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Abstract. Conventional deep semi-supervised learning methods, such
as recursive clustering and training process, suffer from cumulative error
and high computational complexity when collaborating with Convolu-
tional Neural Networks. To this end, we design a simple but effective
learning mechanism that merely substitutes the last fully-connected lay-
er with the proposed Transductive Centroid Projection (TCP) module.
It is inspired by the observation of the weights in the final classifica-
tion layer (called anchors) converge to the central direction of each class
in hyperspace. Specifically, we design the TCP module by dynamically
adding an ad hoc anchor for each cluster in one mini-batch. It essen-
tially reduces the probability of the inter-class conflict and enables the
unlabelled data functioning as labelled data. We inspect its effective-
ness with elaborate ablation study on seven public face/person classi-
fication benchmarks. Without any bells and whistles, TCP can achieve
significant performance gains over most state-of-the-art methods in both
fully-supervised and semi-supervised manners.
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1 Introduction

The explosion of the Convolutional Neural Networks (CNNs) brings a remarkable
evolution in the field of image understanding, especially some real-world tasks
such as face recognition [1–5] and person re-identification (Re-ID)[6–11]. Much
of this progress was sparked by the creation of large-scale datasets as well as
the new and robust learning strategies for feature learning. For instance, MS-
Celeb-1M [12] and MARS [13] provide more than 10-million face images and
1-million pedestrian images respectively with rough annotation. Moreover, in
the industrial environment, it may take only a few weeks to collect billions of
face/pedestrian gallery from a city-level surveillance system. But it is hard to
label such billion-level data. Utilizing these large-scale unlabelled data to benefit
the classification tasks remains non-trivial.
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Fig. 1. A comparison between (a) self-training process with recursive clustering-
finetuning (b) un/semi-supervised learning with transductive centroid projection

Most of recent unsupervised or semi-supervised learning approaches for face
recognition or Re-ID [14–20] are based on self-training, i.e. the model clusters
the training data and then the clustered results are used to fine-tune the mod-
el iteratively until converges, as shown in Fig. 1(a). The typical downsides in
this process lie in two aspects. First, the recursive training framework is time-
consuming. And second, since the clustering algorithms used in such approaches
always generate ID-clusters with high precision scores but somewhat low recall
score, that guarantee the clean clusters without inner errors, it may cause inter-
class conflict, i.e. instances belonging to one identity are divided into different
clusters, which hampers the fine-tuning stage. To this end, a question arises:
how to utilize unlabelled data in a stable training process, such as a CNN modle
with softmax classification loss function, without any recursion and avoid the
inter-class conflict?

In this study, we design a novel Transductive Centroid Projection layer to
efficiently incorporate the training of the unlabelled clusters accompanied by the
learning of the labelled samples, and can be readily extended to an unsupervised
manner by setting the labelled data to ∅.

It is enlightened from the latent space learned by the common used Softmax
loss. In deep neural network, each column in the projection matrix W of the final
fully-connected layer indicates the normal direction of the decision hyperplane.
We call each column as anchor in this paper. For a labelled data, the anchor of
its class already exists in W, and thus we can train the network by maximizing
the inner product of its feature and its anchor. However, the unlabelled data
doesn’t even have a class, so it cannot directly provide the decision hyperplane.
To utilize unlabelled samples with conventional deep classification network, we
need to find a way to simulate the their anchors.

Motivated by the observation that the anchor approximates the centroid
direction as shown in Fig. 2, the transductive centroid projection layer could
dynamically estimate the class centroids for the unlabelled clusters in each mini-
batch, and treat them as the new anchors for unlabelled data which are then
absorbed to the projection matrix so as to enable classification for both labelled
and unlabelled data. As visualized in Fig. 1(b), the projection matrix W of the
classification layer in original CNN is replaced by the joint matrix of W and ad

hoc centroids C. In this manner, labelled data and unlabelled data function the
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same during training. As analyzed in Sec. 3.3, since the ad hoc centroids in each
mini-batch is much fewer than the total cluster number, the inter-class conflict
ratio is naturally low and can hardly influence the training process.

Comprehensive evaluations have been conducted in this paper to compare
with some popular semi-supervised methods and some loss functions in metric
learning. The proposed transductive centroid projection has a superior perfor-
mance on stabilizing unsupervised/semi-supervised and optimizing the learned
feature representation.

To sum up, the contribution of this paper is threefold:
1) Observation interpretation - We investigate the observation that the direc-
tions of anchor (i.e. weight wn) gradually coincides with the centroid as model
converges, both theoretically and empirically.
2) A novel Transductive Centroid Projection layer - Based on the observation
above, we propose an innovative un/semi-supervised learning mechanism to wise-
ly integrate the unlabelled data into the recognition to boost its discriminative
ability by introducing a new layer named as Transductive Centroid Projection
(TCP). Without any iterative processing like self-training and label propagation,
the proposed TCP can be simply trained and steadily embedded into arbitrary
CNN structure with any classification loss.
3) Superior performance on face recognition and ReID benchmarks - We apply
TCP to the task of face recognition and person re-identification, and conduct ex-
tensive evaluations to thoroughly examine its superiority to both semi-supervised
learning and supervised learning approaches.

1.1 Related works

Semi-supervised learning. An effective way for deep semi-supervised learning
is the label propagation with self-training [21] by trusting the predicted label
from the model trained on labeled data or clustered by clustering model [22–25],
for close set or open set respectively. It will hamper the model convergence if the
threshold is not precisely set. Other methods like Generative models [26], semi-
supervised Support Vector Machines [27] and some graph-based semi-supervised
learning methods [28] hold clear mathematical framework but are hard to be
incorporated with deep learning methods.
Semi-supervised face/person recognition. In [16], a couple dictionaries
are jointly learned from both labelled and unlabelled data. LSRO [8] adopts
GAN [29] to generate person patches to normalize data distribution and pro-
pose a loss named LSRO to supervise the generated patches. Some works [19,
18] adopt local metric loss functions (e.g. triplet loss [2]) to avoid the inter-class
conflict. These methods with local optimization function, however, are usually
unstable and hard to converge, especially for large-scale data. Some other meth-
ods [19] adopt softmax loss to optimize global classes and suffer from the inter-
class conflict. Most of these methods focus on transfer learning, self-training and
data distribution normalization. In this work, we mainly pay attention to a basic
question, namely how to wisely train a simple CNN model by fully leveraging
both labelled and unlabelled data, without self-training or transfer learning.
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Table 1. Experimental settings on three tasks with different data scales to validate
the observation

Task #Class Backbone #Feature Dim. Feature Space

MNIST 10 LeNet [30] 2 Fig. 2(a)
CIFAR-100 100 ResNet-18 [31] 128 Fig. 2(b)
MS1M-100K 100,000 Inception-ResNet [32] 128 Fig. 2(c)

2 Observation inside the Softmax Classifier

In a typical straightforward CNN, let f ∈ R
D denote the feature vector of one

sample generated by prior layers, where D is the feature dimension. The linear
activation y ∈ R

N referring to N class labels is therefore accompanied with the
weight W ∈ R

D×N and bias b ∈ R
N ,

y = WT f + b. (1)

In this work we degenerate this classifier layer from affine to linear projection by
setting the bias term b ≡ 0. Supervised by softmax loss and optimized by SGD,
we can usually observe the following phenomenon: The anchor wi = W[i] ∈ R

D

for class i points to the direction of the data centroid of class i, when the model
has successfully converged. We first show this observation in three toy examples
from a low-dimensional space to a high one. Then we try to interpret it by
gradient view.

2.1 Toy Examples

To investigate the aforementioned observation from small-scale to large-scale
tasks and from low dimensional to high dimensional latent space, we empirically
analyze three tasks with different data scales, feature dimention and network
structure, i.e. character classification on MNIST [33] with 10 classes, object
classification on CIFAR-100 [34] with 100 classes, and face recognition on M-
S1M [35] with 100, 000 classes3. Table 1 records the detailed settings for these
experiments. To each task, there are two FC layers after its backbone structure,
in which FC1 learns an internal feature vector f and FC2 acts as the projection
onto the class space. All tasks employ the softmax loss. Fig. 2 depicts the feature
spaces extracted from different datasets, in which the 2-D features in MNIST are
directly plotted and the 128-D features in CIFAR-100 and MS1M are compressed
by Barnes-Hut t-SNE [36].
MNIST – Fig. 2(a) describes the feature visualization in three stages: 0, 2
and 10 epochs. We set the feature dimension D = 2 for f so as to explore the
distribution in low dimensional case. The training of this model progressively
increases the congregation between features in each class and inter-discrepancy
between classes. We pick four classes and show their directions W[n] from the

3 The original MS1M dataset has one million face identities with several noises sam-
ples. Here we only take the first 100, 000 identities for the convenience of illustration.
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Fig. 2. Visualization of feature spaces on different tasks, i.e. (a) MNIST, (b) CIFAR-
100 and (c) MS1M, where the features of CIFAR-100 and MS1M are visualized by
Barnes-Hut t-SNE [36], and (d) depicts the evolution of cosine distance between anchor
direction and class centroid with respect to the training iteration on MNIST

projection matrix W, named as anchor. All anchors have random directions at
the initial stage of training, and they gradually move towards the direction of
their respective centroids.
CIFAR-100 & MS1M – To examine this observation in a much larger data
scale and higher dimension case, we further apply CIFAR-100 and MS1M for
an ample demonstration. Different from MNIST, the feature dimension for f is
D = 128 and t-SNE is used for dimensionality reduction without losing cosine
metric. Similar to the phenomenon as observed in MNIST, features in each class
tend to be progressively clustered together while features from different classes
own more distinct margins in between. Meanwhile the anchors marked by red
dots almost locate around its corresponding class centroids. The anchors of a
well trained MS1M model also co-locate with the class centroids.

In addition, for a quantified assessment, we compute the cosine similarity
C(wn, cn) between the anchor wn = W[n] and the class centroid cn for the nth

class out of 10 classes in total on MNIST. Fig. 2(d) exhibits C(wn, cn) with
respect to the training iterations. Almost all classes converge to a distance of 1
within one epoch, i.e. the direction of the anchor shifts to the same direction of
the class centroid.

To conclude, the anchor directionW[n] is always consistent with the direction
of the corresponding class centroid over different dataset scales with various
lengths of the feature dimension in f .

2.2 Investigate in Gradients

We investigate the reason why the directions of anchor and centroid will be
gradually consistent, from the perspective of gradient descent in the training
procedure. Considering the input of linear projection f which belongs to the n-
th chass and the output y = WT f , the softmax probability of f belongs to n-th
chass can be calculated by:

pn = softmax(y) =
exp(yn)

∑N
i=1 exp(yi)

(2)
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Fig. 3. The evolution of the anchor wn and features xn for classn within one iteration.
After this iteration, the directions between anchor wn and centroid cn get closer

We want to minimize the negative log-likelihood, i.e. softmax loss`:

arg min
�

` = arg min
�

� log(p); (3)

where� denotes the set of all parameters in CNN. Now we can infer the gradients
of softmax loss` f with respect to the anchor wn given the single samplef :

r w n ` f =
@f̀

@wn
= �

X

f 2I

 

I [f 2 I n ] �
exp(yn )

P N
i =1 exp(y i )

!

� f ; (4)

in which the samples of classn is denoted asI n , and yn is the nth element in
y . I refers to the indicator which is 1 whenf is in I n , and 0 vice versa.

Now considering samples in one mini-batch, the gradientr w n ` with respect
to results in the summation of all feature samples in the classn with a negative
contribution from the summation of feature samples from the rest classes:

r w n ` = �
X

f 2I n

 

1 �
exp(y n )

P N
n =1 exp(y n )

!

� f +
X

f =2I n

exp(y n )
P N

n =1 exp(y n )
� f :

In each iteration, the update value of wn equal to

� wn = � � _r w n ` = �
X

f 2I n

 

1 �
exp(yn )

P N
n =1 exp(yn )

!

� f � �
X

f =2I n

exp(yn )
P N

n =1 exp(yn )
� f :

Where � denote the learning rate. The former term can be assumed as the scaled
summation of the data samples in classn, thus is approximately proportional to
the class centroidcn . And the feature samples are usually evenly distributed in
the feature space, the summation of the negative feature samples for class n will
also approximately follow the negative direction of the centroid cn . Therefore,
the gradient r w n ` approximately points to the centroid direction cn in one time
step, thus �nally the anchor wn will also follow the direction of the centroid with
su�cient accumulation of the gradients. Fig. 3 describes the moving direction
of anchor wn with the gradient � wn = �r w n ` and the direction of samples
xn with the gradient � xn = �r x n ` marked in red dot lines. For a classn, the
























