairness, where the edges correspond quite well to the corresponding photo-
graphic objects: (a) SSIM with ground truth; (b) face verification accuracy. Both
(a) and (b) are evaluated on CelebA with 1000 test images.
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Table 1. SSIM and verification accuracy on CelebA test sets.

Method pix2pix [9] CE [17] Ours Method pix2pix [9] CE [17] Ours

SSIM 0.9012 0.5477 0.8856 Verification Acc. 99.69 97.19 99.80

SSIM: The Structural similarity metric (SSIM) [28] is used to measure the
similarity between generated image and ground truth. Results are shown in
Table 1. We achieved comparable results to pix2pix on typical sketches, much
better than CE. Note that outputs of pix2pix and CE strictly follow the input
sketches and SSIM may fail to incorporate measures of human perception if
input sketch is badly drawn.
Verification Accuracy: The motivation of this study is that if the generated
faces are plausible it should have the same identity label with ground truth. The
identity preserving features were extracted using the pretrained Light CNN [30]
and compared using L2 norm. Table 1 tabulates the results: we outperformed
pix2pix, which shows that our model not only learns to capture the important
details but is more resilient to different sketches.

5.3 Bi-directional Generation

We also provide comparisons on forward generation, i.e., synthesizing a sketch
from an image by corrupting the sketch portion. As we learn a joint distribution
of the sketch and image, there is no difference whether we generate image from
sketch, or sketch from image under our contextual GAN framework.

We adopt the same network architecture (see Sec. 3.3) and implementation
(see Sec. 4.2) as in sketch-to-image scenario, except that we swap the role of
sketch and image as the held-out portion in training and testing. Figure 11 shows
some convincing results on generating a sketch from a photographic image, which
also demonstrates that our model can learn faithful correspondence between a
sketch and its corresponding image.

5.4 Limitations

Though our contextual GAN is resilient to ugly/abstract sketches and can realis-
tically generate images which exhibit more freedom in appearance, one potential
limitation is that in terms of face, we hope the generated image can preserve
the identity of the input sketch (i.e., they represent the same person). However,
due to the nature of freehand sketch, there is no guarantee of identity-preserving
face generation given the sparse visual content. Also, it may fail to identify some
kinds of attributes associated with the input. Figure 12(a) and Figure 12(b) vi-
sualize two cases of missing eye glasses and beard for the outputs, while they
perceptually correspond to their inputs overall. We believe adding constraints
like face attributes will better guide the generation process. We mainly focus on
our proposed framework and leave it for future work. Figure 12(c) shows another
failure example with irregular shape of handdrawn face, which lies outside the
data subspace, making it hard to find the closest mapping in the latent space.
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Fig. 11. Reverse generation. Odd columns are input images, while even columns are
generated sketches.

(a) (b) (c)

Fig. 12. Failure cases. (a) (b) missing attributes; (c) irregular shape of input face.

6 Conclusion and Future Work

We show that the problem of sketch-to-image generation can be formulated as
the joint image completion problem with the sketch providing the context for
completion. Based on this novel idea we propose a new and simple contextual
GAN framework. A generative adversarial network is trained to learn the joint
distribution and capture the inherent correspondence between a sketch and its
corresponding image, thus bypassing the cross-domain learning issues. This ap-
proach encodes the “corrupted” joint image into the closest “uncorrupted” joint
image in the latent space, which can be used to predict and hence generate the
output image part of the joint image.

Compared with the end-to-end methods, our approach is a two-stage method
that requires longer inferring time during testing. However, the two-stage ap-
proach allows us to separate the training and testing. In training, our generator
learns the natural appearance of faces, cars, and birds such that any noise vector
in the latent space would be able to generate a visual plausible image. On test-
ing, although we have augmented the sketch drawing by three different sketch
styles, we do not restrict the human free hand drawing to strictly follow the
three augmented styles. We conduct thorough experiments to demonstrate the
advantages of the proposed framework. In the future we plan to investigate more
powerful generative models and explore more application scenarios. While our
output is faithful to the input sketch, new quantitative measurement may be
needed to measure the “perceptual” correspondence between a (badly drawn)
input sketch and our generated image (e.g. Figure 1), a subject and difficult
problem in its own right.
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36. Zhu, J.Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manip-
ulation on the natural image manifold. In: European Conference on Computer
Vision. pp. 597–613. Springer (2016)


