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Abstract. Conventional deep semi-supervised learning methods, such
as recursive clustering and training process, suffer from cumulative error
and high computational complexity when collaborating with Convolu-
tional Neural Networks. To this end, we design a simple but effective
learning mechanism that merely substitutes the last fully-connected lay-
er with the proposed Transductive Centroid Projection (TCP) module.
It is inspired by the observation of the weights in the final classifica-
tion layer (called anchors) converge to the central direction of each class
in hyperspace. Specifically, we design the TCP module by dynamically
adding an ad hoc anchor for each cluster in one mini-batch. It essen-
tially reduces the probability of the inter-class conflict and enables the
unlabelled data functioning as labelled data. We inspect its effective-
ness with elaborate ablation study on seven public face/person classi-
fication benchmarks. Without any bells and whistles, TCP can achieve
significant performance gains over most state-of-the-art methods in both
fully-supervised and semi-supervised manners.

Keywords: Person Re-ID · Face Recognition · Deep Semi-supervised
Learning

1 Introduction

The explosion of the Convolutional Neural Networks (CNNs) brings a remarkable
evolution in the field of image understanding, especially some real-world tasks
such as face recognition [1–5] and person re-identification (Re-ID)[6–11]. Much
of this progress was sparked by the creation of large-scale datasets as well as
the new and robust learning strategies for feature learning. For instance, MS-
Celeb-1M [12] and MARS [13] provide more than 10-million face images and
1-million pedestrian images respectively with rough annotation. Moreover, in
the industrial environment, it may take only a few weeks to collect billions of
face/pedestrian gallery from a city-level surveillance system. But it is hard to
label such billion-level data. Utilizing these large-scale unlabelled data to benefit
the classification tasks remains non-trivial.
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Fig. 1. A comparison between (a) self-training process with recursive clustering-
finetuning (b) un/semi-supervised learning with transductive centroid projection

Most of recent unsupervised or semi-supervised learning approaches for face
recognition or Re-ID [14–20] are based on self-training, i.e. the model clusters
the training data and then the clustered results are used to fine-tune the mod-
el iteratively until converges, as shown in Fig. 1(a). The typical downsides in
this process lie in two aspects. First, the recursive training framework is time-
consuming. And second, since the clustering algorithms used in such approaches
always generate ID-clusters with high precision scores but somewhat low recall
score, that guarantee the clean clusters without inner errors, it may cause inter-
class conflict, i.e. instances belonging to one identity are divided into different
clusters, which hampers the fine-tuning stage. To this end, a question arises:
how to utilize unlabelled data in a stable training process, such as a CNN modle
with softmax classification loss function, without any recursion and avoid the
inter-class conflict?

In this study, we design a novel Transductive Centroid Projection layer to
efficiently incorporate the training of the unlabelled clusters accompanied by the
learning of the labelled samples, and can be readily extended to an unsupervised
manner by setting the labelled data to ∅.

It is enlightened from the latent space learned by the common used Softmax
loss. In deep neural network, each column in the projection matrix W of the final
fully-connected layer indicates the normal direction of the decision hyperplane.
We call each column as anchor in this paper. For a labelled data, the anchor of
its class already exists in W, and thus we can train the network by maximizing
the inner product of its feature and its anchor. However, the unlabelled data
doesn’t even have a class, so it cannot directly provide the decision hyperplane.
To utilize unlabelled samples with conventional deep classification network, we
need to find a way to simulate the their anchors.

Motivated by the observation that the anchor approximates the centroid
direction as shown in Fig. 2, the transductive centroid projection layer could
dynamically estimate the class centroids for the unlabelled clusters in each mini-
batch, and treat them as the new anchors for unlabelled data which are then
absorbed to the projection matrix so as to enable classification for both labelled
and unlabelled data. As visualized in Fig. 1(b), the projection matrix W of the
classification layer in original CNN is replaced by the joint matrix of W and ad

hoc centroids C. In this manner, labelled data and unlabelled data function the
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same during training. As analyzed in Sec. 3.3, since the ad hoc centroids in each
mini-batch is much fewer than the total cluster number, the inter-class conflict
ratio is naturally low and can hardly influence the training process.

Comprehensive evaluations have been conducted in this paper to compare
with some popular semi-supervised methods and some loss functions in metric
learning. The proposed transductive centroid projection has a superior perfor-
mance on stabilizing unsupervised/semi-supervised and optimizing the learned
feature representation.

To sum up, the contribution of this paper is threefold:
1) Observation interpretation - We investigate the observation that the direc-
tions of anchor (i.e. weight wn) gradually coincides with the centroid as model
converges, both theoretically and empirically.
2) A novel Transductive Centroid Projection layer - Based on the observation
above, we propose an innovative un/semi-supervised learning mechanism to wise-
ly integrate the unlabelled data into the recognition to boost its discriminative
ability by introducing a new layer named as Transductive Centroid Projection
(TCP). Without any iterative processing like self-training and label propagation,
the proposed TCP can be simply trained and steadily embedded into arbitrary
CNN structure with any classification loss.
3) Superior performance on face recognition and ReID benchmarks - We apply
TCP to the task of face recognition and person re-identification, and conduct ex-
tensive evaluations to thoroughly examine its superiority to both semi-supervised
learning and supervised learning approaches.

1.1 Related works

Semi-supervised learning. An effective way for deep semi-supervised learning
is the label propagation with self-training [21] by trusting the predicted label
from the model trained on labeled data or clustered by clustering model [22–25],
for close set or open set respectively. It will hamper the model convergence if the
threshold is not precisely set. Other methods like Generative models [26], semi-
supervised Support Vector Machines [27] and some graph-based semi-supervised
learning methods [28] hold clear mathematical framework but are hard to be
incorporated with deep learning methods.
Semi-supervised face/person recognition. In [16], a couple dictionaries
are jointly learned from both labelled and unlabelled data. LSRO [8] adopts
GAN [29] to generate person patches to normalize data distribution and pro-
pose a loss named LSRO to supervise the generated patches. Some works [19,
18] adopt local metric loss functions (e.g. triplet loss [2]) to avoid the inter-class
conflict. These methods with local optimization function, however, are usually
unstable and hard to converge, especially for large-scale data. Some other meth-
ods [19] adopt softmax loss to optimize global classes and suffer from the inter-
class conflict. Most of these methods focus on transfer learning, self-training and
data distribution normalization. In this work, we mainly pay attention to a basic
question, namely how to wisely train a simple CNN model by fully leveraging
both labelled and unlabelled data, without self-training or transfer learning.
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Table 1. Experimental settings on three tasks with different data scales to validate
the observation

Task #Class Backbone #Feature Dim. Feature Space

MNIST 10 LeNet [30] 2 Fig. 2(a)
CIFAR-100 100 ResNet-18 [31] 128 Fig. 2(b)
MS1M-100K 100,000 Inception-ResNet [32] 128 Fig. 2(c)

2 Observation inside the Softmax Classifier

In a typical straightforward CNN, let f ∈ R
D denote the feature vector of one

sample generated by prior layers, where D is the feature dimension. The linear
activation y ∈ R

N referring to N class labels is therefore accompanied with the
weight W ∈ R

D×N and bias b ∈ R
N ,

y = WT f + b. (1)

In this work we degenerate this classifier layer from affine to linear projection by
setting the bias term b ≡ 0. Supervised by softmax loss and optimized by SGD,
we can usually observe the following phenomenon: The anchor wi = W[i] ∈ R

D

for class i points to the direction of the data centroid of class i, when the model
has successfully converged. We first show this observation in three toy examples
from a low-dimensional space to a high one. Then we try to interpret it by
gradient view.

2.1 Toy Examples

To investigate the aforementioned observation from small-scale to large-scale
tasks and from low dimensional to high dimensional latent space, we empirically
analyze three tasks with different data scales, feature dimention and network
structure, i.e. character classification on MNIST [33] with 10 classes, object
classification on CIFAR-100 [34] with 100 classes, and face recognition on M-
S1M [35] with 100, 000 classes3. Table 1 records the detailed settings for these
experiments. To each task, there are two FC layers after its backbone structure,
in which FC1 learns an internal feature vector f and FC2 acts as the projection
onto the class space. All tasks employ the softmax loss. Fig. 2 depicts the feature
spaces extracted from different datasets, in which the 2-D features in MNIST are
directly plotted and the 128-D features in CIFAR-100 and MS1M are compressed
by Barnes-Hut t-SNE [36].
MNIST – Fig. 2(a) describes the feature visualization in three stages: 0, 2
and 10 epochs. We set the feature dimension D = 2 for f so as to explore the
distribution in low dimensional case. The training of this model progressively
increases the congregation between features in each class and inter-discrepancy
between classes. We pick four classes and show their directions W[n] from the

3 The original MS1M dataset has one million face identities with several noises sam-
ples. Here we only take the first 100, 000 identities for the convenience of illustration.
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Fig. 2. Visualization of feature spaces on different tasks, i.e. (a) MNIST, (b) CIFAR-
100 and (c) MS1M, where the features of CIFAR-100 and MS1M are visualized by
Barnes-Hut t-SNE [36], and (d) depicts the evolution of cosine distance between anchor
direction and class centroid with respect to the training iteration on MNIST

projection matrix W, named as anchor. All anchors have random directions at
the initial stage of training, and they gradually move towards the direction of
their respective centroids.
CIFAR-100 & MS1M – To examine this observation in a much larger data
scale and higher dimension case, we further apply CIFAR-100 and MS1M for
an ample demonstration. Different from MNIST, the feature dimension for f is
D = 128 and t-SNE is used for dimensionality reduction without losing cosine
metric. Similar to the phenomenon as observed in MNIST, features in each class
tend to be progressively clustered together while features from different classes
own more distinct margins in between. Meanwhile the anchors marked by red
dots almost locate around its corresponding class centroids. The anchors of a
well trained MS1M model also co-locate with the class centroids.

In addition, for a quantified assessment, we compute the cosine similarity
C(wn, cn) between the anchor wn = W[n] and the class centroid cn for the nth

class out of 10 classes in total on MNIST. Fig. 2(d) exhibits C(wn, cn) with
respect to the training iterations. Almost all classes converge to a distance of 1
within one epoch, i.e. the direction of the anchor shifts to the same direction of
the class centroid.

To conclude, the anchor directionW[n] is always consistent with the direction
of the corresponding class centroid over different dataset scales with various
lengths of the feature dimension in f .

2.2 Investigate in Gradients

We investigate the reason why the directions of anchor and centroid will be
gradually consistent, from the perspective of gradient descent in the training
procedure. Considering the input of linear projection f which belongs to the n-
th chass and the output y = WT f , the softmax probability of f belongs to n-th
chass can be calculated by:

pn = softmax(y) =
exp(yn)

∑N
i=1 exp(yi)

(2)
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Fig. 3. The evolution of the anchor wn and features xn for class n within one iteration.
After this iteration, the directions between anchor wn and centroid cn get closer

We want to minimize the negative log-likelihood, i.e. softmax loss ℓ:

argmin
θ

ℓ = argmin
θ

−log(p), (3)

where θ denotes the set of all parameters in CNN. Now we can infer the gradients
of softmax loss ℓf with respect to the anchor wn given the single sample f :

∇wn
ℓf =

∂ℓf
∂wn

= −
∑

f∈I

(

I[f ∈ In]−
exp(yn)

∑N
i=1 exp(yi)

)

· f , (4)

in which the samples of class n is denoted as In, and yn is the nth element in
y. I refers to the indicator which is 1 when f is in In, and 0 vice versa.

Now considering samples in one mini-batch, the gradient ∇wn
ℓ with respect

to results in the summation of all feature samples in the class n with a negative
contribution from the summation of feature samples from the rest classes:

∇wn
ℓ = −

∑

f∈In

(

1−
exp(yn)

∑N
n=1

exp(yn)

)

· f +
∑

f /∈In

exp(yn)
∑N

n=1
exp(yn)

· f .

In each iteration, the update value of wn equal to

∆wn = −η∇̇wn
ℓ = η

∑

f∈In

(

1−
exp(yn)

∑N
n=1 exp(yn)

)

· f − η
∑

f /∈In

exp(yn)
∑N

n=1 exp(yn)
· f .

Where η denote the learning rate. The former term can be assumed as the scaled
summation of the data samples in class n, thus is approximately proportional to
the class centroid cn. And the feature samples are usually evenly distributed in
the feature space, the summation of the negative feature samples for class n will
also approximately follow the negative direction of the centroid cn. Therefore,
the gradient ∇wn

ℓ approximately points to the centroid direction cn in one time
step, thus finally the anchor wn will also follow the direction of the centroid with
sufficient accumulation of the gradients. Fig. 3 describes the moving direction
of anchor wn with the gradient ∆wn = −∇wn

ℓ and the direction of samples
xn with the gradient ∆xn = −∇xn

ℓ marked in red dot lines. For a class n, the
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samples and anchors are marked with yellow dots and arrow line, respectively.
When the network back-propagates, the direction of wn is updated towards the
class centroid cn in tangential direction whilst the samples xn ∈ In are also
gradually transformed to the direction of wn, which leads to

∑o
j=1 xnj = cn →

wn.

3 Approach

Inspired by the observation stated in the previous section, we propose a novel
learning mechanism to wisely congregate the unlabelled data into the recognition
system to enhance its discriminative ability. Let XL denote the labelled dataset
with M classes and XU the unlabelled dataset. We first cluster the XU by [24]
and get N clusters. According to the property wn ≈ cn discussed in the previous
section, the ad hoc centroid cU from an unlabelled cluster can be used to build
up the corresponding anchor vectorwU, which means that it is possible to utilize
the ad hoc centroid for a faithful classification of the unlabelled cluster.

3.1 Transductive Centroid Projection (TCP)

In one training step, we construct the mini-batch B = {XL
p ,X

U
q } by the la-

belled data XL
p ⊂ XL and unlabelled data XU

q ⊂ XU, with p = card(X̃L) and

q = card(X̃U) denote the number of selected labelled and unlabelled data in this
batch, respectively. We randomly select XL

p from the labelled dataset as usu-
al, but the unlabelled data are constructed by randomly selecting l unlabelled
clusters with o samples in each cluster, i.e. q = l × o. Note that the selected l
clusters are dynamically changed for each mini-batch. Therefore, this mini-batch
B is then fed into the network and the extracted features before the TCP layer are
reformulated as f = [fL, fU]⊤ ∈ R

(p+q)×D, where D is the feature dimension and
fL, fU denote the feature vectors for labelled and unlabelled data, respectively.
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The projection matrix for the TCP layer is reformulated as W = [WM ,Wl] ∈
R

(M+l)×(p+q), in which the first M columns are reserved for the anchors of
labeled classes and the rest l columns are substituted by the ad hoc centroid
vectors {cUι }

l
ι=1 from the selected unlabeled data. Note that cUι is calculated

through the selected samples {fUι,i}
o
i=1 of the cluster ι in this mini-batch as

cUι = α

o
∑

i=1

fUι,i
‖fUι,i‖2

, where α =
1

M

M
∑

j=1

‖cLj ‖2. (5)

The scale factor α is the average magnitude of the centroids for the labeled
clusters. The output of the TCP layer is thereby obtained by y = W⊤f without
the bias term, which is then fed into the softmax loss layer.

Compared to the training in a purely unsupervised manner, the semi-supervised
learning procedure in this paper (as shown in Fig. 4(a)) applies the proposed
transductive centroid projection layer which not only optimizes the inference
towards the labeled data but also indirectly gains the recognition ability for
the unlabeled clusters. Actually, it can be easily transferred to the unsupervised
learning paradigm by setting M = 0 as shown in Fig. 4(b), or the supervised
learning framework when there is no unlabeled data as l = 0.

3.2 Scale Factor α Matters

As stated in Sec. 3.1, the scale factor α is applied to normalize the ad hoc

centroids for the unlabeled data. For the purpose of training stability and fast
convergence, a suitable scaling criterion is to let the mapped activation yU for
unlabeled data have a scale similar to the labeled one yL. Indeed, the ℓ2 norm
of each centroid inherently offers a reasonable prior scale in mapping the input
features fL to the output activation yL. Therefore, by scaling the ad hoc cen-
troids for the unlabeled data with an average scale α = 1

M

∑M
j=1 ‖c

L
j ‖2 as the

labeled centroids, activations for unlabeled data will have a similar distribution
as the labeled activations, thus ensuring the stability and fast convergence during
training.

3.3 Avoid Inter-class Conflict in Large Mini-batch

A larger batch size theoretically induces a better training performance in con-
ventional recognition tasks. However, in TCP, it might be possible that a larger
batch size will introduce multiple clusters with a same class label for the unla-
belled data. Let the classes be evenly distributed in the unlabeled clusters, and
assume that N clusters in the unlabelled data actually belong to Ñ classes, the
probability that every cluster has a unique class label in the mini-batch B is

P (l) = (1− N/Ñ−1
N )l, where l is the number of selected clusters. This probability

decreases as the batch size increases, as shown in Fig. 5.
In our experiment, the ratio N/Ñ ≃ 8 for person re-id and N/Ñ ≃ 3 for face

recognition. To guarantee the probability P (l) > 0.99, the number of cluster l
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Fig. 5. The probability of each single cluster owning a unique class label in a mini-
batch decreases with respect to the batch size. Seven ratiosN/Ñ are marked in different
colors

selected in a mini-batch should not be larger than 40. To further increase the
number of unlabelled clusters in the mini-batch as much as possible, we provide
two strategies as follows:

Selection of Clusters – Based on the assumption that the probability of inter-
class conflict reduces along with the time interval during data collection, to avoid
the conflict in training stage, the l clusters should be picked with an minimum
interval Tl. In the experiment, we find that Tl ≥ 120 seconds presents a good
performance.

Selection of Samples – The diversity of samples extracted from consecutive
frames in one cluster is always too small to aid intra-class feature learning. To
this end, we make a constraint on sample selection by setting the interval between
each sampled frame larger than To. In the experiment, we set To as 1 second.

Based on the aforementioned strategies, we find that only 19 out of 10, 000
mini-batches on Re-ID and 7 out of 10, 000 mini-batches on face recognition have
duplicated identities when setting l = 48 in our training dataset.

3.4 Discussion: Stability and Efficiency

We further discuss the superiority of the proposed TCP layer comparing with
some other metric learning losses, such as triplet loss [2] and contrastive loss [37],
that can also avoid inter-class conflict by elaborate batch selection. Both of these
losses suffer from dramatic data expansion when forming the sample pairs or
sample triplets from the training set. Take triplet loss as an example, n unlabelled
samples constitute 1

3n triplet sets and the metric only restricts on 2
3n distances

in each iteration, i.e. the anchor to the negative sample and the anchor to the
positive sample in each single triplet. It makes the triplet term suffer severe
disturbance during training. Alternatively, in the proposed TCP layer, n = p+q
samples are compared with all the M anchors by labelled data as well as the l
ad hoc centroids of the unlabeled data to achieve (M + l)× (p+ q) comparisons,
which is quadratically larger than other metric learning methods. It thus ensures
a stable training process and a quick convergence.
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Table 2. The list of eight datasets for training with their respective image and identity
numbers

CUHK03 CUHK01 PRID VIPeR 3DPeS i-LIDS SenseReId Market-1501 Total

# Tr. ID 1,467 971 385 632 193 119 16,377 751 20,895
# Tr. Imgs 21,012 1,552 2,997 506 420 194 160,396 10,348 197,425

4 Experimental Settings and Implementation details

Labeled Data and Unlabeled Data. For both of person re-identification and
face recognition, the training data consist of two parts: labeled data DL and
unlabeled data DU.

In experiments for Re-ID, following the pipeline of DGD [38] and Spindle [39],
we take the combined training samples from eight datasets described in Tab. 2
together as DL. Note that MARS [13] is excluded from the training set since it
is an extension of Market-1501. For DU construction, we collect videos with a
total length of four hours from three different scenes with four cameras. The per-
son clusters are obtained by the POI tracker [40] and clustered by [24] without
further alignment, where those shorter than one second are removed. The unla-
beled dataset, named as Person Tracker Re-Identification dataset (PT-ReID)4,
contains 158, 446 clusters and 1, 324, 019 frames in total. For ablation study, we
further manually annotate the PT-ReID, named as Labeled PT-ReID dataset
(L-PT-ReID), and get a total of 2, 495 identities.

In experiments for face recognition, we combine a labelled MS-Celeb-1M [35]
with some collected photos from internet as DL, which in total contains ∼ 10M
images and 1.6M identities. For DU we collect 11.0M face frames from surveil-
lance videos and cluster them into 500K clusters. All faces are detected and
aligned by [41].

Evaluation Benchmarks. For Re-ID, The proposed method is evaluated on
six significant publicly benchmarks, including the image-based Market-1501 [42],
CUHK01 [43], CUHK03 [44], and the video-based MARS [13], iLIDS-VID [45] as
well as Prid2011 [46]. For face recognition, we evaluate the method on NIST IJB-
C [47], which contains 138000 face images, 11000 face videos, and 10000 non-face
images. To the best of our knowledge, it is the latest and the most challenging
benchmarks for face verification. Notice that we found more than one hundred
wrong annotations in this dataset, which introduce significant confusion for recall
rate on some small false positive rate (FPR ≤ 1e-3), so we remove these pairs
in evaluation5.

Evaluation Metrics. For Re-ID, the widely used Cumulative Match Curve
(CMC) is adopted in both ablation study and comparison experiments. In addi-
tion, we apply Mean Average Precision (MAP) as another metric for evaluations
on Market-1501 [42] and MARS [13] dataset. For face recognition, the receiver
operating characteristic (ROC) curve is adopted as in most of the other works.

4 The dataset will be released.
5 The list will be made available.
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Table 3. Comparison results of different baselines with the proposed TCP (last row)
on Market-1501 dataset. All pipelines are trained by a plain ResNet-101 without any
bells and whistles. The top four are single-task learning with single data source (i.e. DL

or DU), while the following five take both data sources with multi-task learning

Methods Top-1 Top-5 Top-10 Top-20 MAP

SL 87.7 93.5 95.1 96.6 79.4

SU 22.8 32.2 36.6 41.8 8.6

SU
self 65.0 77.0 82.9 93.5 61.3

SU
labeled 66.4 78.0 83.4 98.0 67.6

MU+L 37.4 46.6 51.5 67.0 21.0

M
U+L

self
68.8 79.9 84.6 94.5 55.0

M
U+L

labeled
86.0 90.8 92.7 94.8 75.8

M
U+L

tr-loss
83.5 89.5 93.5 95.9 79.3

M
U+L

TCP
89.6 94.1 95.6 96.8 83.5

TCP 90.4 94.5 95.7 96.9 84.4

On all datasets, we compute cosine distance between each pair of query image
and any image from the gallery, and return the ranked gallery list.
Training Details. As a common practice in most deep learning frameworks
for visual tasks, we initialize our model with the parameters pre-trained on
ImageNet. Specifically, we employ resnet-101 as the backbone structure in all
experiments which is followed by an additional fc layer after pool5 to generate
128-D features. Dropout [48] is used to randomly drop out a channel with the
ratio of 0.5. The input size is normalized as 224×224 and the training batch size is
3, 840, in which p = 2, 880, q = 960, l = 96 and o = 10. Warm up technology [49]
is used to achieve stability when training with large batch size.

5 Ablation Study

Since the training data, network structure and pre-processing for the data vary
from method to method, we first analyse the effectiveness of the proposed method
with quantitative comparisons to different baselines in Sec. 5.1 and visualize the
feature space in Sec. 5.2. All the ablation study are conducted on Market-1501,
a large-scale clean dataset with strong generalizability.

5.1 Component Analysis

Since the semi-supervised learning contains two data sources, i.e. labeled data
DL and unlabeled data DU, the proposed TCP is compared with nine typical
configuration baselines listed in Tab. 3. These baselines can be divided into two
types: single-task learning with only one data source and multi-task learning
with multiple data sources.

The top four are single-task learning with single data source: (1) SL only uses
DL supervised by the annotated ground truth IDs with softmax loss; (2) SU only
uses DU supervised by taking the cluster IDs as the pseudo ground truth with
softmax loss; (3) SU

self with self-training on unlabeled data, where self-training
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is a classical semi-supervised learning method. We first train the CNN with DL

which is used to extract features of DU, and then obtain the pseudo ground truth
by a cluster algorithm. The pseudo ground truth is taken as the supervision for
training on DU; and (4) SU

labeled - We further annotate the real ground truth
of unlabeled data and compare it with the model trained with pseudo ground
truth.

The latter five are multi-task learning and three of them are a combination
of the above single-task baselines as follows: (5) MU+L combines SL and SU;
(6) MU+L

self is a combination of SL and SU
self; and (7) MU+L

labeled is a combination
of SL and SU

labeled. The last two take the annotated ground truth to supervise
the branch with labeled data and compare the performance of operating triplet
loss with our TCP on unlabeled data as (8) MU+L

tr-loss with triplet loss, where the
selection strategy for triplets also follow the Online Batch Selection described
in Sec.3.3, and (9)MU+L

TCP utilizes the proposed TCP which is regarded as training
in a unsupervised manner.

The proposed method TCP is neither single-task nor multi-task learning, but
with the labeled and unlabeled data trained simultaneously in a semi-supervised
manner. The results clearly prove that either single-task or multi-task learning
will pull down the performance which are concluded as follows:

Clustered data contain noisy and fake ground truth. Compared with
the näive baseline SU that directly uses cluster IDs as the supervision, the self-
training SU

self outperforms it by 42%. Similarly, by fusing labeled data, the MU+L
self

is superior to MU+L with 31.4%. It shows that (1) the source cluster data con-
tains many fake ground truth and (2) many cluster fragments cause the same
identity to be clustered to different ID ground truth.

It’s hard to manually refine unlabelled cluster data. We further annotate
the cluster data to get the real ground truth of unlabeled data. Although SU

labeled

outperforms SU with pseudo ground truth again demonstrating the noise of
cluster, both SU

labeled and MU+L
labeled drop performance compared to training on

labeled data SL. It shows that there is a significant disparity between two source
data domains, and it is non-trivial to get a clean annotation set due to the time
gap between different clusters.

Self-training and triplet-loss are not optimal. Both self-training MU+L
self

and triplet-loss MU+L
tr-loss provide solutions to overcome the problems caused by

the pseudo ground truth of clusters data, significantly performing the näive
combination of unlabeled and labeled data MU+L, however, their results are still
lower than that of our method by 21.6% and 6.9% respectively. As discussed in
Sec. 3.4, the triplet-loss only consider 2

3N distances that cannot fully exploit the
information in each batch data, while self-training profoundly depends on the
robustness of the pre-trained model with labeled data that cannot be guaranteed
to intrinsically solve the problem.

The superiority of TCP. By employing TCP, both the unsupervised learning
MU+L

TCP and semi-supervised learning TCP, not surprisingly, outperform all of
the above baseline variants by a large margin. It proves the superiority of the
proposed online batch selection and the centroid projection mechanism which
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Anchors of labeled data in batch Labeled data in batch Unlabeled data in batch

Init. 0.1 epoch 0.6 epoch

Fig. 6. Feature and anchor distribution converge during semi-supervised training with
the proposed TCP layer

comprehensively utilize all labeled as well as unlabeled data by optimizing (M+
l)× (p+ q) distances.

5.2 Feature Hyperspace on Person Re-ID

The feature spaces learned on MNIST, CIFAR-100 and MS1M are discussed in
Sec. 2.1. Here we examine whether the same observations and conclusions also
occur on person re-identification with the proposed TCP layer, by visualizing
the distribution related to the mini-batches on a single GPU in different training
stages. For a clear visualization, we show the mini-batch with 8 labeled samples
where each belongs to a distinct class and 24 unlabeled samples from 3 classes
each of which has 8 samples in Fig. 6. As the number of epoch increases, the
anchors of labeled data converge towards their corresponding sample centroids
while those of unlabeled data keep still in the centroids. Until the network con-
verges, the anchors of both labeled and unlabeled data are in the centroid of
each class and thus the unlabeled data can be regarded as the auto-annotated
data to enlarge the training data span.

6 Evaluation on Seven Benchmarks

6.1 Person Re-identification Benchmarks

We first evaluate our method on the six Re-ID benchmarks. Notice that since
the data pre-processing, training setting and network structure vary in differen-
t state-of-the-art methods, we only list recent best performing methods in the
tables just for reference. The test procedure on iLIDS-VID and PRID2011 is
the average of 10-fold cross validation result, whereas on MARS we use a fixed
split following the official protocol [13]. As shown in Tab. 4, ‘Basel.’ denote the
SL setting in 5. The proposed TCP, compared with a variety of recent meth-
ods, achieves the best performance on the Market-1501, CUHK03 and CUHK01
datasets. The performance will be further improved with an additional re-rank
skill.
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Table 4. Experimental results (%) of the proposed and other comparisons on six person
re-identification datasets. The best are in bold while the second best are underlined

Market1501
Top-

1

Top-

5

Top-

10

Top-

20
MAP CUHK01

Top-

1

Top-

5

Top-

10

Top-

20

Best [50] 84.1 92.7 94.9 96.8 63.4 Best [39] 79.9 94.4 97.1 98.6
Basel. 82.7 92.3 95.0 96.0 58.1 Basel. 83.0 96.2 98.1 99.3
TCP 86.1 94.0 95.0 96.2 66.2 TCP 90.0 98.0 99.0 99.4

TCP +
Re-rank

90.4 94.5 95.7 96.9 84.4 TCP + Re-rank 91.6 98.3 99.1 99.4

MARS
Top-

1

Top-

5

Top-

10

Top-

20
MAP iLIDS-VID

Top-

1

Top-

5

Top-

10

Top-

20

Best [51] 73.9 - - - 68.4 Best [52] 62.0 86.0 94.0 98.0
Basel. 77.2 90.4 93.3 95.1 47.7 Basel. 64.5 91.8 96.9 98.8
TCP 80.7 91.6 94.4 95.7 53.7 TCP 69.4 95.1 98.3 99.3

TCP +
Re-rank

82.9 91.8 93.7 96.4 67.6 TCP + Re-rank 71.7 95.1 98.3 99.3

CUHK03
Top-

1

Top-

5

Top-

10

Top-

20
- PRID2011

Top-

1

Top-

5

Top-

10

Top-

20

Best [50] 88.7 98.6 99.2 99.6 - Best [52] 77.0 95.0 99.0 99.0
Basel. 91.7 99.1 99.6 99.8 Basel. 84.6 95.4 99.0 99.6
TCP 94.4 99.7 99.9 100.0 - TCP 92.1 98.1 99.6 100.0

TCP +
re-rank

98.2 100.0 100.0 100.0 - TCP + Re-rank 93.6 98.9 99.6 100.0

Table 5. Experimental results (%) on IJB-C and LFW datasets

Benchmark IJB-C LFW

Index tpr@1e-1 tpr@1e-2 tpr@1e-3 tpr@1e-4 tpr@1e-5 tpr@1e-6 tpr@1e-7 Acc

Best [32] - - - - - - - 99.80

SU 98.65 95.08 84.14 64.98 40.42 21.89 9.94 98.24

SL 99.70 98.98 97.37 94.62 90.49 83.68 76.37 99.78

S
U+L

self
98.97 98.80 98.16 96.60 93.67 88.64 80.69 99.80

TCP 99.97 99.81 99.16 97.58 94.63 89.21 82.90 99.82

6.2 Face Recognition Benchmarks

IJB-C [47] is the most challenging face recognition benchmark for now. Since
it has just been released for a few months, few work report its result on it. We
report the true positive rates on seven different levels of false positive rates (from
1e-1 to 1e-7) in Fig. 5. Comparison has been made between the proposed TCP
with some baselines as discribed in Sec. 5. The best accuracy of existing works
on the widely used LFW dataset is also reported for reference. The result of the
proposed TCP outperforms all the baselines especially the self-training one, the
training process of which takes more than 4-times the time of TCP.

7 Conclusion

By observing the latent space learned by softmax loss in CNN, we propose a semi-
supervised method named TCP which can be steadily embedded in CNN and
followed by any classification loss functions. Extensive experiments and ablation
study demonstrate its superiority in utilizing full information across labelled
and unlabelled data to achieve state-of-the-art performance on six person re-
identification datasets and one face recognition dataset.
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