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Abstract. Signiicant progress has been made in monocular depth es-
timation with Convolutional Neural Networks (CNNs). While absolute
features, such as edges and textures, could be efectively extracted, the
depth constraint of neighboring pixels, namely relative features, has been
mostly ignored by recent CNN-based methods. To overcome this limita-
tion, we explicitly model the relationships of diferent image locations
with an ainity layer and combine absolute and relative features in an
end-to-end network. In addition, we consider prior knowledge that ma-
jor depth changes lie in the vertical direction, and thus, it is beneicial
to capture long-range vertical features for reined depth estimation. In
the proposed algorithm we introduce vertical pooling to aggregate image
features vertically to improve the depth accuracy. Furthermore, since the
Lidar depth ground truth is quite sparse, we enhance the depth labels
by generating high-quality dense depth maps with of-the-shelf stereo
matching method taking left-right image pairs as input. We also inte-
grate multi-scale structure in our network to obtain global understand-
ing of the image depth and exploit residual learning to help depth reine-
ment. We demonstrate that the proposed algorithm performs favorably
against state-of-the-art methods both qualitatively and quantitatively
on the KITTI driving dataset.
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1 Introduction

Depth estimation from images is a basic problem in computer vision, which
has been widely applied in robotics, self-driving cars, scene understanding and
3D reconstruction. However, most works on 3D vision focus on the scenes with
multiple observations, such as multiple viewpoints [22] and image sequences from
videos [14], which are not always accessible in real cases. Therefore, monocular
depth estimation has become a natural choice to overcome this problem, and
substantial improvement has been made in this area with the rapid development
of deep learning in recent years.
⋆ These two authors contribute equally to this study.
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Speciically, most of the state-of-the-art methods [7, 12, 16] rely on Convolu-
tional Neural Networks (CNNs) which learn a group of convolution kernels to
extract local features for monocular depth estimation. The learned depth fea-
ture for each pixel is calculated within the receptive iled of the network. It is an
absolute cue for depth inference which represents the appearance of the image
patch centered at the pixel, such as edges and textures. While these absolute
features for each image location from convolution layer are quite efective in
existing algorithms, it ignores the depth constraint between neighboring pixels.

Intuitively, neighboring image locations with similar appearances should have
close depth, while the ones with diferent appearances are more likely to have
quite large depth changes. Therefore, the relationship between diferent pixels,
namely ainities, are very important features for depth estimation which have
been mostly ignored by deep learning-based monocular depth algorithms. These
ainities are diferent with the absolute features which are directly extracted with
convolution operations. They are relative features which describes the similarities
between the appearances of diferent image locations. And explicitly considering
these relative features could potentially help the depth map inference.

In fact, ainities have been widely used in image processing methods, such as
bilateral ilter [25] which takes the spatial distance and color intensity diference
as relative feature for edge-preserving iltering. More related to our work, aini-
ties have also been used to estimate depth in a Conditional Random Field (CRF)
framework [23], where the relative depth features are modeled as the diferences
between the gradient histograms computed from two neighboring patches. And
the aforementioned depth constraint of neighboring pixels is enforced by the
pairwise potential in the CRF.

Diferent with these methods, we learn to extract the relative features in
neural network by introducing a simple yet efective ainity layer. In this layer,
we deine the ainity between a pair of pixels as the correlation of their absolute
features. Thus, the relative feature from the ainity layer for one pixel is a vector
composed of the correlation values with its surrounding pixels. By integrating
the ainity layer into CNNs, we can seamlessly combine learned absolute and
relative features for depth estimation in a fully end-to-end model. Since only the
relationship between nearby pixels is important for depth inference, the proposed
operation is conducted within a local region. In the proposed method, we only
use the ainity operation at the lowest feature scale to reduce computational
load.

Except for the constraint between neighboring pixels, we also consider an-
other important observation in depth estimation that there are more depth
changes in the vertical direction than in the horizontal [3]. In other words, objects
tend to get further from the bottom to the top in many images. For example, in
driving scenes, a road stretching vertically ahead in the picture often gets fur-
ther away from the camera. Thus, to capture the local information in the vertical
direction could potentially help reined depth estimation which motivates us to
integrate vertical feature pooling in the proposed neural network.
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Fig. 1. An overview of the proposed network. The network is composed of a deep
CNN for encoding image input, a context network for estimating coarse depth, and a
multi-scale reinement module to predict more accurate depth. The context network
adopts ainity and fully-connected layers to capture neighboring and global context
information, respectively. The reinement module upsamples the coarse depth gradually
by learning residual maps with features from previous scale and vertical pooling.

To further improve the depth estimation results, we enhance the sparse depth
ground truth from Lidar by exploiting the left-right image pairs. Diferent from
previous methods which use photometric loss [9, 16] to learn disparities which are
inversely proportional to image depth, we adopt an of-the-shelf stereo matching
method to predict dense depth from the image pairs and then use the predicted
high-quality dense results as auxiliary labels to assist the training process.

We conduct comprehensive evaluations on the KITTI driving dataset and
show that the proposed algorithm performs favorably against state-of-the-art
methods both qualitatively and quantitatively. Our contributions could be sum-
marized as follows.

– We propose a neighboring ainity layer to extract relative features for depth
estimation.

– We propose to use vertical pooling to aggregate local feature to capture
long-range vertical information.

– We use stereo matching network to generate high-quality depth predictions
from left-right image pairs to assist the sparse Lidar depth ground truth.

– In addition, we adopt a multi-scale architecture to obtain global context and
learn residual maps for better depth estimation.
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2 Related Work

2.1 Supervised Depth Estimation.

Supervised approaches take one single RBG image as input and use measured
depth maps from RGB-D cameras or laser scanners as ground-truth for training.
Saxena et al. [23] propose a learning-based approach to predict the depth map
as a function of the input image. They adopt Markov Random Field(MRF) that
incorporates multi-scale hand-crafted texture features to model both depths at
individual points as well as the relation between depths at diferent points. [23]
is later extended to a patch-based model known as Make3D [24] which irst
uses MRF to predict plane parameters of the over-segmented patches and then
estimates the 3D location and orientation of these planes. We also model the
relation between depths at diferent points. But instead of relying on hand-
crafted features, we integrate a correlation operation into deep neural networks
to obtain more robust and general representation.

Deep learning achieves promising results on many applications [12, 3, 28,
29]. Many recent works [7, 6, 27] utilize the powerful Convolutional Neural Net-
works(CNN) to learn image features for monocular depth estimation. Eigen et
al. [7, 6] employ multi-scale deep network to predict depth from single image.
They irst predict a coarse global depth map based on the entire image and then
reine the coarse prediction using a stacked neural network. In this paper, we
also adopt multi-scale strategy to perform depth estimation. But we only predict
depth map at the coarsest level and learn to predict residuals afterwards which
helps reine the estimation. Li et al. [18] also use a DCNN model to learn the
mapping from image patches to depth values at the super-pixel level. A hierar-
chical CRF is then used to reine the estimated super-pixel depth to the pixel
level. Furthermore, there are several supervised approaches that adopt diferent
techniques such as depth transfer from example images [15, 21], incorporating
semantic information [20, 17], and formulating depth estimation as pixel-wise
classiication task [2].

2.2 Unsupervised Depth Estimation

Recently, several works attempt to train monocular depth prediction model in
an unsupervised way which does not require ground truth depth at training
time. Garg et al. [9] propose an encoder-decoder architecture which is trained
for single image depth estimation on an image alignment loss. This method
only requires a pair of images, source and target, at training time. To obtain
the image alignment loss, the target image is warped to reconstruct the source
image using the predicted depth. Godard et al. [12] extend [9] by enforcing
consistency between the disparities produced relative to both the left and right
images. Besides image reconstruction loss, this method also adopts appearance
matching loss, disparity smooth loss and left-right consistency loss to produce
more accurate disparity maps. Xie et al. [26] propose a novel approach which
tries to synthesized the right view when given the left view. Instead of directly
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regressing disparity values, they produce probability maps for diferent disparity
level. A selection layer is then utilized to render the right view using these
probability maps and the given left view. The whole pipeline is also trained on a
image reconstruction loss. Unlike the above methods that are trained using stereo
images, Zhou et al. [30] propose to train an unsupervised learning framework
on unstructured video sequences. They adopt a depth CNN and a pose CNN to
estimate monocular depth and camera motion simultaneously. The nearby views
are warped to the target view using the computed depth and pose to calculate
the image alignment loss. Instead of using view synthesis as the supervisory
signal, we employ a powerful stereo matching approach [22] to predict dense
depth map from the stereo images. The predicted dense depth map, together
with the sparse velodyne data, are used as ground truth during our training.

2.3 Semi-/Weakly Supervised Depth Estimation

Only few works fall in the line of research in semi- and weakly supervised training
of single image depth prediction. Chen et al. [3] present a new approach that
learns to predict depth map in unconstrained scenes using annotations of relative
depth. But the annotations of relative depth only provides indirect information
on continuous depth values. More recently, Kuznietsov et al. [16] propose to train
a semi-supervise model using both sparse ground truth and unsupervised cues.
They use ground truth measurement to solve the ambiguity of unsupervised cues
and thus do not require coarse-to-ine image alignment loss during training.

2.4 Feature Correlations

Other works have attempted to explore correlations in feature maps in the con-
text of classiication [19, 8, 5]. Lin et al. [19] utilize bilinear CNNs to model local
pairwise feature interactions . While the inal representation of a full bilinear
pooling is very high-dimensional, Gao et al. [8] reduce the feature dimensionality
via two compact bilinear pooling. In order to capture higher order interactions
of features, Cui et al. [5] proposed a kernel pooling scheme and combine it with
CNNs. Instead of adopting bilinear models to obtain discriminative features, we
propose to model feature relationships between neighboring image patches to
provide more information for depth inference.

3 Method

An overview of our framework is shown in Figure 1. The proposed network adopts
an encoder-decoder architecture, where the input image is irst transformed and
encoded as absolute feature maps by a deep CNN feature extractor. Then a con-
text network is used to capture both neighboring and global context information
with the absolute features. Speciically, we propose an ainity layer to model rel-
ative features within a local region of each pixel. By combining the absolute and
relative features with a fully-connected layer, we obtain global features which
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Fig. 2. Examples of the enhanced dense depth maps generated by a stereo matching
model [22]. We use these depth maps as complementary data to the sparse ground
truth depth maps. The left column contains RGB images, while the middle and right
column show the enhanced depth maps and sparse ground truth, respectively.

indicates the global layout and properties of the image. The global features of
the fully-connected layer, the absolute features from the deep encoder, and the
relative features are fed into our depth estimator, a multi-layer CNN, to generate
an initial coarse estimate of the image depth. In the meanwhile, we also take
these features as initial input of the following multi-scale reinement modules.
The reinement network at each scale is composed of a proposed vertical pooling
layer which aggregates local depth information vertically, and a residual esti-
mator which learns residual map for reining the coarse depth estimation from
the last scale. Both the features from previous scale and the proposed vertical
pooling layer are used in the residual estimator.

3.1 Ainity Layer

While the relationships between neighboring pixels, namely ainities, are very
important cues for inferring depth, they cannot be explicitly represented in a
vanilla CNN model. To overcome this limitation, we propose an ainity layer to
learn these cues and combine absolute and relative features for superior depth
estimation.

For concise and efective formulation, we deine the ainity as the correlation
between the absolute features of two image pixels. Since the absolute features
represents the local appearance of image locations, such as edges and textures,
the correlation operation could efectively model the appearance similarities be-
tween these pixels. Mathematically, this operation could be formulated as:

v(x)m,n = f(x) · f(x+ (m,n)]); m,n ∈ [−k, k] (1)

where v(x) ∈ R(2k+1)×(2k+1) represents the ainities of location x calculated in
a squared local region of size (2k + 1) × (2k + 1). f(x) is the absolute feature
vector from the convolutional feature extractor layer at location x. In fact, we
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can reshape v(x) into a 1-dimensional vector of size 1×(2k+1)2, and the relative
features of a input image become (2k+1)2 feature maps which could be fed into
the following estimation and reinement layers. Suppose the input feature map is
of size w×h×c where w, h and c are the width, height and channels, respectively.
w×h×c×(2k+1)2 multiplications are needed for computing the relative feature
which is computationally heavy. To remedy the problem of the square complexity
of the ainity operation, we only perform this layer on the lowest feature scale (in
the context network in Figure 1) to reduce the computational load. The proposed
ainity layer is integrated in the CNN model and works complementarily with
the absolute features, which signiicantly helps depth estimation.

3.2 Task Speciic Vertical Pooling

Depth distribution in real world scenarios has a special kind of pattern that
the majority of depth changes lies in the vertical direction. e.g. The road often
stretches to the far side alone the vertical direction. The faraway objects, such
as sky and mountains, are more likely to be located at the top of a landscape
picture. Recognizing this kind of patterns can provide useful information for
accurate single image depth estimation. However, due to the lack of supervision
and huge parameters space, normal operations in deep neural network such as
convolution and pooling with squared ilters may not be efective in inding such
patterns. Furthermore, a relative large squared pooling layer aggregates too much
unnecessary information from horizontal locations while it is more eicient to
consider vertical features only.

In this paper, we propose to obtain the local context in vertical direction
through vertical pooling layer. The vertical pooling layer uses average pooling
with kernels of size H × 1 and outputs feature maps of equal size with the input
features. Multiple vertical pooling layers with diferent kernel heights are used
in our network to handle feature maps across diferent scales. Speciically, we
use four kernels of size 5 × 1, 7 × 1, 11 × 1 and 11 × 1 to process feature maps
of scale S/8, S/4, S/2 and S, where S denotes the resolution of input images.
More detailed analysis of vertically aggregating depth information are presented
in Section 4.5.

3.3 Multi-Scale Learning

As shown in Figure 1, our model predicts a coarse depth map through a con-
text network. Besides exploiting local context using operations mentioned in the
preview sections, we follow [7] to take advantage of fully connected layers to
integrate a global understanding of the full scene into our network. The output
feature maps of the encoder and the self-correlation layer are taken as input
of the fully connected layer. The output feature vector of fully connected layer
is then reshaped to produce the inal output feature map which is at the 1/8-
resolution compared to the input image.

Given the coarse depth map, our model learns to reine the coarse depth by
adopting the residual learning scheme propose by He et al. [13]. The reinement
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module irst up-sample the input feature map by factor of 2. A residual estimator
then learns to predict the corresponding residual signal based on the up-sampled
feature, the local context feature and the long skip connected low level feature.
Without the need to predict absolute depth values, the reinement module can
focus on learning residual that helps produce accurate depth maps. Such learning
strategy can lead to smaller network and better convergence. Several reinement
modules are employed in our model to produce residuals across multiple scales.
The reinement process can be formulated as:

ds = UP{ds+1}+ rs 0 ≤ s ≤ S (2)

where ds and rs denote depth and residual maps that are downsampled by a
factor of 2s from full resolution size. UP{·} denotes 2× upsample operation.
We supervise the estimated depth map across S + 1 scales. Ablation study in
Section 4.5 demonstrates that incorporating residual learning can lead to more
accurate depth maps compared to direct learning strategy.

3.4 Loss Function

Ground truth enhancement. The ground truth depth maps obtained from
Lidar sensor are too sparse (only 5% pixels are valid) to provide enough super-
visory signal for training a deep model. In order to produce high quality, dense
depth maps, we enhance the sparse ground truth with dense depth maps pre-
dicted by a stereo matching approach [22]. We use both the dense depth maps
and the sparse velodyne data as ground truth at training time. Some samples of
predicted depth maps are shown in Fig 2.
Training loss. The enhanced dense depth maps produced by stereo matching
model are not accurate enough compared to ground truth depth maps. The error
between predicted and ground truth depth maps is shown in Table 1. We use
a weighted sum L2 loss to suppress the noise contained in the enhanced dense
depth maps:

Loss =
∑

i∈Λ

∥predi − gti∥
2
2 + α ∗

∑

i∈Ω

∥predi − gti∥
2
2 (3)

where predi and gti denote the predicted depth and ground truth depth at ith
pixel. Λ denotes a collection of pixels where sparse ground truth values are valid.
Ω denotes a collection of pixels where sparse ground truth values are invalid and
values from enhance depth maps are used as ground truth. α is set to 0.3 in all
the experiments.

4 Experiments

We show the main results in this section and present more evaluations in the
supplementary material.
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Table 1. Quantitative results of our method and approaches reported in the literature
on the test set of the KITTI Raw dataset used by Eigen et al. [7] for diferent caps
on ground-truth and/or predicted depth. Enhanced depth denotes the depth maps
generated by [22]. Best results shown in bold.

ARD SRD RMSE RMSE(log) δ <1.25 δ <1.252 δ <1.253

Approach cap lower is better higher is better

Eigen et al. [7] 0 - 80 m 0.215 1.515 7.156 0.270 0.692 0.899 0.967
Liu et al. [21] 0 - 80 m 0.217 1.841 6.986 0.289 0.647 0.882 0.961
Zhou et al. [30] 0 - 80 m 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Godard et al. [12] 0 - 80 m 0.114 0.898 4.935 0.206 0.861 0.949 0.976
Kuznietsov et al. [16] 0 - 80 m 0.113 0.741 4.621 0.189 0.862 0.960 0.986
Ours 0 - 80 m 0.098 0.666 3.933 0.173 0.890 0.964 0.985

Enhanced depth 0 - 80 m 0.025 0.075 1.723 0.049 0.994 0.998 0.999

Zhou et al. [30] 1 - 50 m 0.190 1.436 4.975 0.258 0.735 0.915 0.968
Garg et al. [9] 1 - 50 m 0.169 1.080 5.104 0.273 0.740 0.904 0.962
Godard et al. [12] 1 - 50 m 0.108 0.657 3.729 0.194 0.873 0.954 0.979
Kuznietsov et al. [16] 1 - 50 m 0.108 0.595 3.518 0.179 0.875 0.964 0.988
Ours 1 - 50 m 0.094 0.552 3.133 0.165 0.898 0.967 0.986

4.1 Dataset

We evaluate our approach on the publicly available KITTI dataset [10], which is
a widely-used dataset in the ield of single image depth estimation. The dataset
contains over 93 thousand semi-dense depth maps with corresponding Lidar
scans and RGB images. All the images in this dataset are taken from a driving
car in an urban scenario, with a typical image resolution being 1242 × 375. In
order to perform fair comparisons with existing work, we adopt the split scheme
proposed by Eigen et al. [7] which splits the total 56 scenes from raw KITTI
dataset into 28 for training and 28 for testing. Speciically, we use 22,600 images
for training and the rest for validation. The evaluation is performed on the test
split of 697 images. We also adopt the KITTI split provided by KITTI stereo
2015, which provides 200 high quality disparity images from 28 scenes. We use
the 30,159 images from the remaining scenes as training set. While the 200
disparity images provides more depth information than the sparse, reprojected
velodyne laser data, they have CAD modes inserted in place of moving cars.
We evaluate our model on these high quality disparity images to obtain more
convincing demonstrations.

4.2 Implementation Details

We implement our method using the publicly available TensorFlow [1] frame-
work. The whole model is an hour-glass structure in which Resnet50 is utilized
as the encoder. We trained our model from scratch for 80 epochs, with a batch
size of 8 using the Adam method with β1 = 0.9, β2 = 0.999 and ϵ = 10−8. The
learning rate is initialized as 10−4 and exponentially decayed by 10 every 30
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epochs during training. All the parameters in our model are initialized based
on xavier algorithm [11]. It costs about 7G of GPU memory and 50 hours to
train our model on a single NVIDIA GeForce GTX TITAN X GPU with 12GB
memory. The average training time for each image is less than 100 ms and it
takes less than 70 ms to test one image.

Data augmentation is also conducted during training process. The input im-
age is lipped with a probability of 0.5. We randomly crop the original image into
size of 2h× h to retain image ratio, where h is the height of the original image.
The input image is obtained by resizing the cropped image to a resolution of
512 × 256. We also performed random brightness for color augmentation, with
50% chance, by sampling from a uniform distribution in the range of [0.5, 2.0].

4.3 Evaluation Metrics

We evaluate the performance of our approach in monocular depth prediction
using the velodyne ground truth data on the test images. We follow the depth
evaluation metrics used by Eigen et al. [7]:

ARD: 1

|T |

∑

y∈T
|y − y∗|/y∗ RMSE:

√

1

|T |

∑

y∈T
∥y − y∗∥2

SRD: 1

|T |

∑

y∈T
∥y − y∗∥2/y∗ RMSE(log):

√

1

|T |

∑

y∈T
∥logy − logy∗∥2

Threshold: % of yi s.t. max( yi
y∗ ,

y∗

yi
) = δ < thr

where T denotes a collection of pixels where the ground truth values are
valid. y∗ denotes the ground truth value.

4.4 Comparisons with state-of-the-art methods

Table 1 shows the quantitative comparisons between our model and other state-
of-the-art methods in monocular depth estimation. It can be observed that our
method achieves best performances for all evaluation metrics at both 80m and
50m caps, except for the accuracy at δ <1.253 where we obtain comparable
results with Kuznietsov et al. [16] at cap of 80m (0.985 vs 0.986) and 50m (0.986
vs 0.988). Speciically, our method reduces the RMSE metric by 20.3% compared
with Godard et al. [12] and 14.9% compared with Kuznietsov et al. [16] at the
cap of 80 m. Furthermore, our model obtain accuracy of 89.0% and 89.8% at δ
<1.252 metric at the cap of 80 m and 50 m, outperforming Kuznietsov et al. [16]
by 2.8% and 2.4% respectively.

To further evaluate the performance of our approach, we train a variant model
on the training set of the oicial KITTI split and perform evaluation on the
KITTI 2015 stereo training set which contains 200 high quality disparity images.
We convert these disparity images into depth maps for evaluation using the
camera parameters provided by KITTI dataset. The result is shown in Table 3.
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Table 2. Quantitative results of diferent variants of our method on the test set of
the KITTI Raw dataset used by Eigen et al. [7] without capping the ground-truth.
Baseline† denotes the baseline model that is trained using velodyne data and stereo im-
ages. Baseline‡ denotes the baseline model that is trained using velodyne data and pre-
dicted dense depth maps. Ours§ denotes a variant of our model which utilizes squared
average pooling layers. Ours¶ denotes a variant of our model which utilizes horizontal
pooling layers. Legend: R: only predict depth map at the coarsest level and learn to
predict residual for reinement afterwards. A: include ainity learning operation. V:
use vertical pooling layer to obtain task speciic context. G: include global context.

ARD SRD RMSE RMSE(log) δ <1.25 δ <1.252 δ <1.253

Method R A V G lower is better higher is better

Baseline† 0.120 0.757 4.734 0.202 0.856 0.953 0.972
Baseline‡ 0.117 0.748 4.620 0.191 0.861 0.958 0.978

Ours
√ 0.115 0.740 4.514 0.189 0.865 0.958 0.980√ √ 0.106 0.696 4.231 0.178 0.882 0.960 0.982

Ours¶ √ √ 0.104 0.694 4.141 0.179 0.882 0.961 0.982
Ours§ √ √ 0.102 0.683 4.132 0.177 0.884 0.962 0.982

Ours
√ √ √ 0.102 0.674 4.027 0.174 0.889 0.962 0.982√ √ √ √ 0.098 0.667 3.934 0.173 0.890 0.963 0.984

Table 3. Comparisons of our method and two diferent approaches. Results on the
KITTI 2015 stereo 200 training set images [10]. Best results shown in bold.

ARD SRD RMSE RMSE(log) δ <1.25 δ <1.252 δ <1.253

Approach lower is better higher is better

[12] with Deep3Ds [26] 0.151 1.312 6.344 0.239 0.781 0.931 0.976
Godard et al. [12] 0.097 0.896 5.093 0.176 0.879 0.962 0.986

Ours 0.079 0.500 3.522 0.137 0.918 0.978 0.989

Godard et al. [12] stereo 0.068 0.835 4.392 0.146 0.942 0.978 0.989

It can be observed that our method outperforms [12] by a large margin and
achieves close results with the variant model of Godard et al. [12] which is
trained and tested with two input images.

We provide qualitative comparisons in Figure 3 which shows that our results
are visually more accurate than the compared methods. Some qualitative results
on Cityscape dataset [4] and Make3D dataset [24] are shown in Figure 5, which
are estimated by our model that is trained only on KITTI dataset. The high
quality results show that our model can generalize well on unseen scenes. The
comparisons performed above well demonstrate the superiority of our approach
in predicting accurate depth map from single images. More qualitative results
on KITTI dataset are shown in Figure 4.
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Fig. 3. Qualitative results on the test set of the KITTI Raw dataset used by Eigen et
al. [7]. From top to bottom, the images are input, ground truth, results of Eigen et al.
[7], results of Garg et al. [9], results of Godard et al. [12] and results of our method,
respectively. Sparse ground truth have been interpolated for better visualization.

4.5 Ablation study

In this subsection, we show efectiveness and necessity of each component in our
proposed model and also demonstrate the efectiveness of the network design.
Supervisory signal: To validate the efectiveness of using predicted dense
depth maps as ground truth at training time. We compare our baseline model
(denoted as Baseline‡) with a variant (denoted as Baseline†) which is trained us-
ing image alignment loss. Results are shown in the irst two rows of Table 2. It can
be easily observed that Baseline‡ achieves better results than Baseline† on all the
metrics. This may due to the well known fact that stereo depth reconstruction
based on image matching is an ill-pose problem. Training on a image alignment
loss may provide inaccurate supervisory signal. On the contrary, the dense depth
maps used in our method are more accurate and more robust against the ambi-
guity, since they are produced by a powerful stereo matching model [22] which
is well designed and trained on massive data for the task of depth reconstruc-
tion. Thus, the superior result, together with the above analysis, well validate
that utilizing predicted depth maps as ground truth can provide more useful
supervisory signal.
Residual learning vs direct learning: The baseline model of our approach
(denoted as Baseline‡) is implemented using direct learning strategy which learns
to output the depth map directly instead of the residual depth map. Note that
the baseline model represents our network without any of the components R,
A, V, G in Table 2. As shown in Table 2, the baseline model achieves 0.117 at
ARD metric and 4.620 at RMSE metric. In order to compare residual learning
strategy with direct learning strategy, we replace direct learning with residual
learning in Baseline‡ and keep other settings identical to obtain a variant model
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Table 4. Quantitative results on NYU Depth v2 dataset(part). H-pooling denotes
horizontal pooling. Note that our model was trained on the labeled training set with
795 images instead of the full dataset which contains 20K images.

Method δ <1.25 δ <1.252 δ <1.253 rel log10 rms

w/ H-pooling 0.747 0.929 0.977 0.165 0.069 0.652
w/o ainity 0.732 0.920 0.972 0.179 0.075 0.694

Ours 0.756 0.934 0.980 0.158 0.066 0.631

Fig. 4. More qualitative results on KITTI test splits.

with residual learning strategy. The performance of this variant model is shown
in the third row of Table 2, which outperforms Baseline‡ with slight improve-
ments on all the metrics. This may due the reason that residual learning can
focus on modeling the highly non-linear residuals while direct learning needs to
predict absolute depth values. Moreover, residual learning also helps alleviate
the problem of over-itting [13].
Pooling methods: To validate the idea that incorporating local context through
pooling layers helps boost the performance of depth estimation, we implement
three variant models that use vertical pooling layers, horizontal pooling layers
(denoted as Ours¶) and squared average pooling layers (denoted as Ours§). Note
that we also use multiple average pooling layers with kernels of diferent sizes
to handle multi-scale feature maps. Speciically, we use four squared average
pooling layers in Ours§ whose kernel sizes are set to 5 × 5, 7 × 7, 11 × 11 and
11× 11 respectively. The results are shown in the middle three lines of Table 2.
As one can see, by adopting squared average pooling layers, the model achieves
slightly better results where SRD metric is reduced from 0.696 to 0.683 while
RMSE metric is reduced from 4.231 to 4.132. The improvement demonstrates the
efectiveness of exploiting local context through pooling layers. Similar improve-
ments can be observed by integrating horizontal pooling layers. Furthermore, by
replacing squared average polling layers with vertical pooling layers, our model
obtains better results with more signiicant improvements. The further improve-
ment proves that vertical pooling is able to model the local context more efec-
tively compared to squared average pooling and horizontal pooling. This may
due to the reason that squared average pooling combines both the depth distri-
bution alone the horizontal and vertical direction which might introduce noise
and redundant information.
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Fig. 5. Qualitative results on Make3D dataset [24] (left two columns) and Cityscape
dataset [4] (right two columns).

Contribution of each component: To discover the vital elements in our pro-
posed method, we conduct ablation study by gradually integrating each compo-
nent into our model. The results are shown in Table 2. Besides the improvements
brought by residual learning and vertical pooling modules which have been an-
alyzed in the above comparisons, integrating ainity layer can result in major
improvements on all the metrics. This proves that ainity layer is the key compo-
nent of our proposed approach and thus well validate the insight that explicitly
considering relative features between neighboring patches can help the monoc-
ular depth estimation. Moreover, integrating fully connected layers to exploit
global context information further boosts the performance of our model. It can
be seen from the last row of Table 2 that accuracy at δ <1.253 is further im-
proved to 0.984. This shows that some challenge outliers can be predicted more
accurately given the global context information.

We conduct more experiments to evaluate the proposed components on the
NYUv2 dataset in Table 4. The Results further prove that ainity layer and
vertical pooling both play an important role in improving the estimation perfor-
mance, which also shows that proposed method generalizes well to the NYUv2
dataset.

5 Conclusions

In this work, we propose a novel ainity layer to model the relationship between
neighboring pixels, and integrate this layer into CNN to combine absolute and
relative features for depth estimation. In addition, we exploit the prior knowl-
edge that vertical information potentially helps depth inference and develop ver-
tical pooling to aggregate local features. Furthermore, we enhance the original
sparse depth labels by using stereo matching network to generate high-quality
depth predictions from left-right image pairs to assist the training process. We
also adopt a multi-scale architecture with residual learning for improved depth
estimation. The proposed method performs favorably against the state-of-the-
art monocular depth algorithms both qualitatively and quantitatively. In future
work, we will investigate more about the generalization abilities of the ainity
layer and vertical pooling for indoor scenes. It will also be interesting to ex-
plore more detailed geometry relations and semantic segmentation information
for more robust depth estimation.
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